CLIgen Manual

CLIgen version 4.5

Olof Hagsand
Oct, 2020

Contents
1 Introduction

2 Command syntax
2.1 Keywords L
2.2 Runtime behaviouro
2.3 Escaping L e
2.4 Helptexts e
2.5 Callbacks
2.6 Assignments.o
2.7 Treeso e
2.8 Sets

3 Variables
3.1 Basicstructure
3.2 String
3.3 Imtegers
3.4 Addresses
3.5 Uuld
3.6 Time
3.7 Boolean
3.8 Decimalb4
3.9 Keyword e
3.10 Choice
3.11 Expando
3.12 Regular expressions oL
3.13 Variable translation

4 Operators

4.1 Choice and grouping oo
4.2 Optional elements oL
4.3 Caveat e e

CONTENTS CONTENTS
5 API 17
5.1 CLIgen variables 17
5.2 Imitializing oL 19
5.3 Parsingsyntax files oo oL 19
5.4 Global variables 20
55 Commandloop 20
6 Advanced API 21
6.1 Writing a callback function 21
6.2 Registering callbackso 22
6.3 Completion 22
6.4 Translation 23
7 Installation 24

1 INTRODUCTION

CLl.c

User

Designer

Figure 1: CLIgen usage: a designer implements a CLI by specificying the syntax
in a specification file and the CLI source code using the CLIgen API.

Spec libcligen

1 Introduction

CLIgen builds interactive syntax-driven command-line interfaces in C from a
high-level syntax specification. Interactive CLIs are often used in communica-
tion devices such as routers and switches. However, any devices with a textual,
syntax-driven, command-based interface can use CLIgen to make CLI program-
ming easy.

CLIgen takes a syntax specification as input, generates a tree representation
of the syntax, and provides an interactive command-line tool with completion,
help, modes, etc.

A designer formulates the command-line syntax and writes callback functions
in C to implement the semantics of the commands.

A good starting point is the hello world example with a simple syntax spec-
ification ("hello world”) and a callback with a print statement, which produces
the following CLI executable:

> ./cligen_hello
hello> hello world
Hello World!
hello>

The complete cligen hello C application is included in the source code
distribution.

Figure 1 shows a typical workflow when working with CLIgen. A designer
specifies the CLI syntax by editing a CLIgen specification file and writing a C-
program. When users access the CLI at runtime, the specification file is loaded
and the CLI uses the API of the CLIgen library to interpret the commands.

An example of a CLIgen specification file of the hello world application is:

prompt="hello> " # Assignment of prompt
hello("Greet the world"){ # ’hello’ command with help text

world, cb("Hello World!"); # ’world’ command with callback
}

The specification above shows examples of the following key ingredients of
a specification:

e Command syntaz specifies the syntax of the actual commands, and are
the main part of a specification. The command syntax is fully described
in Section 2.

2 COMMAND SYNTAX

e Callbacks are functions called when a command has been entered by a
user. You may specify an argument to a callback. Callbacks are a part of
the API described in Section 5.

e Assignments are used to set properties of the CLI and its commands, such
as prompts, visibility, etc. Assignments are either global or per-command.

e Help text provides help text for individual commands.
e Comments begin with the '#’ sign.

The following sections will describe all aspects of designing CLIgen applica-
tion. Programming using the CLIgen API in C is described in Section 5.

2 Command syntax

The command syntax consists of a combination of keywords, variables and op-
erators:

e Keywords are constant strings representing fixed command words.
e Variables are placeholders for user-defined input.

e Operators are used to combine keywords and variables in different ways.
Operators include ’choice’, ’option’, 'sequence’, etc. Operators are further
described in Section 4.

For example, the command syntax ip tcp <uint16>; have two keywords:
ip, and tcp and one variable: <uint16>. They are combined in a sequence,
that is, the CLI expects them to be typed one after the other.

2.1 Keywords

The simplest syntax consists only of keywords. Such a syntax can be specified
as follows:

aa bb{
ca;
cb;{
dd;
ee;
}
}
ff;

A CLI loaded with the specification above accepts the following strings as input:

aa bb ca
aa bb cb

aa bb cb dd
aa bb cb ee
ff

Note the following:

2.2 Runtime behaviour 2 COMMAND SYNTAX

Newlines are not significant, except after comments. This means that an-
other way of specifying the syntax above is: aa bb{ca;cb;{dd;ee;}}{f;.

Keywords specified one after another is a sequence. Example: aa bb;.
An alternative of expressing the same syntax is: aa{bb;}

Semicolon terminates a complete command. This means that aa bb cb
is accepted as a complete command, but not aa bb in the syntax above.

Semicolons also act as a choice, you can choose either dd or ee in the
syntax above.

Keywords can also be specified using variables: <string keyword:aa>,
there are some advantages with this which may get apparent when pro-
gramming using the API (see Section 5).

The syntax above can be written in a more compact way, such as aa bb
(calcb [ddleel);ff;. This is described more in Section 4

2.2 Runtime behaviour

A CLI with the syntax above will present the user with a list of commands. On
the top-level, only aa or bb may be chosen when a question mark is entered:

> 7?)
aa

gg

If the user prints an ’a’, followed by a "TAB’, the CLI performs completion
to aa since there is only one alternative:

a’TAB’

aa ’TAB’

aa bb ’TAB’

aa bb c’TAB’

ca cb
> aa bb ¢

vV V V V

In the example, two more TABs are entered, one for each command level and
completion continues until the commands are not unique. In the last TAB, the
CLI shows the available commands (ca and cb).

As long as a command is unique it is not necessary to complete the whole
string. For example, the following two strings are equivalent from the CLIs
perspective:

> aa bb cb dd
>abcbd

Before finishing a command (with return), a unique command must be se-
lected. The CLI gives an error code if the command is unknown, ambiguous or
incomplete:

2.3 Escaping 2 COMMAND SYNTAX

> a

CLI syntax error in: "a": Incomplete command

> aa bb c

CLI syntax error in: "aa bb c": Ambiguous command
> aa bb dd

CLI syntax error in: "aa bb dd": Unknown command

2.3 Escaping

In the CLIgen runtime, some characters have special meaning, such as >?’. You
can escape characters with backslash(?\”) so that for example >?’ can appear
in a keyword or value:

> a\7b # Gives the string "a?b"
> a\\b # Gives the string "a\b"

2.4 Help texts

Help texts are given within parenthesis following a keyword or variable. The
help text appears when you invoke the help command ’7’ in the CLI runtime.
For example, assume the following syntax:

ip("The IP protocol"){
udp("The UDP protocol") <ipaddr>("IPv4 address");
tcp("The TCP protocol") <uint16>("Port number");
}

If a user has typed ’ip * and ’7’, the following help text appears:

cli> ip 7’
tcp The TCP protocol
udp The UDP protocol

2.5 Callbacks

When a unique command has been selected, a callback may be called. Callbacks
are typically associated with commands using the file syntax:

aa bb{
ca,fn1("ca");
cb,fn1("cb");{
dd,fn2(Q);
ee,fn3((int)42);
}
}

In the example, the function fn1 is called with "ca" as argument if aa bb
ca, is selected. The same function is called also if aa bb cb is selected, but
with another argument. For other commands, £n2 is called without argument,
and fn3 is called with the integer argument 42.

Note that callbacks may only be associated with terminal commands. For
example, aa bb may not have a callback function.

The details on how to write callback functions, such as fn1 - £n3 is described
in detail in Section 5.

2.6 Assignments 2 COMMAND SYNTAX

2.6 Assignments

You can assign values to global and local variables. Global variables are valid
for the whole syntax, while local variables only apply to a single command.
In the current release, there is one pre-defined local variable:

e hide specifies that a command is not visible when listing or completing
commands with ’?” and 'TAB’. Still, the command is selectable and may
be selected if you type it. This can be useful if there are commands that
should be known only by expert users.

In the following example, aa bb ca is not visible:

aa bb{
ca,hide;
cb;{
dd;
}
¥

A global variable is assigned on the top-level. There is currently only one
pre-defined global variable (treename as described in the next section). But it
is easy for a programmer to implement a global variable and define semantics
to it.

The tutorial application supports prompt and comment character:

prompt="cli> "; # Assignment of prompt
comment="#"; # Same comment as in syntax

Section 5.4 describes how the C-API can be used to define semantics for a global
variable.

2.7 Trees

CLIgen can handle multiple syntax trees. A user can switch between trees (i.e.,
change CLI mode), or extend a tree with a sub-tree (using tree-references).

A tree is named using a special global treename assignment. The following
example shows two syntax trees: treel and tree2.

treename="treel";
x{
Yy
}
treename="tree2";
z{
X3

3

When parsing the syntax above, a CLIgen tree-list consisting of two trees
will be created. By default, the first parsed tree is the active tree.

changetree <tree:string>, changetree("tree2");

2.7 Trees 2 COMMAND SYNTAX

Note that the changetree callback needs to be implemented as a callback
function in C to actually change the syntax mode. Such a callback is imple-
mented in the tutorial and is also described in more detail in Section 5.

Note, the treename feature is not available in Clixon, only in stand-alone
CLIgen.

2.7.1 Tree references

A CLIgen syntax tree may reference another tree as an extension using the
reference operator 'Q’.
The following specification references itself:

treename="T";
foo;
recurse QT;

which means that the following sentences are valid commands:

foo

recurse foo

recurse recurse foo

recurse recurse recurse foo

and so on.

Callbacks can be parametrized when using tree references. This means that
you can specify which callback to use in the reference of the tree. This means
that different callbacks can be called depending on how you reference the tree.

The following examples shows a main tree and a sub-tree.

treename="main";
add @sub, add();
del @sub, del();
treename="sub";
xq{

y, fn("a");
}

The main tree references the subtree twice. In the first reference, add("a")
is called when invoking the command add x y. In the second instance del("a")
is invoked when invoking the command del x y.

Note that the parameter list ("a") is not substituted, the original is used.
In the example this means that add("a") is called regardless of any parameters
to add () in the @sub invocation. An exception to this rule if there is no callback
given in the original tree (e.g. as in x { y; }, then the callback and argument
list from the tree reference is used (eg add() including aventual parameter list)!.

It may be useful with functional substitution as shown above when the sub-
tree represents a large common data-modeling sub-tree, where the data (x y) is
the same but the operation(add/del) is different.

In the example, the 'treename’ variable is used to define a new CLIgen tree.
It is possible using the C-API to change this keyword to something else by using
the API function cligen treename keyword.

1Yes, this semantics is somewhat complex and needs revision

2.7 Trees 2 COMMAND SYNTAX

2.7.2 Tree workpoints

When using tree references it is possible to set an active workpoint for that tree,
which can change dynamically. In this way, a user can navigate up and down
the tree in its references for it. This is useful when implementing automatic
modes for example.

To achieve this, a couple of C-API callbacks are available:

e cligen wp_set(<tree>) - Set the workpoint

e cligen wp_show(<tree>) - Show the tree at the active workpoint

e cligen wp_up(<tree>) - Navigate up in the tree

e cligen wp_top(<tree>) - Navigate to top of tree

Assume first a tree “T” is created that will be navigated in using workpoints:

treename="T";
a; {
b <v:int32>; {
d;
}
c;

}

Then, some main syntax for navigating in three is added in the main CLIgen
spec:

edit, cligen_wp_set("T");{
QT, cligen_wp_set("T");

}

show, cligen_wp_show("T");

up, cligen_wp_up("T");

top, cligen_wp_top("T");

It is now possible to traverse the tree using the “I” tree as the following
example illustrates (the prompt shows the location of the active workpoint):

cli:/> show
a;{
b <v>;{
d;
}
c;
}
cli:/> edit a
cli:/a> show
b <v>;{
d;
}
C;
cli:/a> edit b 23

2.8

Sets

2 COMMAND SYNTAX

cli:/a/b/23> show
d;
cli:/a/b/23> up
cli:/a/b> show
<v>;q{
d;
}
cli> top
cli:/> show
a;q{
b <v>;{
d;
}
C;
}
cli:/>

2.8 Sets

By default, listing several commands within {} gives a choice of commands,
but if instead commands are within the set operator @{}, the commands can be

given on any order, and at least once. For example:

X

}

o{
a;
b;
c;

gives exactly the following allowed CLI commands, and no others:

LT o T < T T T T B - B R T
O 000 0 ococococoTe P eE

oo P

o o oo
[e]

o o P
O

a

Note that the sets implementation is EXPERIMENTAL in the current re-
lease, and you may need to define the USE_SETS option in cligen_custom.h.

10

3 VARIABLES

3 Variables

Variables are placeholders for user input. They also give support for lexical
checking. The int32 type, for example, only accepts 32-bit integers, while
string accepts any sequence of characters.

3.1 Basic structure
A variable has the following basic components:
e name - How the variable is referenced, such as in a callback.

e type - The type of the variable. If no type is given, it is by default the
same as name.

e show - How the variable is displayed in help texts (such as after a ’?’ or
"TAB’. If no show field is given, it defaults to name.

The variable syntax has several forms:

<int32>;
<a:int32>;
<a:int32 show:"a number">("A 32-bit number")

In the first form, both name, type and show is int32. In the second form,
the name and show is ”a”, while type is int32. In the last form, all fields are
explicitly given, and there is also a help-text.

An example of the last, most explicit form in a CLI:

cli> 7’
<a number> A 32-bit number

3.2 String

The simplest form of a string specification is: <string>, which defines a string
variable with the name ’string’.
A more advanced string variable specification is the following:

address <addr:string>("Address to home");

where the name of the string variable is addr. The name can be used when
referring to the variable in a callback, and is also used in the help text:

cli> address ’7’
addr Address to home

A string may contain all characters with some minor exceptions. Most no-
tably, a string can not contain a question mark, since it is used for querying
syntax in the CLI. Also, if a string contains spaces, it must be contained within
double quotes. The following examples are all valid strings:

i_am_a_string
O/&#

"T am a string"
ab"d

11

3.3 Integers 3 VARIABLES

A string can be constrained by a length statement. If given, the number of
characters in a string is limited to a min/max interval, or just a max?.

Example:

<addr:string length[8:12]>
<addr:string length[12]>
<addr:string length[2:4] length[8:12]>

which means that the addr string, if given, must be between 8 and 12 characters
long, or just limited to 12 characters, or be between 2-4 and 8-12 charcters
respectively.

A variant of string is rest which accepts all characters until the end-of-line.

3.3 Integers

There are several integer variables, signed, unsigned, and 8, 16, 32 or 64-bits.
For example, the int32 variable allows any 32-bit integer, and can be specified
in decimal or hex format.

Further, an allowed range of integer can specified, either as an interval or as
an upper limit, or a set of ranges:

Examples:

<x:uint32>
<x:int8 range[-12:80] range[100:110]>>
<x:int64 range[1000]>

3.4 Addresses

CLIgen is often used in communication devices. Therefore, there is support for
several pre-defined address types. Special lexical checking is defined for those

types:
e ipvédaddr - An IPv4 address in dotted decimal notation. Example: 1.2.3.4
e ipvédprefix - An IPv4 prefix in ’slash’ notation: Example: 1.2.3.0/24
e ipv6addr - An IPv6 address. Example: 2001: :56
e ipvbprefix - An IPv6 prefix. Example: 2001:647::/64
e macaddr - A MAC address: Example: 00:E0:81:B4:40:7A

e url - An URL: Example: http://www.hagsand.se/cligen

CLIgen performs lexical checking of the address variables, an invalid address
is considered as a syntax error.

3.5 Uuid

A variable of type uuid accepts uuid according to standard syntax, such as
f47ac10b-58cc-4372-a567-0e02b2c3d479.

2Note that this differs from YANG types where a single bound means exactly that value,
see RFC 7950

12

3.6 Time 3 VARIABLES

3.6 Time

A time variable accepts ISO timestamps on the form

2008-09-21T18:57:21.003456
2008-09-21 18:57:21.003456
2008-09-21 18:57:21

3.7 Boolean

A variable of bool type accepts the values true, false, on and off.

3.8 Decimal64

A variable of type decimal64 defines a subset of floating point numbers that
can be obtained by multiplying a 64-bit signed integer with a negative power of
ten, ie as can be expressed by ¢ x 107", where n is between 1 and 18.

The number of fraction-digits can be defined in the specification of the type,
if this is not defined explicitly, the default number of decimals is 2.

Two examples of decimal64 are 732848324.2367 (four fraction-digits) and
-23.0 (one fraction-digit).

Examples of decimal64 specification is:

<d:decimal64 fraction-digits:4>;
<d:decimalé4 fraction-digits:4 range[0.1:10]>;

which allows numbers with four decimals. The econd example limits the num-
bers to be between 0.1000 and 10.0000.

Note that the fraction-digits statement should come before the range
statement.

3.9 Keyword

A keyword variable is just an alternative way of specifying command keywords
as defined in Section 2. In fact, a syntax with static keywords can just as well
be written using keyword variables.

Thus, for example, the two specification lines below are equivalent:

aa bb;
<aa:string keyword:aa> <bb:string keyword:bb>;

However, a keyword variable can have another name:
<myname:string keyword:aa>;

Naming of keywords provides for more flexible search functions in callbacks,
see Section 5.
Note that a keyword must be of type string.

13

3.10 Choice 3 VARIABLES

3.10 Choice

The choice variable can take the value from a static list of elements.
Example:

interface <ifname:string choice:ethO|eth1>("Interface name");
A CLI user will get the following choice:

cli> interface ’7’

ethO Interface name
ethl Interface name
cli>

The user can only select ethO or ethl, and thus the value of the ifname variable
is either ethO or ethl.

Note the resemblance with choice of strings in Section 4 where the same
example could be specified as:

interface (ethO|ethl)

Again, the former variant allows for naming of the variable which can be
better when writing a callback function. In the example, the name of the variable
in the first example is ifname whereas in the second it is either ethO or ethi.

3.11 Expand

The choice variable specifies a static list of keywords. But what if the list is
dynamic and changes over time?

The expansion variable is a dynamic list of keywords, where the list may be
different each time the CLI command is invoked.

For example, assume a user can select a network interface in the CLI, but
the number of interfaces changes all the time. This can be specified as follows:

interface <ifname:string interfaces()>("Interface name")

The user’s choice in the CLI will then be just as in the choice case:

cli> interface ’7’

ethO Interface name
ethl Interface name
cli>

However, at another point in time, the choice of interfaces may be different:

cli> interface ’7’

eth3 Interface name
100 Interface name
cli>

There is one catch here: the CLI needs to know in run-time the members of
the list. That is, the list members cannot be specified in the syntax. In CLIgen,
the application programmer defines a C callback function, interfaces() in
this example, which computes the list at the time it is needed. This callback is
registered and called whenever necessary.

How to write an expand callback is further described in Section 6.3.

14

3.12 Regular expressions 4 OPERATORS

3.12 Regular expressions

A string variable may be described using a regular expression. That is, a regular
expression defines which values are valid.
For example, a variable may be specified as:

<name:string regexp:"(abla)b*c">;

<name:string regexp:"[a-z]+[0-8]+\\. [0-9]">;
The first rule matches the following strings, for example:
ac

abc
abbbbbbbbbc

You can also add multiple regexps, in which case the string must match ALL
regexps. You can also specify an inverted regex, meaning that a string should
NOT match the regex.

In the following example, all strings are matched that do not start with ”cli”

<name:string regexp:"[a-zA-Z]+" regexp:!"cli.*">;

CLIgen by default uses POSIX Extended regular expression syntax. How-
ever, XML schema regexps can be used instead by configuring CLIgen with
libxml2 as follows:

./configure --with-libxml2 # At configure time
cligen_regexp_xsd_set(h, 1); # In C init code

3.13 Variable translation

CLIgen supports variable translation. A given variable can be translated on-th-
fly using a generic translation function. This may be useful for example when
hashing or encrypting a value.

In the example below, the variable var is translated by the function incstr:

increment <var:string translate:incstr()>, cb();
In this example, incstr simply increments every character in the variable.

cli> increment HAL
variables: 1 name:var type:string value:IBM

In the same way, a clear text password could be translated to an encrypted
string. For information on how to implement a translator function, see Sec-
tion 6.4.

4 Operators

In the regular syntax format, there are (implicit) sequence and choices. For
example, the syntax

aa bb;
cc;

defines a choice between the sequence aa bb and cc.
It is also possible to explicitly define choices, optional elements and syntac-
tical groupings.

15

4.1 Choice and grouping 4 OPERATORS

4.1 Choice and grouping
Explit choice between several elements can be made as follows:
(aa bb) | cc;

which expresses the same syntax as above.
Help strings work as usual, but may not be associated with groupings:

aa (bb("help b") cc("help c¢") | dd("help d"));
Choices may also be made with variables:
values (<int8> | <string> | <int64> | aa);

where a pattern matching is made selecting to try to select the most ’specific’
variable. For example, the following input will give different matchings:

e aa selects the keyword.
e bb selects <string>.
e 42 selects <int8>.

324683276487326 selects <int64>.

4.2 Optional elements
It is also possible to express an optional part of a syntax using brackets:
aa [[bb] ccl;

which accepts the commands: aa, aa bb and aa bb cc.
Any combination of these operations are possible, such as in the line:

aa [[(bblcc <int32>)] dd] ee;

Note that the elaborate command specifications above can be combined in
a regular syntax, at parsing they are just expanded into a larger syntax tree.
Thus for example, the syntax:

aa bb (ca("help ca")|cb("help cb")) [ddleel;
is equivalent to:

aa bb{

ca("help ca");{
dd;
ee;

}

cb("help cb");{
dd;
ee;

}

which is similar to the syntax used in Section 2.

16

4.3 Caveat 5 API

4.3 Caveat

Note that the choice, groupings and optional elements are only syntactical struc-
tures generating the basic constructs described earlier. This means that if you
use too many of them, they can generate a large number of states and consume
memory.

For example, the optional operator [] will increase the number of states
with a factor of two. Thus [a] [b] [c] [d] will generate 16 states, for example.

As an assistant, you can use the —p option to cligen file to see which basic
syntax is generated:

$ echo "[al[b][c]l;" | ./cligen_file -p
a;{
b;{

5 API

This section describes C-programming issues, including types, parsing and call-
backs.

Appendix A contains a complete program illustrating many of the topics of
this tutorial. More advanced applications can be found in the CLIgen source
repository.

5.1 CLIgen variables

Variables in the command syntax (such as <string>) described in Sections 3 and
2.6 are translated in runtime into CLIgen variables using the cg_var datatype.
A CLIgen variables is sometimes referred to as a cw.

A cv is a handle and its values are accessed using get/set accessors. Two
generic fields are name and type, other fields are accessed via type-specific ac-
cessors (see next Section).

Example: get name and type of cligen variable:

char *name = cv_name_get(cv);
enum cv_type type = cv_type_get(cv);

5.1.1 Types

CLIgen variables have a simple type-system, essentially following the types in-
troduced in Section 3. Each cv type have get/set operators to access and modify
the value.

17

5.1 CLIgen variables 5 API

For example, a command syntax contains <addr:ipv4addr>, and the user
inputs 712.34.56.78”. The CLI will then generate a cv which can be accessed in
C. The string 712.34.56.78” is accessed with:

struct in_addr addr = cv_ipv4addr_get(cv);

Accessors for other types are shown in the table below. There may be several
fields for a given type. These are given in the table with the corresponding C-

type.

Type Accessor C-type

int8 cv_int8_get () int8_t

int16 cv_int16_get () int16_t

int32 cv_int32_get () int32_t

int64 cv_int64_get () int64_t

uint8 cv_uint8_get () uint8_t

uint16 cv_uint16_get () uint16_t

uint32 cv_uint32_get () uint32_t

uint64 cv_uint64_get () uint64_t

decimal64 | cv_dec64_i_get () int64_t
cv_dec64.n_get () uint8_t

bool cv_bool_get() uint8_t

string cv_string get () char*

ipvdaddr | cv_ipv4addr_get() struct in_addr

ipvdprefix | cv_ipv4addr_get () struct in_addr
cv_ipvé4masklen get() | uint8

ipvb6addr | cv_ipv6addr_get () struct in6_addr

ipv6prefix | cv_ipv6addr_get () struct in6_addr
cv_ipv6masklen get() | uint8

macaddr | cv_mac_get() char[6]

uuid cv_uuid_get () char[16]

time cv_time_get () struct timeval

url cv_urlproto_get () charx*
cv_urladdr_get () charx*
cv_urlpath_get () char*
cv_urluser_get () charx
cv_urlpasswd_get () charx*

You may also access a value with an unspecified type using:

void *v = cv_value_get(cv);

5.1.2 Cligen variable vectors

Variables are grouped into vectors whose using cvec. Global variables or vari-
ables passed to callback functions are always grouped into cvec structures.
5.1.3 Finding variables in a vector

Suppose for example that you have the following command syntax:

person [male|female] (<age:int32>|<name:string>)

A cvec is accessed using a handle. Typically an iterator is used to access
the individual cv:s within a vector:

18

5.2 Initializing 5 API

cvec *vr;

cg_var *cv NULL;

while ((cv = cvec_each(vr, cv)) != NULL) {
str = cv_name_get(cv);

}

You can also access the variables individually if you know their order, in this
example the 3rd element:

cvec *vr;
cg_var *cv = cvec_i(cv, 2);

A way to find variables using their names is as follows:
cg_var *cv = cvec_find(vars, "age");

Actually, kewords are also a part of variable vectors. This means that they
can also be accessed via their name, although the name of the keyword is the
same as its constant value, as described in Section 3.9.

Therefore, you can also check whether a keyword exists or not. Using the
same example:

if (cvec_find(vars, "male") != NULL)
printf("male\n");

where the conditional evaluates to true only if the user has selected male and
not female.

5.2 Initializing

An application calls the CLIgen init function to initialize the CLIgen library.
The function returns a handle which is used in most CLIgen API functions.

In the following example, CLIgen is initialized, a prompt is set, and is then
terminated:

cligen_handle h = cligen_init();
cligen_prompt_set(h, "cli> ");
[...]

cligen_exit(h);

5.3 Parsing syntax files

The command syntax as described in Sections 2-4 normally resides in a file
which is loaded and parsed by the CLI. The result of the parsing is a parse-tree
and a list of global variable assignment. After parsing, the program needs to
interpret the result and set up the CLI environment. This includes handling
global variable assignments, mapping function callbacks, etc.

Most non-trivial programs handle many syntaxes that are merged into a
common parse-tree, while others partition parse-trees into different modes.

An example of parsing syntax file mysyntax.cli is the following:

19

5.4 Global variables 5 API

cligen_handle h;

FILE *f;

h = cligen_init();

f = fopen("mysyntax.cli");

cligen_parse_file(h, f, "mytree", NULL, NULL);
cligen_loop(h);

The example code initiates a handle, opens the CLIgen syntax file, parses
the syntax into a tree called mytree and starts a CLIgen command loop.

The next step is to handle the global variables and to bind callback functions.
5.4 Global variables

A syntax file may contain global variable assignments which can be accessed by
the the C-code. Suppose a syntax file contains the following global assignments:

prompt="cli> "; # Assignment of prompt
These global variables are parsed and may be read by the C-code as follows:

char *prompt;

[...]

cligen_parse_file(h, f, "mytree", NULL, globals);
prompt = cvec_find_str(globals, "prompt");
cligen_prompt_set(h, prompt);

In this way a programmer may define the semantics of global variables by
binding their value to actions.
5.5 Command loop

A programmer can use the pre-defined cligen loop function, or create a tailor-
made loop as follows:

for (;;)9{

retval = cliread_eval(h, &line, &ret);
The return value of the cliread_eval function is as follows:
e CG_EQOF: end-of-file

e CG_ERROR: CLIgen read or matching error, typically if the syntax is not
well-defined.

e CG_NOMATCH: No match, the input line did not match the syntax. By calling
cligen nomatch(h), the reason for why no match was made is retrieved.

e CG_MATCH: Match, the line matched exactly one syntactic node. The vari-
able ret contains the return value of the callback (if any).

e > 1: Multiple matches, the line matched several syntax lines.

20

6 ADVANCED API

6 Advanced API

6.1 Writing a callback function

A programmer may write a callback function for every complete command de-
fined in the command syntax. Such a callback is then called every time a user
types that command in the CLI.

An example of CLIgen callback function from the example in Section 1 with
the command syntax hello world,cb("hello") ;is:

int cb(cligen_handle h, cvec *cvv, cvec *argv){
printf ("%s\n", cv_string_get(cvec_i(argv, 0)));
return O;

}

The callback returns zero if everything is OK, and —1 on error. The arguments
of a callback function are:

e handle - CLIgen handle created by a call to cligen_init. The handle is
used if the callback makes API calls to CLIgen, such as changing prompt,
parse-tree, etc.

e cvv - The command line as a list of CLIgen variables. Both keys and
variables are included in the list.

e argv - A vector of CLIgen variables declared in the command syntax.
Regarding a more advanced command syntax from Section 5.1.3:
person [male|female] (<age:int32>|<name:string>),cb("person");
and an CLI input command such as:
cli> person male 67

The cligen variable vector cvv has four elements and can be accessed via
iteration or via the cvec_i() function:

1. The complete command string: person male 67.

2. The CLIgen string variable containing the keyword person.
3. The keyword male.

4. A CLIgen integer variable containing 67.

The argv argument contains the function argument in the command syntax:
person.

By using the values in the argument and variable vectors, the callback can
perform actions by calling CLIgen API functions. In those functions, the handle
h is usually required and used to make global changes.

21

6.2 Registering callbacks 6 ADVANCED API

6.2 Registering callbacks

A typical syntax contains callback references, such as the following:
hello world, callback("arg");

The parse-tree created in Section 5.3 contains the function names as strings
which need to be mapped to function pointers. This is a typical issue with
the C programming language. The problem is essentially the same as finding
functions in a symbol-table. Note that this mapping is not a part of CLIgen
itself but needs to be made by the application.

There are many ways to solve this issue, including using dynamic libraries
and making a lookup in real-time using dl_open, mmap, or similar C library
functions. This is actually the preferred option, the other approaches described
here are not as good.

The simplest way used in this tutorial is to map all callbacks to the same
function:

cligen_callback_register(pt, callback);

It is then up to callback to determine in which context it was called using its
arguments.

A better way is to map each callback specified to a different function. This
can be made by defining a function that maps between function name strings
and actual functions and calling a mapping funtion, for example:

cgv_fnstype_t *
mapper (char *name, void *arg, char **error)
{

*error = NULL;

if (strcmp(name, "callback") == 0)

return callback;

return callback; /* allow any function (for testing) */
}
cligen_callbackv_str2fn(pt, mapper, NULL);

6.2.1 Multiple callbacks

Several callbacks may be associated with a syntax. Example:

hello world, callback("arg"), extra(Q);
hello world, extra2();

In this case, all three functions: callback, extra and extra2 are called, one
after the other.

6.3 Completion

If expand variables (see Section 3.11) are used, the application defines a callback
to fill in the elements of the dynamic list. Such a callback is invoked every time
the CLI asks for a command containing the corresponding expand variable.
That is, the callback may be invoked when a user types a question mark or a
TAB as well.

22

6.4 Translation 6 ADVANCED API

The following example shows the expand function expand_ifname. A trans-
lator function (str2fn) maps name of functions to actual functions. In this case
it trivially returns the expand function for all commands. More elaborate map-
ping functions consult a symbol table or some other way to map the function
name supplied in the syntax, with an actual function pointer.

The expand function supplies a list of pointers to strings, in this example
a list of interfaces. The example returns a static list of interfaces: ”eth0” and
7ethl”, a real example would dynamically get the list of interfaces. If the
helptexts are not given, the helptext in the specification is used.

int
expand_ifname(cligen_handle h, char *fn_str, cvec *cvv, cg_var *argv,
cvec *commands, cvec *helptexts)
{
cvec_add_string(commands, NULL, "ethO");
cvec_add_string(helptext, NULL, "The first interface");
cvec_add_string(commands, NULL, "ethl");
cvec_add_string(helptext, NULL, "The second interface");
return 0;

expandv_cb *
str2fn(char *name, void *arg, char **error)
{

return expand_ifname;

3

main()
{
[...]
cligen_parse_file(h, f, "mysyntax", &pt, &globals) < 0)
if (cligen_expandv_str2fn(pt, str2fn, NULL) < 0)
return -1;
[...]
}

In other words, as soon as the user selects a line containing the variable
interfaces, expand ifname() will be called. Therefore, be careful to avoid
blocking calls within the callbacks since this may make the CLI less interactive.

6.4 Translation

An example of a variable translator function is as follows:

int

incstr(cligen_handle h,
cg_var *CV)

{

char *str;
int i;

23

7 INSTALLATION

if (cv_type_get(cv) != CGV_STRING)
return 0;

str = cv_string_get(cv);

for (i=0; i<strlen(str); i++)
stri]++;

return O;

In the function, the CLIgen variable cv assumed to be a string, every char-
acter is incremented, so that the string HAL would be translated to IBM, for
example.

In the same way as expand functions, the translator functions must be reg-
istered using cligen_translate_str2fn(). See the tutorial example and code
for more details.

7 Installation

CLIgen is easiest installed from github. Just clone the source, configure it and
type make, and try the tutorial program:

git clone https://github.com/clicon/cligen.git
cd cligen

./configure

make

sudo make install

./cligen_tutorial -f tutorial.cli

hello>

V V V V V V

CLIgen can be installed on a variety of platforms using configure. Instal-
lation installs library and include files in the system. It is also possible to
install library only (or include-files only) using make install-lib (or make
install-include).

24

7 INSTALLATION

Appendix A: Tutorial command syntax

Please see the tutorial.cli file in the source release.

25

7 INSTALLATION

Appendix B: API functions

To generate CLIgen reference manual, please do make doc in the cligen direc-
tory.

26

7 INSTALLATION

Appendix C: Control sequences

The control sequences of the runtime CLI is as follows:

Control sequence | Action Comment
? Help
Ctrl + A Go to beginning of line
Ctrl + B One char backwards
Ctrl + C Exit CLI Add extra w cligen_exitchar_add().
Ctrl + D End-of-file. Exit if at beginning of line
Ctrl + E Goto end of line
Ctrl + F One char forward
Ctrl + H Erase previous character Backspace
Ctrl + 1 Auto completion TAB
Ctrl + K Erase line after cursor
Ctrl + L Redraw line
Ctrl + N Move to next line in history
Ctrl + O Toggle overwrite mode
Ctrl + P Move to previous line in history
Ctrl + R Search history list backward
Ctrl + S Search history list forward
Ctrl + T Transpose character
Ctrl + U Erase line before cursor
Ctrl + W Erase word backward
Ctrl +Y Insert previously deleted text 'yank’
Ctrl + 7 "Suspend’ Register callback:
cligen_susp_hook()
Arrow up Move to previous line in history
Arrow down Move to next line in history
Arrow left One char backward
Arrow right Once char forward
ESC + F Move one word forward
ESC + B Move one word backward

27

