Conversion of a Power to a Series of Chebyshev Polynomials* Even slowly convergent power series can be rearranged as series in Chebyshev polynomials if appropriate sequence transformations are used in evaluating the coefficients. The method is illustrated by computing the coefficients for the expansion of the logarithm and dilogarithm. CACM March, 1964 Thacher Jr., H. C. CA640323 JB March 10, 1978 2:05 AM 249 4 1109 254 4 1109 272 4 1109 1102 4 1109 1109 4 1109 1140 4 1109 1188 4 1109 1306 4 1109 1464 4 1109 1491 4 1109 1767 4 1109 1781 4 1109 1787 4 1109 1949 4 1109 321 4 1109 2059 4 1109 2126 4 1109 435 4 1109 437 4 1109 463 4 1109 483 4 1109 491 4 1109 2732 4 1109 560 4 1109 583 4 1109 3073 4 1109 627 4 1109 631 4 1109 632 4 1109 642 4 1109 644 4 1109 653 4 1109 680 4 1109 761 4 1109 762 4 1109 763 4 1109 123 4 1109 140 4 1109 919 4 1109 989 4 1109 196 5 1109 1109 5 1109 1109 5 1109 1109 5 1109