
S M A L L C O D E

53 4D 41 4C 4C 43 4F 44 45
Code optimization, assembly language and C programming for Win32

Home

Popular Articles

Hash functions benchmark

Self-extracting executables

What your compiler can do 4u

Win32 assembly cheat sheet

x86 machine code statistics

Recent Comments

Adam Messinger: In your equal any example, will the first bit really be 1? The Y in “You Drive

Me Mad” is...

ace: I haven’t read the official book but it appears that it can contain what I was talking about:...

Rolland: This is plain wrong. The string passed in argument is const char, so should not be

modified.If the string...

nairam: Hello. All is A4 format: x86 registers: www.nairam.sk/pc01.pdf x86 instructions:

www.nairam.sk/pc03.pdf...

ace: There was once somewhere on the web some shorter version of antipatterns text which is

probably not present in...

Categories

All

Off-topic

Optimization tricks

Machine code

News and links

Win32 programming

Assembly language

Algorithms

Code organization

Archives

July 2008

June 2008

April 2008

March 2008

February 2008

January 2008

December 2007

November 2007

July 2007

June 2007

April 2007

March 2007

February 2007

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

1 of 8 12/13/2008 9:03 PM

January 2007

December 2006

November 2006

October 2006

September 2006

August 2006

July 2006

June 2006

May 2006

April 2006

March 2006

Subscribe to this blog

RSS

Comments RSS

January 2008

M T W T F S S

« Dec Feb »

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Pages

About author

January 22, 2008

Hash functions: An empirical comparison

Filed under: Algorithms — Peter Kankowski @ 11:12 am

There are two classes of hash functions:

multiplicative hash functions, which are simple and fast, but have a high number of collisions;

more complex functions, which have better quality, but take more time to calculate.

Hash function benchmarks usually include theoretical metrics such as the number of collisions or distribution

uniformity (see, for example, hash function comparison in the Red Dragon book). Obviously, you can have

better distribution with more complex functions, so they are winners in these benchmarks.

The question is whether using complex functions gives you a faster program. Is the price of collisions high

enough to justify the usage of more complex function? In this article, I will try to answer this question.

How does a multiplicative hash function work?

Any multiplicative hash function is a special case of the following algorithm:

UINT HashMultiplicative(const CHAR *key, SIZE_T len) {

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

2 of 8 12/13/2008 9:03 PM

 UINT hash = INITIAL_VALUE;
 for(UINT i = 0; i < len; ++i)
 hash = M * hash + key[i];
 return hash % TABLE_SIZE;
}

(Sometimes XOR operation is used instead of addition, but it’s not really important.) The hash functions differ

only by values of INITIAL_VALUE and multiplier (M). For example, the popular Bernstein’s function uses

INITIAL_VALUE of 5381 and M of 33; Kernighan and Ritchie’s function uses INITIAL_VALUE of 0 and

M of 31.

A multiplicative function works by adding together the letters weighted by powers of multiplier. For example,

the hash for the word TONE will be:

INITIAL_VALUE * M^4 + 'T' * M^3 + 'O' * M^2 + 'N' * M + 'E'

Let’s enter several similar strings and watch the output of the functions:

 Bernstein Kernighan
 (M=33) (M=31)
 too b88af17 1c154
 top b88af18 1c155
 tor b88af1a 1c157
 tpp b88af39 1c174
a000 7c9312d6 2cd22f
a001 7c9312d7 2cd230
a002 7c9312d8 2cd231
a003 7c9312d9 2cd232
a004 7c9312da 2cd233
a005 7c9312db 2cd234
a006 7c9312dc 2cd235
a007 7c9312dd 2cd236
a008 7c9312de 2cd237
a009 7c9312df 2cd238
a010 7c9312f7 2cd24e
 a 2b606 61
 aa 597727 c20
 aaa b885c68 17841

Too and top are different in the last letter only. The letter P is the next one after O, so the values of hash

function are different by 1 (1c154 and 1c155, b88af17 and b88af18). Ditto for a000..a009.

Now let’s compare top with tpp. Their hashes will be:

INITIAL_VALUE * M^3 + 'T' * M^2 + 'O' * M + 'P'
INITIAL_VALUE * M^3 + 'T' * M^2 + 'P' * M + 'P'

The hashes will be different by M * ('P' – 'O') = M. Similarly, when the first letters are different by X,

their hashes will be different by X * M^2.

When there are less than 33 possible letters, Bernstein’s function will pack them into a number (similar to

Radix40 packing scheme). For example, hash table of size 33^3 will provide perfect hashing (without any

collisions) for all three-letter English words written in small letters. In practice, the words are longer and hash

tables are smaller, so there will be some collisions (situations when different strings have the same hash

value).

If the string is too long to fit into the 32-bit number, the first letters will still affect the value of the hash

function, because the multiplication is done modulo 2^32 (in a 32-bit register). The multiplier is chosen to

have no common divisors with 2^32 (in other words, it must be odd), so the bits will not be just shifted away.

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

3 of 8 12/13/2008 9:03 PM

For table size less than 2^16, we can improve the quality of hash function by XORing high and low words, so

that more letters will be taken into account:

 return hash ^ (hash >> 16);

There are no exact rules for choosing the multiplier, only some heuristics:

the multiplier should be large enough to accommodate most of the possible letters (e.g., 3 or 5 is too

small);

the multiplier should be fast to calculate with shifts and additions [e.g., 33 * hash can be calculated as

(hash << 5) + hash];

the multiplier should be odd for the reason explained above;

prime numbers are good multipliers.

My own function

Just like many people who wrote about hash functions, I could not resist the temptation of inventing my own

hash :). I tried a smaller multiplier (17), which allows packing more letters in the hash value:

// My hash function
UINT Hash17(const CHAR *key, SIZE_T len) {
 UINT hash = 0;
 for(UINT i = 0; i < len; ++i) {
 hash = 17 * hash + (key[i] - ' ');
 }
 return hash ^ (hash >> 16);
}

Another change was subtracting a space from each letter to cut off the control characters in the range

0x00..0x1F. If the hash keys are long and contain only Latin letters and numbers, the letters will be less

frequently shifted out, and the overall number of collisions will be lower. You can even subtract ‘A’ when

you know that the keys will be only English words.

Complex hash functions

These functions do a good job of mixing together the bits of the source word. The change in one input bit

changes a half of the bits in the output (that’s called avalanche effect), so the result looks completely random:

 Paul Hsieh One At Time
 too 3ad11d33 3a9fad1e
 top 78b5a877 4c5dd09a
 tor c09e2021 f2aa9d35
 tpp 3058996d d5e9e480
a000 7552599f ed3859d8
a001 3cc1d896 fef7fd57
a002 c6ff5c9b 08a610b3
a003 dcab7b0c 1a88b478
a004 780c7202 3621ebaa
a005 7eb63e3a 47db8f1d
a006 6b0a7a17 b901717b
a007 cb5cb1ab caec1550
a008 5c2a15c0 e58d4a92
a009 33339829 f75aee2d
a010 eb1f336e bd097a6b
 a 115ea782 ca2e9442
 aa 008ad357 7081738e
 aaa 7dfdc310 ae4f22ec

To achieve this behavior, the hash functions include a lot of shifts, XORs, and additions. But are these tricks

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

4 of 8 12/13/2008 9:03 PM

really needed? What is faster: tolerating the collisions and resolving them with linear probing, or avoiding

them with a more complex function?

Test conditions

For the benchmark, I used the simplest linear probing algorithm. The items filled 1/4…1/2 of the table (e.g.,

for 500 words, the hash table had 1024 items).

Memory allocation and other “heavy” functions were excluded from the benchmarked code. The RDTSC

instruction was used for benchmarking. The test was conducted on Pentium-M 1.5 GHz, 1.25 GB of RAM

under Windows XP SP2.

The benchmark inserts some keys in the table, then looks them up in the same order as they were inserted.

The test data include:

the list of common words from Wiktionary (500 items);

the list of Win32 functions from Colorer syntax highlight scheme (1992 items);

500 names from a000 to a499 (imitates the names in auto-generated source code);

the list of common words with a long prefix and postfix (my_hash_function_test).

Results

Common words Win32 functions Numbers Prefix Postfix

Bernstein 146.3 261 888.4 889 427.2 8030 325.5 214 316.5 226

Kernighan & Ritchie 141.6 194 896.6 1006 842.2 19533 338.0 274 323.3 256

x17 (my own) 137.1 193 848.9 1002 81.4 340 313.1 244 299.8 228

x65599 140.0 250 836.5 816 206.3 3158 317.9 200 314.4 316

FNV-1a 151.3 262 952.3 1021 87.2 207 367.5 233 355.3 237

Weinberger 169.4 291 1203.1 908 274.3 4360 482.8 304 471.4 309

Paul Hsieh 158.1 268 843.4 921 112.5 342 289.7 279 275.5 281

One At Time 162.6 239 1036.2 1003 103.0 267 394.9 246 382.9 265

Arash Partow 165.8 248 1043.8 931 1040.3 20860 415.8 279 393.2 199

Large figures denote execution time in thousands of clock cycles (lower number is better), and small figures

denote the number of collisions. The 3 best results in each test are highlighted with green color.

The function by Kernighan and Ritchie is from their famous book “The C programming Language”, 3rd

edition; Weinberger’s hash and a hash with multiplier 65599 are from the Red Dragon book. Bernstein’s

function is said to be published by him on comp.lang.c, but I was unable to find his original post.

As you can see from the table, the function with the lowest number of collisions is not always the fastest one.

For example, compare FNV-1a and x17 in the “numbers” test.

The winners are the function by Paul Hsieh, the function with multiplier 65599, and my own function.

Paul Hsieh’s function is tuned for long keys (he originally benchmarked it for the keys of 256 bytes). That’s

why it is the winner for the postfix and prefix tests. Note that it does not provides the best number of

collisions for these tests, but it does have the best time, which means that the function is faster than the

others.

Hsieh’s function is suboptimal for short keys (”common words” and “numbers”). You may want to use a

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

5 of 8 12/13/2008 9:03 PM

simpler function for a word counting program, a compiler, or another application that typically handles short

keys. Anyway, the function by Paul Hsieh provides good, conservative performance for all kind of keys.

The function with multiplier 65599 shows good results in all tests except “numbers”. It’s said to be used in

gawk, sdbm, and other Linux programs.

My own function is fast in all tests, but it needs additional study on a broader dataset to confirm that it will

behave nicely in all circumstances.

As you can see, more complex hash functions not always provide better performance. The speed of

Weinberger’s function and One At Time did not impressed me at all, and the function by Paul Hsieh was not

always better than a simple multiplicative hash.

Download the test program (.zip archive, 53 KB)

• • •

Hash functions Series

Hash functions: An empirical comparison1.

Hash functions: additional tests2.

Hash functions, part 33.

Murmur hash4.

9 Comments »

Hi.

Have you tried to compare the hash-functions against CRC32? That would be interesting!

Some DSP's can already do galois multiplies which is the slow part of CRC. For PC we'll have cheap

CRC in the future when the new SSE becomes mainstream (hopefully).

Cool blob btw..

Comment by nils — January 28, 2008 @ 8:32 pm

1.

CRC implementation on x86 is slower than the other hash functions (see Paul Hsieh's tests). With

SSE4, it should be faster, and it would be interesting to compare them in future. Let's wait for SSE4 :).

Comment by Peter Kankowski — January 29, 2008 @ 8:35 am

2.

As far as I know, the authors of the traditional hash functions that you presented made them under the

assumption that the size of the table is a prime, not some "round" number like 1024. They counted on

the modulo step to spread the resulting values. So when you use 1024 as the table size, of course their

functions don't fare good. Can you try the table sizes that they would use and share these results with

us?

Comment by ace — January 31, 2008 @ 12:29 am

3.

Thank you for the idea, I will test it this weekend (and also CRC function that Nils proposed).

However, modulus of prime number will be much slower than (hash % 1024), which is optimized to

4.

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

6 of 8 12/13/2008 9:03 PM

(hash & 1023), so I'm not sure which one will be faster.

Comment by Peter Kankowski — January 31, 2008 @ 8:36 am

Hi Peter nice article wanted to mention a few things though:

Most of the function presented there produce entropy of some level at a quantity of 32-bits. What you

are doing by mod'ing by 1024 is ignoring the 22-bit higher bits. You should integrate them back into the

result somehow.

A true test would not quantize the values. Instead it would just make a list of already generated values

and see if those generated values occur again within the period. The period being the size of the

"common words" etc.

Another good test is to see the avalanching abilities of the functions. In this case you only change 1 bit

in the input and then see how many of the output bits change. The average should be close to about half

the number of output bits(eg: 16 bits in the case of 32-bit outputs)

Another good thing to remember is to use random values, than only English or some such as you will

see that in the case of English only certain bits in a byte are likely to change, how many times do we

use control characters in English words?

I believe if you follow the above you may see different results...

Comment by Arash Partow — February 3, 2008 @ 5:38 am

5.

Arash, I think that Peter didn't want to investigate "avalanching abilities" or something like that -- his

goal was to evaluate the functions on the "good enough" principle in some specific example.

Comment by acd — February 3, 2008 @ 8:15 pm

6.

The next part of this article

Pingback by smallcode » Blog Archive » Hash functions: additional tests — February 4, 2008 @ 7:42

pm

7.

Arash, for multiplicative functions, the tests mix together higher and lower 16 bits with XOR, so higher

bits are not ignored.

My purpose was to benchmark the hash functions in close-to-real-life scenario. Theoretical tests will

give a completely different result.

For example, cryptographic hashes such as MD5 will give a perfect distribution, but they are

impractically slow for hash tables. Good results in a theoretical test not always mean a fast hash

function.

Comment by Peter Kankowski — February 4, 2008 @ 7:53 pm

8.

Have you reviewed “Performance in Practise of String Hashing Functions” (Jobel & Ramakrishna,

1997) at all? They have some interesting data on performance of various classes of hash functions. I've

used their conclusions myself with good results, see here:

http://stochasticgeometry.wordpress.com/2008/03/29/cache-concious-hash-tables/

Comment by Mark Dennehy — April 2, 2008 @ 8:29 am

9.

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

7 of 8 12/13/2008 9:03 PM

Comments RSS • TrackBack URI

Leave a comment

Name (required)

Mail (will not be published) (required)

Website

You can use , <i>, and <pre> tags in your comment. If you insert some C code, please put [ccode] and

[/ccode] tags around it.

Hosting is generously provided by: Weblogs.us • Theme by: Wench

smallcode » Blog Archive » Hash functions: An empirical comparison http://smallcode.weblogs.us/2008/01/22/hash-functions-an-empirical-co...

8 of 8 12/13/2008 9:03 PM

