Conversion of a Power to a Series of Chebyshev Polynomials*

Even slowly convergent power series can be
rearranged as series in Chebyshev polynomials if 
appropriate sequence transformations are used in evaluating
the coefficients.  The method is illustrated 
by computing the coefficients for the expansion
of the logarithm and dilogarithm.

CACM March, 1964

Thacher Jr., H. C.

CA640323 JB March 10, 1978  2:05 AM

249	4	1109
254	4	1109
272	4	1109
1102	4	1109
1109	4	1109
1140	4	1109
1188	4	1109
1306	4	1109
1464	4	1109
1491	4	1109
1767	4	1109
1781	4	1109
1787	4	1109
1949	4	1109
321	4	1109
2059	4	1109
2126	4	1109
435	4	1109
437	4	1109
463	4	1109
483	4	1109
491	4	1109
2732	4	1109
560	4	1109
583	4	1109
3073	4	1109
627	4	1109
631	4	1109
632	4	1109
642	4	1109
644	4	1109
653	4	1109
680	4	1109
761	4	1109
762	4	1109
763	4	1109
123	4	1109
140	4	1109
919	4	1109
989	4	1109
196	5	1109
1109	5	1109
1109	5	1109
1109	5	1109