A New Method for Determining Linear Precedence
Functions for Precedence Grammars

The precedence relations of a precedence grammar can
be precisely described by a two-dimensional 
precedence matrix.  Often the information in the matrix
can be represented more concisely by a pair of 
vectors, called linear precedence functions.  A new algorithm
is presented for obtaining the linear precedence
functions when given the precedence matrix; this algorithm
is shown to possess several computational 
advantages.

CACM October, 1969

Bell, J. R.

Boolean matrices, syntax, precedence grammar context-free
parsing, transition matrix, precedence 
functions 

4.12

CA691010 JB February 15, 1978  3:13 PM

1379	4	1836
1542	4	1836
1665	4	1836
1683	4	1836
1693	4	1836
1693	4	1836
1768	4	1836
1781	4	1836
1781	4	1836
1787	4	1836
1787	4	1836
1824	4	1836
1825	4	1836
1836	4	1836
1836	4	1836
1836	4	1836
1836	4	1836
1836	4	1836
1861	4	1836
1945	4	1836
1945	4	1836
2015	4	1836
2015	4	1836
2060	4	1836
2060	4	1836
2061	4	1836
2061	4	1836
2082	4	1836
2091	4	1836
2091	4	1836
2110	4	1836
2127	4	1836
2152	4	1836
2179	4	1836
2179	4	1836
2187	4	1836
2317	4	1836
2340	4	1836
2340	4	1836
2356	4	1836
2545	4	1836
2546	4	1836
2546	4	1836
2603	4	1836
2698	4	1836
2698	4	1836
2698	4	1836
2708	4	1836
2708	4	1836
2733	4	1836
2824	4	1836
2982	4	1836
2986	4	1836
3045	4	1836
3045	4	1836
3093	4	1836
1191	5	1836
1477	5	1836
1491	5	1836
1781	5	1836
1836	5	1836
1836	5	1836
1836	5	1836
2340	5	1836
2982	5	1836
2986	5	1836
577	5	1836
1191	6	1836
1491	6	1836
1491	6	1836
1491	6	1836
1683	6	1836
1683	6	1836
1836	6	1836
1836	6	1836
1836	6	1836
2179	6	1836
2340	6	1836
2340	6	1836