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I. MUTECT2

Here we describe the command-line program Mutect2 itself, which takes us from aligned reads to unfiltered, anno-
tated variant calls. Code block 5 shows how to invoke Mutect2 using the gatk launch script.
gatk Mutect2 -R reference .fasta \

-L intervals . interval_list \
-I tumor1 .bam \
# Mutect2 may input more tumor samples from the same individual
[-I tumor2 .bam -I tumor3 .bam . . .] \
# Mutect2 may input matched normals from the same individual
[-I normal1 .bam -I normal2 .bam . . .] \
# For most purposes Mutect2 should be supplied with gnomAD
[-germline - resource af -only - gnomad .vcf] \

# Mutect2 may input a panel of normals to help identify technical artifacts
[-pon panel_of_normals .vcf ] \
# Mutect2 may output orientation bias data
# for LearnReadOrientationModel
[--f1r2 -tar -gz f1r2.tar.gz] \
-O unfiltered .vcf

Listing 1: Mutect2 command

A. Additional modes

The command above encompasses tumor-only, tumor-normal, and multiple-tumor somatic variant calling.

1. Mitochondria mode

For mitochondrial calling one should add the --mitochondria-mode flag to the Mutect2 command line. This
switches several defaults from values appropriate to somatic variant calling to values that reflect the greater density
of mitochondrial mutations. It also activates annotations relevant to alignment artifacts involving nuclear paralogs to
mitochondrial DNA.

2. Force calling

One can force Mutect2 to assemble and genotype all the variants in force-calls.vcf by adding --genotyping-mode
GENOTYPE GIVEN ALLELES -alleles force-calls.vcf to the command line. This injects all alleles in force-calls.vcf
into the assembly graph, deactivates pruning of subgraphs contained them, and forces Mutect2 to emit them in
the output vcf regardless of their evidence. In order to include even filtered alleles in force-calls.vcf, use the
--genotype-filtered-alleles flag. Force-called alleles are emitted in addition to any alleles that Mutect2 would
otherwise discover. This so-called GGA mode is useful for studying known driver mutations, for monitoring tumors
after chemotherapy, and for validating calls from Mutect2 or other tools against some orthogonal sequencing data.
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B. Finding Active Regions

Mutect2 triages sites based on their pileup at a single base locus. If there is sufficient evidence of variation Mutect2
proceeds with local reassembly and realignment. As in the downstream parts of Mutect2 we seek a likelihood ratio
between the existence and non-existence of an alt allele. Instead of obtaining read likelihoods via Pair-HMM, we
assign each base a likelihood. For substitutions we can simply use the base quality. For indels we assign a heuristic
effective quality that increases with length.

We use a version of the somatic likelihoods model, described below, with the following modifications:

• We treat every ref base as completely certain. That is, `r,ref = 1 for ref bases.

• We combine all alt alleles and reads supporting them into a single effective alt allele.

• Starting from the same initialization as below, we stop after a single iteration.

Under the first assumption the contribution of ref bases to the sum in Equation 9 vanishes – errorless ref bases
contribute no entropy – so we only need to sum over alt bases. By the second assumption the likelihood of an alt
read is related to its base quality (and associated error rate ε) as `r,alt = 1− εr.

We compute Equation 9 for two possibilities; first, that an alt allele exists, second that only the ref allele exists. In
the former case, Initializing z̄r,ref(alt) = 1 for ref (alt) bases a single iteration for q(f) gives β = (Nalt + 1, Nref + 1).
For alt reads r we then obtain from Equation 6

z̄r,alt = f̃alt(1− εr)
f̃alt(1− εr) + f̃refεr

, (1)

where f̃ref(alt) = exp
(
ψ(Nref(alt) + 1)− ψ(N + 2)

)
. We also have g(α) = 0 for a flat prior and g(β) = ln(N + 1) +

ln
(
N
Nalt

)
. For the ref-only case g(α) = g(β) = 0 and Equation 9 reduces to

∑
alt reads ln εr. Subtracting the variational

log likelihoods for the two cases gives

log odds ≈ − ln(N + 1)− ln
(
N

Nalt

)
+

∑
alt reads

H(z̄r,alt) + z̄r,alt (ln(1− εr)− ln εr) , (2)

where H(x) = −x ln x− (1− x) ln(1− x) is the Bernoulli entropy.

C. Local Assembly, Pair-HMM, and Realignment

These topics, which are common to Mutect2 and HaplotypeCaller, are discussed in docs/local assembly.pdf,
docs/pair hmm.pdf, and docs/variants from haplotypes.pdf in the gatk git repository. As a black box, whenever the
evidence in the previous section suffices to trigger local assembly and realignment, we end up at each candidate variant
site with one read-vs-allele log likelihood matrix ` for each sample, where `ra is the log probability of sequencing read
r given its base qualities and given that read r is derived from a molecule exhibiting allele a. 1

D. Handling Paired Reads

The fundamental unit of evidence in paired-end sequencing is not the read but the fragment of DNA from which
two reads were sequenced. If we apply the somatic likelihoods model below directly to the read-vs-haplotype
likelihoods matrix from Pair-HMM our model would in effect allow a read and its mate to come from two dif-
ferent biological haplotypes. To prevent this absurdity, we transform the read-vs-haplotype likelihoods matrix
into a fragment-vs-haplotype likelihood matrix. The simplest approach, which Mutect2 uses, is to multiply the
likelihoods of all paired reads in a fragment (in log space, add) to obtain the fragment’s likelihood. That is,

1 Technically, pair-HMM produces a read-vs-haplotype likelihood matrix, which is then “marginalized” to produce a set of read-vs-allele
likelihood matrices. In the future, Mutect2 may operate directly on this read-vs-haplotype matrix in order to exploit the biological fact
that there are only a few haplotypes in any region.
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P (fragment|haplotype) = P (read 1|haplotype)P (read 2|haplotype). Multiplying likelihoods is justified as far as se-
quencing error is concerned, since sequencing errors on paired reads are statistically independent. There are, of course
shared covariates such as sequence context that influence errors on both reads. These, however, are the domain
of FilterMutectCalls’s downstream filtering. The somatic likelihoods model of Mutect2 is only concerned with
distinguishing sequencing errors (in the narrow sense of an error that occurred on the sequencer itself) from possible
somatic variants. FilterMutectCalls is responsible for distinguishing somatic variants from all other errors, such as
those that occur during sample preparation and alignment.

Simply multiplying likelihoods in this way is not justified when paired reads overlap because while sequencing errors
are independent, PCR errors are not. That is, a substitution occurring on both reads may be due to independent
sequencing errors or to the amplification of a single PCR error. In order to force the possibility of PCR error into a
model of independent reads, we enforce that the effective, multiplied, likelihood must not exceed a bound given by
the probability of PCR error. To achieve this, at bases where read pairs overlap, Mutect2 caps the total (that is,
the sum, because qualities are measured in a logarithmic phred scale) base and indel qualities to user-defined PCR
SNV and indel qualities. This can be adjusted for PCR-free protocols. For example, if the PCR quality is 40 and two
reads overlap with base qualities of 25 and 30, each base quality is replaced with 40/2 = 20. If the base qualities were
both, say, 15, no adjustment would be needed because the probability of sequencing error dominates the probability
of PCR error. This caping of overlapping base qualities occurs before Pair-HMM, while merging reads into fragments
occurs after Pair-HMM.

E. Somatic Likelihoods Model

We have a set of potential somatic alleles and fragment-allele likelihoods `ra ≡ P (fragment r|allele a). We don’t
know which alleles are real somatic alleles and so we must compute, for each subset A of alleles, the likelihood that the
fragments come from A. A simple model for this likelihood is as follows: each fragment r is associated with a latent
indicator vector zr with one-hot encoding zra = 1 iff fragment r came from allele a ∈ A. The conditional probabilities
of fragments given alleles is `ra. There is a latent vector f of allele fractions such that fa is the allele fraction of allele
a, that is, the prior probability that any given fragment comes from allele a. Giving f a Dirichlet prior, we have a
full-model likelihood

P (R, z, f |A) = P (f)P (z|f)P (R|z,A) = Dir(f |α)
∏
a

∏
r

(fa`ra)zra . (3)

We want to marginalize the latent variables to obtain the evidence P (R|A), which we make tractable via a mean-field
approximation P (R, z, f |A) ≈ q(z)q(f), which is exact in two limits. First, if there are many fragments, each allele
is associated with many fragments and therefore the Law of Large Numbers causes f and z to become uncorrelated.
Second, if the allele assignments of fragments are obvious zr is effectively determinate, hence uncorrelated with f . In
the variational Bayesian mean-field formalism we have

q(f) ∝ expEq(z) [lnP (R, z, f |A)] ∝ Dir(f |α +
∑
r

z̄r) ≡ Dir(f |β), β = α +
∑
r

z̄r (4)

q(zr) ∝ expEq(f) [lnP (R, z, f |A)] ∝
∏
a

(
f̃a`ra

)zra
, (5)

where, with ψ denoting the digamma function, the moments

z̄ra =Eq(z) [zra] = f̃a`ra∑
a′ f̃a′`ra′

(6)

ln f̃a =Eq(f)[ln fa] = ψ(βa)− ψ(
∑
a′

βa′) (7)

are easily obtained from the categorical distribution q(z) and the Dirichlet distribution q(f)2. We initialize z̄ra = 1 if a
is the most likely allele for fragment r, 0 otherwise and iterate Equations 4 and 5 until convergence. Having obtained
the mean fields of q(z) and q(f), we use the variational approximation (Bishop’s Eq 10.3) to the model evidence:

lnP (R|A) ≈ Eq [lnP (R, z, f |A)]− Eq [ln q(z)]− Eq [ln q(f)] . (8)

2 Note that we didn’t impose this in any way. It simply falls out of the mean field equations.
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The terms in Eq 8 all involve the standard moments mentioned above, so after a bit of algebraic cancellation we
obtain

lnP (R|A) ≈ g(α)− g(β) +
∑
ra

z̄ra (ln `ra − ln z̄ra) , (9)

where we define g to be the Dirichlet distribution log normalization:

ln Γ(
∑
a

ωa)−
∑
a

ln Γ(ωa). (10)

We now have the model evidence for allele subset A. The TLOD emitted by Mutect2 for an alt allele is the log
evidence ratio of an allele set containing all alleles versus an allele set excluding that allele. That is, it is the log
odds that an allele exists. When multiple tumor samples are given, Mutect2 computes a single TLOD by combining all
tumor fragments.

II. FILTERING

The command line tool FilterMutectCalls inputs the unfiltered output of Mutect2 and emits another vcf con-
taining the same variants, annotated with the filters that they fail, if any.

gatk FilterMutectCalls -V unfiltered .vcf \
# FilterMutectCalls may input segmentation for one or more
# tumor samples from CalculateContamination
[--tumor - segmentation segments1 .table] \
[--tumor - segmentation segments2 .table] \

# FilterMutectCalls may input contamination estimates for one or more
#tumor samples from CalculateContamination

[-- contamination -table contamination1 .table] \
[-- contamination -table contamination2 .table] \
# orientation bias priors from LearnReadOrientationModel
[--ob - priors priors .tar.gz] \
-O filtered .vcf

Listing 2: FilterMutectCalls command

The optional inputs from the GATK 4 tool CalculateContamination are described below.

A. Filtering Architecture

FilterMutectCalls contains a set of filters, each of which computes an error probability for each candidate variant.
The filters are divided into three categories: technical artifacts, non-somatic, and sequencing error. Roughly, we
assume that different types of errors within a category are correlated, while different categories are independent. For
example, whether sequencing errors cause several bases to be misread is independent of whether the DNA being read
came from a contaminating sample and of whether an error during library preparation caused a base error prior to
sequencing. To obtain an overall error probability FilterMutectCalls computes the maximum within categories and
an independent product between categories. That is:

P (error) = 1− (1−max artifact error prob)(1−max non-somatic prob)(1− sequencing error prob). (11)

FilterMutectCalls goes over an unfiltered vcf in three passes, two to learn any unknown parameters of the filters’
models and to set a threshold on P (error), and one to apply the learned filters. This section describes methods for de-
termining the threshold on error probability. One option is to simply set a fixed value p on the error probability, below
which a call is considered a real somatic variant. This non-default behavior can be set via --threshold-strategy
CONSTANT --initial-threshold <double>.
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1. F Score Thresholding

FilterMutectCalls optimizes the F-score – the harmonic mean of recall and precision – as its default thresholding
strategy. The --f-score-beta <double> command line argument can be set to change the relative weight of recall
to precision. In order to optimize the F-score, FilterMutectCalls sorts all variants by the probability that they are
errors, from least to greatest and calculates the F-score for thresholds in which the first n variants pass, starting from
n = 0 and ending at n = N , the total number of candidates. This is a cheap O(N) computation because initially
the expected number of true positive and false positive calls are both zero. When the threshold increases to admit a
variant with error probability p, the expected number of true positive calls increases by 1−p and the expected number
of false positive calls increases by p. The total expected number of real variants is

∑
n(1 − pn). These quantities

suffice to calculate recall and precision for every threshold.

2. False Discovery Rate Thresholding

FilterMutectCalls can also choose to maximize sensitivity subject to a maximum allowable false discovery rate us-
ing the --threshold-strategy FALSE DISCOVERY RATE --false-discovery-rate <double>. For this calculation
FilterMutectCalls also sorts the error probabilities pn from least to greatest. If we allow the first M variants to
pass the expected false discovery rate is

1
M

M∑
n=1

pn (12)

This is a non-decreasing function of M because it is the integral from 0 to M of the monotonic function p, hence
its derivative with respect to M is pM , which is monotonic. Thus it is easy to choose the highest M such that the
maximum false discovery rate is not exceeded.

B. Hard Filters

Several filters are hard filters that assign an error probability of 1 whenever some annotation exceeds a threshold.
Here we summarize all the hard filters of FilterMutectCalls, the command line parameters that set their thresholds,
and an explanation of the thresholded quantity.

Filter Threshold Explanation

clustered events max-events-in-region mutations sharing an assembly region
duplicate evidence unique-alt-read-count unique insert start/end pairs of alt reads

multiallelic max-alt-alleles-count passing alt alleles at a site
base quality min-median-base-quality median base quality of alt reads

mapping quality min-median-mapping-quality median mapping quality of alt reads
fragment length max-median-fragment-length-difference difference of alt and ref reads’ median fragment lengths
read position min-median-read-position median distance of alt mutations from end of read

panel of normals panel-of-normals presence in panel of normals

C. Allele Fraction Clustering Model

Several of FilterMutectCalls’s probabilistic filters rely on the following graphical model for the tumor’s spectrum
of allele fractions of real variants. At the top of the model is a binary indicator for whether a variant is neither a
technical artifact or a non-somatic mutation.

P (consider) = (1−max artifact error prob)(1−max non-somatic prob). (13)

Note that possible sequencing errors, with error probability captured by the independent reads assumption of the
Mutect2 log odds, are considered. Next, a candidate SNV has prior probability πreal = πSNV/3 to be real and prior
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probability 1− πSNV/3 to be a sequencing error, while a candidate indel of length L (negative for deletions, positive
for insertions) has prior probability πreal = πL to be real. Real variants are partitioned according to a mixture model
with weights πH for a high-allele fraction cluster, πB for a “background cluster”, and πD = 1−πH −πB to be further
clustered into according to a Dirichlet process with concentration α. Each non-error cluster has a characteristic
distribution of allele fractions: Beta(αH , βH) and Beta(αB , βB) for the high-allele fraction and background clusters,
and Dirac δ functions for the Dirichlet clusters. The idea of this partitioning is that there will usually be sharply-
defined allele fractions corresponding to the hets of different subclones, which are captured by the Dirichlet clusters,
but that homozygosity and copy-number variation produce deviations from this clustering.

Provided that we stochastically assign the ith variant as non-artifactual, the prior probabilities for each possibility
are described by a modified Chinese Restaurant Process scheme:

P (Sequencing error) =1− πreal (14)
P (High AF) =πrealπH (15)

P (Background) =πrealπB (16)

P (Dirichletj) =πrealπD
N−ij

N−iD + α
(17)

P (Dirichletnew) =πrealπD
α

N−iD + α
, (18)

where Dirichletj denotes the jth existing Dirichlet Process cluster, Dirichletnew denotes a newly-created Dirichlet
cluster, N−ij is the number of variants besides the ith assigned to cluster j, and N−iD is the total number of variants
besides the ith assigned to Dirichlet clusters.

Mutect2 emits the likelihood ratio between sequencing error and a real variant assuming a flat prior. However,
we can approximately compute the likelihood ratio that a non-flat Beta prior would have produced. We can do this
because in Equation 9 a change in the prior allele fraction is unlikely to affect z̄ very much - usually the allele that a
read supports is clear regardless of prior. Therefore, only the term g(α) − g(β) changes. Since β = α + n, where n
is the vector of observed read counts per allele we can convert the log-likelihood obtained with flat prior α0 to one
reflecting an allele fraction prior α by adding

∆log odds(α) = ∆ lnP (R|A) = [g(α)− g(α + n)]− [g(α0)− g(α0 + n)] . (19)

Since only ratios of likelihoods are meaningful, we may WLOG set the likelihood of reads given sequencing error
to be 1 and then set the likelihood fo each allele fraction cluster to be exp [Mutect2 log odds + ∆log odds(α)]. The
likelihood of a new cluster is the average over all possible new allele fractions of the likelihood, which is, by definition,
simply the original Mutect2 likelihood that integrated over a flat prior. Thus we have likelihoods for every cluster.
Combined with the priors, this gives us the conditional posterior for Gibbs sampling the cluster assignment of a
candidate variant.

We can estimate the parameters of the model by maximum likelihood. For example, we estimate πL as the total
number of length-L indels in the non-error clusters divided by the total number of callable sites3, πB as the total
number of variants assigned to the background cluster divided by the total number of non-error assignments. The
allele fraction of a Dirichlet cluster is estimated as its total alt read count divided by its total read count. Finally, the
beta distributions of the high-allele fraction and background clusters are fit by brute force likelihood optimization.

Once the model converges, the combination of cluster weights and allele-fraction-adjusted likelihoods lets us com-
pute the posterior probability that a candidate variant is a sequencing error, which determines the weak evidence
filter. Since the clusters also define distributions on alt allele counts – the high-AF and background clusters
define beta-binomials and the Dirichlet clusters define binomial – we also have the mixture model distribution
P (alt count|total count, somatic), which the contamination and germline filters use.

D. Strand Artifact Model

The strand artifact filter detects sequencing artifacts in which the evidence for the alt allele consists entirely of
forward strand reads alone or reverse strand reads alone. We must detect this while taking into account the fact that

3 This is emitted by Mutect2 and passed to FilterMutectCalls.
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FIG. 1: The probabilistic graphical model for the strand artifact model

at some loci, such as near the end of an exome target, all reads are biased towards one direction, and therefore a bias
towards a particular strand among alt reads is no cause for alarm.

Let z ∈ {z+, z−, zo} be a latent random variable with 1-hot encoding that represents the artifact state of a suspected
variant i.e. z+ = 1 for a forward strand artifact, z− = 1 for a reverse artifact, and zo = 1 otherwise. At each locus,
let x± be the number of forward (+) or reverse (-) strand alt reads and let n± be the total depth for each strand. By
modeling x± relative to n± we account for inherent strand bias due to, for example, reads falling at the end of an
exome target and do not confuse it for an artifact. Let f be the allele fraction of true variation in case zo = 1. Let ε
be the strand bias error rate and let θ be the non-strand-biased error rate. We will ignore the case in which significant
strand bias coincides with real variation, first because this is exceedingly rare and ignoring it has a negligible effect
on the parameters of our model, and secondly because such variants should be considered true positives.

The conditional distributions of our model are binomial

x+|ε, θ, f, z+ = 1 ∼ Bin(x+|n+, ε) (20)
x+|ε, θ, f, z− = 1 ∼ Bin(x+|n+, θ) (21)
x+|ε, θ, f, zo = 1 ∼ Bin(x+|n+, f), (22)

and similarly for x−. Putting beta priors on ε, θ, and f , with parameters (αε, βε), (αθ, βθ), and (αf , βf ) and
marginalizing latent parameters we obtain likelihoods

P (x+, x−|z± = 1) =BetaBinom(x±|n±, αε, βε)BetaBinom(x∓|n∓, αθ, βθ) (23)

P (x+, x−|zo = 1) =
∫ 1

0
Beta(f |αf , βf )Binom(x+|n+, f)Binom(x−|n−, f)df (24)

=

(
n+
x+

)(
n−
x−

)(
n++n−
x++x−

) BetaBinom(x+ + x−|n+ + n−, αf , βf ) (25)

Finally, we let π/2 be the prior probability of a forward or reverse strand artifact. From the above equations it
is straightforward to calculate the posterior probability of z and to learn π iteratively via the EM algorithm. It is
somewhat more complicated to learn (αε, βε) and (αθ, βθ), so we treat these as fixed hyperparameters. We use a flat
prior αf = βf = 1 for the true allele fraction.
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E. Germline Filter

Suppose we have detected an allele such that its (somatic) likelihood in the tumor is `t and its (diploid) likelihood
in the normal is `n4. By convention, both of these are relative to a likelihood of 1 for the allele not to be found. If
we have no matched normal, `n = 1. Suppose we also have the population allele frequency f of this allele. Then the
prior probabilities for the normal to be heterozygous and homozygous alt for the allele are 2f(1− f) and f2 and the
prior probability for the normal genotype not to contain the allele is (1− f)2. Finally, let the prior for this allele to
arise as a somatic variant be π.

If the variant exists in the tumor as a real somatic variant it has likelihood `St , the adjusted Mutect2 likelihood
accounting for allele fraction clustering. If it exists as a germline het in a segment with minor allele fraction m the
likelihood is `t(m) for the alt minor case and `t(1−m) for the alt major case, after adjusted the Mutect2 likelihood
toa ccount for pinning the allele fraction to m or 1−m. We need the unnormalized probabilities of three possibilities:

1. The variant exists in the tumor and the normal as a germline het. This has unnormalized probability f(1 −
f)`n(1− π) (`t(m) + `t(1−m)).

2. The variant exists in the tumor and the normal as a germline hom alt. This has unnormalized probability
f2`n`t(1)(1− π).

3. The variant exists in the tumor but not the normal. This has unnormalized probability (1− f)2`St π.

We exclude possibilities in which the variant does not exist in the tumor sample because we really want the
conditional probability that the variant is germline given that it would otherwise be called. The normalized sun of
the first two possibilities is the germline error probability.

So far we have assumed that the population allele frequency f is known, which is the case if it is found in our germline
resource, such as gnomAD. If f is not known we must make a reasonable guess as follows. Suppose the prior distribution
on f is Beta(α, β). The mean α/(α+β) of this prior is the average human heterozygosity θ ≈ 10−3, so we have β ≈ α/θ.
We need one more constraint to determine α and β, and since we are concerned with imputing f when f is small we use
a condition based on rare variants. Specifically, the number of variant alleles n at some site in a germline resource with
N/2 samples, hence N chromosomes, is given by f ∼ Beta(α, β), n ∼ Binom(N, f). That is, n ∼ BetaBinom(α, β,N).
The probability of a site being non-variant in every sample is then P (n = 0) = BetaBinom(0|α, β,N), which we
equate to the empirical proportion of non-variant sites in our resource, about 7/8 for exonic sites in gnomAD. Solving,
we obtain approximately α = 0.01, β = 10 for gnomAD. Now, given that some allele found by Mutect2 is not in the
resource, the posterior on f is Beta(α, β+N), the mean of which is, since β << N , about α/N . By default, Mutect2
uses this value.

F. Contamination Filter

Suppose our tumor sample has contamination fraction α and that at some site we have a alt reads out of d total
reads. Suppose further that the alt allele has population allele frequency f . We estimate the probability that these
alt reads came from a contaminating sample and not from a true somatic variant. Let π be the prior probability of
a somatic variation from the allele fraction clustering model. Then alt read count likelihood P (a|d, somatic) is also
given by this model. The possibility that the reads are due to contamination has prior 1−π and we take the maximum
likelihood among two models of contamination.

If there are multiple contaminants we approximate each contaminant read as independent so that

P (a|d,many contaminant) = Binom(a|d, αf). (26)

If there is a single contaminating sample it is heterozygous with probability 2f(1 − f) and homozygous for the alt
with probability f2, in which cases fractions α/2 and α of all reads to be alt contaminants. The contaminant is
homozygous for the ref with probability (1− f)2, which yields no alt reads. Thus

P (a|d, one contaminant) = 2f(1− f)Binom(a|d, α/2) + f2Binom(a|d, α) + (1− f)2I[a = 0]. (27)

Taking the maximum of these as the likelihood given contamination, we can easily compute the probability of con-
tamination error.

4 This is the total likelihood for het and hom alt in the normal.
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G. Read Orientation Artifact Filter

The read orientation model is implemented in LearnReadOrientationModel, which produces the
--orientation-bias-artifact-priors input to FilterMutectCalls. The raw counts for codeLearnReadOrien-
tationModel are generated either by CollectF1R2Counts or Mutect2 itself.

gatk Mutect2 -R reference .fasta \
-I tumor.bam \
-O unfiltered .vcf \
[. . . any other arguments ] \
--f1r2 -tar -gz f1r2.tar.gz

gatk LearnReadOrientationModel \
-I f1r2.tar.gz
-O tumor -artifact -prior.tar.gz

Listing 3: LearnReadOrientationModel command

The output tumor-artifact-prior.tar.gz is then passed as the parameter to FilterMutectCalls with the
--orientation-bias-artifact-priors argument. Note that all tar.gz files shown above contain information for
every tumor sample input to Mutect2.

The read orientation artifact, also known as the orientation bias artifact, arises due to a chemical change in the
nucleotide during library prep that results in, for example, G base-paring with A. This kind of artifact has a clear
signature (e.g. C to A SNP that occurs predominantly for the middle C in the DNA sequence CCG), and it’s single-
stranded in nature. Downstream, this artifact manifests as low allele fraction SNPs whose evidence for the alt allele
consists almost entirely F1R2 reads or F2R1 reads. A read pair is F1R2 (forward 1st, reverse 2nd) if the sequence of
bases in Read 1 maps to the forward strand of the reference (F1), and the sequence of Read 2 to the reverse strand
of the reference (R2). F2R1 is defined similarly.

Without loss of generality, suppose that the reference context at locus i is ACT. Let zi denote the genotype at
locus i with the one-hot encoding zik = 1 iff the genotype of locus i is k, where the possible genotypes are

zi ∈ {F1R2A,F1R2G,F1R2T ,F2R1A,F2R1G,F2R1T ,Hom Ref,Germline Het,Somatic Het,Hom Var}

zi = F1R2A denotes that at locus i we have an artifact in which the evidence for alt allele A consists entirely of reads
in the F1R2 orientation. The remaining artifact states are defined analogously. Let π denote the prior probabilities
of the zi under the reference context ACT. Then we have

P (zi) =
∏
k

πzik

k (28)

The number of alt reads at a locus depends on the genotype zi. Let ni and mi denote the total depth and alt depth
at locus i, respectively. The conditional distribution of mi is

P (mi|zik = 1) = BetaBinomial(mi|ni, αk, βk) (29)

where αk and βk are fixed hyperparameters for genotype zk. When the site’s genotype indicates in mi alt reads we
expect a heavily skewed distribution of F1R2 reads. This is captured in the conditional distribution of F1R2 alt reads.
Let ci denote the number of F1R2 reads among the mi alt reads at locus i. Then we have

P (ci|mi, zik = 1) = BetaBinomial(ci|mi, α
′
k, β
′
k) (30)

We learn the prior artifact probabilities π based on the observed values of ni, mi, ci for each of N loci using the
EM algorithm. In the E-step, we compute the posterior probabilities of zi for i = 1...N . The joint probabilities of z
factorizes over i, thus the posteriors over z are independent across loci.

P (zik = 1|mi, ci) ∝ P (zik = 1,mi, ci) = πkBetaBinomial(mi|ni, αk, βk)BetaBinomial(ci|mi, α
′
k, β
′
k) (31)

In the M-step we maximize the expectation of the log complete-data likelihood with respect to π. The log complete
data likelihood is given as

lnP (z,m, c) =
∑
i

∑
k

zik
(

ln πk + ln BetaBinomial(mi|ni, αk, βk) + ln BetaBinomial(ci|mi, α
′
k, β
′
k)
)

(32)



10

Maximizing the log likelihood under the constraint
∑
k πk = 1 gives us

πk = Nk
N

(33)

where Nk =
∑
i P (zik|mi, ci) is the effective count of loci with genotype k. We alternate E-step and M-step until

convergence. We then use the learned prior genotype probabilities to compute the posterior artifact probabilities of
variants in a vcf. The filtering threshold is set such that the false discovery rate doesn’t exceed a specified value, as
described below.

H. Polymerase Slippage

For indels in short tandem repeats (STRs) FilterMutectCalls uses a simple model for the possibility that alt
reads are due to polymerase slippage. The prior πL for a real variant of length L comes from the allele fraction
clustering model. FilterMutectCalls assumes that polymerase slippage only occurs in STRs of 8 bases or more and
only results in insertions or deletions of a single repeat unit. The likelihood of a alt reads out of d total reads in the
case of a real somatic variant is given by the allele fraction clustering model. The likelihood in the case of polymerase
slippage is the marginal of binomial likelihoods over a slippage rate with a uniform prior from 0 to 0.1, which is a
regularized Beta function. Given priors and likelihoods, the error probability follows.

I. Normal Artifacts

A matched normal is useful not only for detecting germline variants but also for distinguishing technical artifacts for
somatic mutations. Even a large panel of normals may not include, for example, mapping errors due to a rare SNP in
a centromere, while a matched normal will exhibit such errors. Mutect2 emits a normal artifact log odds annotation
by applying the somatic likelihoods model to the normal. We combine this likelihood of the reads given that an
artifact appears in the normal with a prior probability for normal artifacts to obtain a posterior error probability.
Since this prior is unknown, we use the rate of technical artifacts in the tumor detected by FilterMutectCalls as a
proxy.

J. Bad Haplotypes

Mutect2 emits phasing information for calls in the same assembly region. We assign a “bad haplotype” probability
equal to the greatest technical artifact probability of any in-phas call within a certain distance, by default 100 bases.

III. RELATED GATK TOOLS

The Broad somatics SNVs and indels pipeline involves several GATK tools besides Mutect2 and
FilterMutectCalls. We describe them here.

A. Creating a Panel of Normals

Currently, a panel of normals is simply a vcf of blacklisted sites flagged as recurrent artifacts5. One generates it by
running Mutect2 in tumor-only mode on a large number of normal samples, then running the following workflow:

gatk GenomicsDBImport -R reference .fasta -L intervals . interval_list \
--genomicsdb -workspace -path pon_db \
-V normal1 .vcf \
-V normal2 .vcf \

5 CreateSomaticPanelOfNormals emits more information than this, but Mutect2 does not yet use it.
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-V normal3 .vcf . . .

gatk CreateSomaticPanelOfNormals -R reference .fasta -V gendb :// pon_db -O pon.vcf
Listing 4: CreateSomaticPanelOfNormals command

B. Calculating Contamination

To calculate the cross-sample calculation of a tumor sample, one runs the GATK tools GetPileupSummaries and
CalculateContamination as follows:

gatk GetPileupSummaries -I tumor.bam \
-V common - biallelic .vcf \
-L common - biallelic .vcf \
-O tumor. pileups

# if a normal is present , it is helpful to obtain its pileup sumaries
gatk GetPileupSummaries -I normal .bam \

-V common - biallelic .vcf \
-L common - biallelic .vcf \
-O tumor. pileups

gatk CalculateContamination -I tumor. pileups \
# the normal pileups are useful but optional
[- matched normal . pileups ] \
-O contamination .table \
# it is highly recommended to produce segments for FilterMutectCalls
[-tumor - segmentation segments .table]

Listing 5: CalculateContamination command

CalculateContamination is the GATK’s fast, simple, and accurate method for calculating the contamination of a
sample. This methods does not require a matched normal, makes no assumptions about the number of contaminating
samples, and remains accurate even when the sample has a lot of copy number variation.

The inputs are a bam file and a vcf of common variants – for example ExAC, gnomAD, or 1000 Genomes – with
their allele frequencies. The basic idea, which comes from ContEst6 by Kristian Cibulskis and others in the Broad
Institute Cancer Genome Analysis group, is simply to count ref reads at hom alt sites and subtract the number of ref
reads expected from sequencing error to obtain the number of ref reads contaminating these hom alt sites. Finally, we
use the allele frequencies to account for the fact that some contaminating reads have the alt allele. The only subtlety
is in distinguishing hom alt sites from loss of heterozygosity events, which we describe below.

Suppose we have a set H of SNPs at which our sample is homozygous for the alternate allele. Let Nref be the total
number of ref reads at these sites. We can decompose Nref as follows:

Nref = N error
ref +N contamination

ref , (34)

where N error
ref and N contamination

ref are as the number of ref reads due to error and contamination, respectively. We can
obtain Nref by counting reads, and we estimate N error

ref as follows. Suppose, WLOG, that the ref allele is A and the
alt is C. Then, assuming that all substitution errors are equally likely, N error

ref is approximately half the number of Gs
and Ts. This is, of course, not a perfect assumption for any one site, but on average over all the sites in H it is very
good.

6 ContEst: estimating cross-contamination of human samples in next-generation sequencing data, Bioinformatics 27, 2601 (2011)
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Next we take the expectation of both sides of Equation 34 to obtain

〈Nref −N error
ref 〉 =

〈∑
s∈H

number of contaminant ref reads at s
〉

(35)

=
∑
s∈H
〈number of contaminant ref reads at s〉 (36)

=
∑
s∈H
〈number of contaminant reads at s× ref fraction of contaminant reads at s〉 (37)

=
∑
s∈H
〈number of contaminant reads at s〉 × 〈ref fraction of contaminant reads at s〉 (38)

where we have used the linearity of the expectation and the independence of the total number of contaminant reads
with the fraction of contaminant reads that are ref. The expectation of the total number of contaminant reads is the
depth ds at site s times the contamination, which we denote by χ. The expected fraction of contaminant reads that
are ref is one minus the alt allele frequency fs. Crucially, this fact is independent of how many contaminating samples
there are. Thus we have

〈Nref −N error
ref 〉 = χ

∑
s∈H

ds(1− fs) (39)

and obtain the estimate

χ̂ ≈ Nref −N error
ref∑

s∈H ds(1− fs)
(40)

Let us now roughly estimate the error bars on this result. The main source of randomness is the stochasticity in the
number of contaminating ref reads. Although the nature of this randomness depends on the number of contaminants,
the most variable case, hence an upper bound, is that of a single haploid contaminant, since at each site the only
possibilities are the extremes of all contaminant reads being ref or all being alt. In this case, the contribution to the
numerator of Eq. 40 from site s is the random variable XsZs, where Xs ∼ Binom(ds, χ) is the number of contaminant
reads at s and Zs is a binary indicator for whether the contaminant reads are ref, with P (Zs = 1) = 1 − fs. X and
Z are independent, so we can work out the variance of XZ as:

var(XZ) =E[X2Z2]− E[XZ]2 (41)
=(1− fs)E[X2]− (1− fs)2E[X]2 (42)
=(1− fs)

(
var(X) + E[X]2

)
− (1− fs)2E[X]2 (43)

=(1− fs)dsχ(1− χ) + fs(1− fs)d2
sχ

2 (44)

And therefore the standard error on χ̂ comes out to the square root of the sum of these per-site variances, divided by
the denominator of Eq. 40, that is,

std(χ̂) =
√∑

s [(1− fs)dsχ̂(1− χ̂) + fs(1− fs)d2
sχ̂

2]∑
s ds(1− fs)

(45)

It remains to describe how we determine which sites are hom alt. The fundamental challenge here is that in cancer
samples loss of heterozygosity may cause het sites to look like hom alt sites. Our strategy is to partition the genome
into allelic copy-number segments, then infer the minor allele fraction of those segments. We segment the genome just
as in GATK CNV, using a kernel segmenter with a Gaussian kernel computed on the alt fraction. A nonlinear kernel
is important because each segment is multimodal, with peaks for hom ref, alt minor het, alt major het, and hom alt.

We then perform maximum likelihood estimation MLE on a model with learned parameters µ, the local minor allele
fraction for each segment, χ, the contamination, and a constant base error rate parameter ε determined by counting
reads that are neither the ref nor primary alt base at biallelic SNPs as described above. The model likelihood is

P ({a}|{f}, χ, {d}) =
∏

segments n

∏
sites s

∑
genotype g

P (g|fs)Binom(as|ds, (1− χ)φ(g, µn, ε) + χfs) (46)

where as and ds are the alt and total read counts at site s, allelic CNV genotypes g run over hom ref, alt minor, alt
major, and hom alt with priors P (hom ref) = (1−fs)2, P (alt minor) = P (alt major) = fs(1−fs), and P (homalt = f2.
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φ(g, µ, ε) is the alt allele fraction of the uncontaminated sample: φ(hom ref) = ε, φ(alt minor) = µ, φ(alt major) =
1−µ, φ(hom alt) = 1−ε. The binomial is the weighted average of the uncontaminated sample and sample reads drawn
independently from allele frequency f . This is inconsistent with a single diploid contaminant sample, or indeed with
any finite number of contaminants, which is why we do not the the MLE estimate in the final output of the tool. The
model also assumes that the uncontaminated and contaminating samples have the same overall depth distribution at
each site, which is inconsistent with any differences in copy-number. We perform the MLE by brute force, alternately
maximizing with respect to χ with µ fixed and vice versa. In order to make the solution more robust, we exclude
segments with low µ from the maximization over χ by taking the highest possible threshold (up to 0.5, of course) for
µ that retains at least 1/4 of all sites.

Once we have learned the parameters of this model, we can easily infer the posterior probabilities of hom alt
genotypes. We take every site with a posterior probability greater than 0.5. In order to make the result more reliable
against CNVs, we again impose a threshold on segment minor allele fraction and apply the above formula only to
hom alt sites in these segments. This time, however, we choose the highest possible threshold such that the estimated
relative error is less than 0.2.

Finally, we note that the same calculation can be reversed by using alt reads in hom ref sites as the signal and
replacing f by 1 − f everywhere above. We use the estimate from hom refs as a backup when the hom alt estimate
has too great an error, as can occur in the case of targeted panels with few sites. We do not use this as our primary
estimate because it is much more affected by uncertainty in the population allele frequencies and is thus susceptible
to systematic bias.

C. Filtering Alignment Artifacts

FilterMutectCalls does a fairly good job detecting all sorts of errors, including mapping artifacts. When more
precision is needed and a slight loss of sensitivity is acceptable, one can run the output of FilterMutectCalls through
FilterAlignmentArtifacts. This tool looks at every alt-supporting read together with its mate and maps both to
the best reference available7 using an embedded BWA-mem with parameters optimized for detecting multimapping.
The tool requires a BWA mem reference image index file, which is available from the GATK resource bucket. The
first step below, in which this image is generated, is usually not necessary.

gatk BwaMemIndexImageCreator -I reference .fasta -O reference .fasta.img

gatk FilterAlignmentArtifacts \
# the reference argument is the bam ’s original alignment
-R original - reference .fasta \
# filtered calls from FilterMutectCalls
-V filtered .vcf \
-I tumor.bam \
--bwa -mem -index -image reference .fasta.img \
-O realignment - filtered .vcf

Listing 6: FilterAlignmentArtifacts command

D. Proposed tumor in normal estimation tool

Note: the following notes are just a proposal for which no GATK tool yet exists. A popular tool is DeTiN8 by
Amaro Taylor-Weiner and others at the Broad Institute Cancer Genome Analysis group.

Similar to the spirit of CalculateContamination, the fraction of tumor reads in the normal bam is a single number
with a large amount of evidence and is probably well-estimated by simple descriptive statistics rather than a full-
fledged probabilistic model. It shouldn’t be much more complicated than finding somatic variants and comparing
their signal in the normal sample to that in the tumor.

We propose the following steps to obtain our input of confident somatic SNVs:

7 That is, if the reads come from an hg19-aligned bam, they will still be realigned to hg38 if that is provided.
8 DeTiN: overcoming tumor-in-normal contamination, Nature Methods 15, 531 (2018)
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• Run Mutect2 with the --genotype-germline-sites argument to obtain a preliminary list of somatic SNVs,
including those that look like germline variants due to tumor-in-normal contamination. For the sake of speed,
we could implement a pileup-based mode in which we skip reassembly and equate read likelihoods with base
qualities. This would allow us to obtain variant annotations using the existing architecture of Mutect2 and
therefore to filter calls with no new code.

• Run FilterMutectCalls. With default settings this eliminates the great majority of sequencing artifacts. To
eliminate even more we could increase the log odds threshold slightly, essentially requiring a slightly larger alt
allele count. Normally we don’t do this because it sacrifices some sensitivity, but for our purposes here a 10 or
20 percent loss of sensitivity is perfectly acceptable as long as we are left with enough SNVs for our estimate.
It would also make sense to be especially stringent with variants that have any significant population allele
frequency in gnomAD, as well as possible mapping errors. Thus we might also run FilterAlignmentArtifacts
with strict parameters.

• Reconsider all variants that are filtered only by the germline and/or normal artifact filters. Those that have
enough read counts in the normal that we conclude they are germline variants, as opposed to tumor in normal
contamination, should remain filtered.

The above steps are all very reliable, so at this point we can assume we have a collection of confident biallelic
somatic SNVs that are hom ref in the germline. Similar to CalculateContamination, we can now estimate the number
of alt reads in the normal at these sites:

alt in normal ≈
∑
sites

(depth in normal)× (alt fraction in tumor)× (tumor in normal fraction) (47)

Hence we estimate

tumor in normal fraction ≈ total number of alt reads in normal at somatic SNV sites∑
somatic SNV sites(depth in normal)× (alt fraction in tumor) (48)

We could also iterate this process as in CalculateContamination: first get an initial guess of the tumor-in-normal
fraction, then use the initial guess to improve our “un-filtering” in the third step above.


