A New Method for Determining Linear Precedence Functions for Precedence Grammars The precedence relations of a precedence grammar can be precisely described by a two-dimensional precedence matrix. Often the information in the matrix can be represented more concisely by a pair of vectors, called linear precedence functions. A new algorithm is presented for obtaining the linear precedence functions when given the precedence matrix; this algorithm is shown to possess several computational advantages. CACM October, 1969 Bell, J. R. Boolean matrices, syntax, precedence grammar context-free parsing, transition matrix, precedence functions 4.12 CA691010 JB February 15, 1978 3:13 PM 1379 4 1836 1542 4 1836 1665 4 1836 1683 4 1836 1693 4 1836 1693 4 1836 1768 4 1836 1781 4 1836 1781 4 1836 1787 4 1836 1787 4 1836 1824 4 1836 1825 4 1836 1836 4 1836 1836 4 1836 1836 4 1836 1836 4 1836 1836 4 1836 1861 4 1836 1945 4 1836 1945 4 1836 2015 4 1836 2015 4 1836 2060 4 1836 2060 4 1836 2061 4 1836 2061 4 1836 2082 4 1836 2091 4 1836 2091 4 1836 2110 4 1836 2127 4 1836 2152 4 1836 2179 4 1836 2179 4 1836 2187 4 1836 2317 4 1836 2340 4 1836 2340 4 1836 2356 4 1836 2545 4 1836 2546 4 1836 2546 4 1836 2603 4 1836 2698 4 1836 2698 4 1836 2698 4 1836 2708 4 1836 2708 4 1836 2733 4 1836 2824 4 1836 2982 4 1836 2986 4 1836 3045 4 1836 3045 4 1836 3093 4 1836 1191 5 1836 1477 5 1836 1491 5 1836 1781 5 1836 1836 5 1836 1836 5 1836 1836 5 1836 2340 5 1836 2982 5 1836 2986 5 1836 577 5 1836 1191 6 1836 1491 6 1836 1491 6 1836 1491 6 1836 1683 6 1836 1683 6 1836 1836 6 1836 1836 6 1836 1836 6 1836 2179 6 1836 2340 6 1836 2340 6 1836