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I. INTRODUCTION

The GATK uses two types of information from sequencing data to detect copy number variations (CNVs). First,
targets (usually exons, but in principle any genomic locus) with abnormally high or low coverage suggest amplifications
or deletions, respectively. Second, sites that are heterozygous in a normal sample and have allele ratios significantly
different from 1:1 in the matched tumor sample imply a CNV event involving one or both alleles. The workflow is
correspondingly split into two major portions:

1. GATK CNV: Using coverage data that has been normalized against a panel of normals to remove sequencing
noise, targets are partitioned into continuous segments that represent the same copy-number event. The seg-
mentation is performed by a circular-binary-segmentation (CBS) algorithm described by Olshen et al. 2004 that
was originally developed to segment noisy array copy-number data.1 Amplifications, deletions, and copy-neutral
regions are called from the segmentation.

2. GATK ACNV: Heterozygous sites are identified in the normal case sample and segmented, again using CBS,
according to their ref:alt allele ratios in the tumor sample. These allele-fraction segments are combined with the
copy-ratio segments found by GATK CNV to form a common set of segments. Modeling of both the copy ratio
and minor allele fraction of each segment is alternated with the merging adjacent segments that are sufficiently
similar according to this model, until convergence.

II. STEPS IN THE GATK CNV AND ACNV WORKFLOWS

A. Coverage collection

This is implemented by the GATK command-line tool CalculateTargetCoverage.

B. Creation of a panel of normals

We cannot simply divide the coverage of each target by the average sequencing depth to obtain an estimate of
its copy ratio. This is because the coverage of different targets is heavily-biased by factors including the efficiency
of their baits, GC content, and mappability. In order to detect CNVs, we must determine these systematic effects
on the coverage of each target in the absence of CNVs, which requires a panel of normal samples (PoN) that are
representative of the sequencing conditions of the case sample. PoN samples must also be created using the same
baits as the case sample.

The steps for creating a panel of normals are:

1. Obtain the coverage (total number of overlapping reads) of every target and sample.

2. Calculate the median coverage of each target over all samples.
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1 Specifically, the CBS implementation provided by the R package DNACopy is used.
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3. Filter out targets whose median coverage is below a given percentile (by default 25%) of target medians.

4. Divide all coverages by their corresponding target medians.

5. Filter out samples with too great a proportion of zero-coverage targets (by default 5%).

6. Filter out targets with zero coverage in too great a proportion of samples (by default 2%).

7. Filter out samples whose median coverage is above or below certain percentiles (by default 2.5% and 97.5%) of
sample medians.

8. Replace all remaining zero coverages with their corresponding target median.

9. Calculate the range of coverage from percentile p% to (100−p)% for each target and truncate coverages at each
target to lie within these ranges. By default p = 0.1.

10. Divide each coverage by its sample median.

11. Take the log2 of each coverage.

12. Calculate the median of each sample and take the median of these over all targets. Subtract this median of
medians from each coverage.

13. Perform a singular value decomposition (SVD) of the resulting matrix and calculate its pseudo-inverse truncated
to the space spanned by the k right eigenvectors with largest singular values. Choose k using Jollife’s heuristic
of retaining singular values greater than 0.7 times the mean singular value.

This procedure is implemented by the GATK tool CreatePanelOfNormals. The output is: a N × k matrix P , the
columns of which are the the retained right eigenvectors (eigensamples), and its pseudoinverse P+; and the target
medians (before any transformations). Here N denotes the number of targets.

C. Segmentation by tangent-normalized coverage

We first divide the integer coverage of the case sample at each target by the corresponding target median from the
PoN and take the log2 transformation to obtain an N×1 column matrix x. We then calculate the “tangent-normalized”
coverage: x−PP+x. The meaning of this is as follows: PP+ is an operator that projects onto the column space of P .
That is, it projects onto the space spanned by the k most significant eigensamples representing the (non-CNV-related)
variability of the coverage. Subtracting the projection PP+x therefore isolates the CNV signal and removes noise
due to fluctuations in sequencing bias. This is implemented by the GATK tool NormalizeSomaticReadCounts.

Finally, the tangent-normalized coverage vector is passed to CBS to obtain coverage segments. This is implemented
by the GATK tool PerformSegmentation.

D. Calling of events from coverage segments

This is performed by the GATK tool CallSegments, which is the final step in the GATK CNV portion of the
case-sample workflow.

E. Collection of allele counts at het sites

The first step in the GATK ACNV portion of the case-sample workflow is to gather the necessary allele-count data.
This procedure is implemented by the GATK tool GetHetCoverage.

Given a large database of common SNPs, we search the normal control sample for heterozygous sites. To determine
whether a site with r ref reads and a alt reads is heterozygous, we calculate the two-sided p-value under the null
hypothesis that the number of alt reads follows a binomial distribution: a ∼ Binom(a+ r, 1/2). If the p-value is not
too small we consider the site heterozygous. Ref and alt counts are then obtained at these sites in the tumor case
sample.

Alternatively, the GATK tool GetBayesianHetCoverage, which instead performs Bayesian hypothesis testing to
identify het sites, can be used to perform this step; see Sec. II K for details.

The results of this step are combined with the coverage segments generated by GATK CNV and passed to the
GATK tool AllelicCNV, which performs the rest of the steps in the GATK ACNV workflow.
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F. Segmentation by minor allele fraction

To obtain initial minor-allele-fraction segments, we estimate the minor allele fraction for each het site under the
allele-fraction model discussed in Sec. III B. Specifically, we begin by taking the maximum-likelihood estimates
given by Equation 16 with reference bias ignored (i.e., λj = 1) and segmenting them with CBS. Using this initial
segmentation, the maximum-likelihood values for the reference-bias hyperparameters α and β (see Sec. III B) are
found. The minor allele fraction for each het site is then re-estimated as before, but now assuming λj = α/β (i.e., the
reference bias at each site is taken to be the mean reference bias across all sites2), and again segmented upon. This
procedure is iterated until the segmentation converges or the number of iterations reaches a specified limit; if a cycle
occurs, the first repeated segmentation is taken.

G. Union of copy-ratio and minor-allele-fraction segments

At this point, per-target estimates of copy ratio (i.e., tangent-normalized coverage) and per-het estimates of minor
allele fraction have been segmented separately by CBS. We now perform a segment-union step to combine both
segmentations into a single one, the idea being that there may be breakpoints present in the copy-ratio segmentation
that were missed in the minor-allele-fraction segmentation and vice versa.3

Such a segment union could be created naively by simply taking all segments created by the union of both sets
of breakpoints. However, this typically results in oversegmentation, for two reasons: 1) the copy-ratio segmentation
itself is typically oversegmented, due to residual systematic noise that is not removed normalization against the panel
of normals4, and 2) the genomic locations of the copy-ratio and minor-allele-fraction breakpoints corresponding to a
single underlying event do not exactly overlap (instead, the breakpoints are given by the minimum spanning intervals
containing the targets and hets in that event, respectively, and these intervals are not necessarily identical). We thus
perform some heuristic steps to reduce the resulting number of segments.

First, if the copy-ratio segments have been called amplified, deleted, or copy neutral (e.g., by the caller described
in Sec. II D), we can use the calls to merge adjacent copy-neutral segments, which partially addresses the first issue.
Note, however, that oversegmentation can still remain in adjacent amplified or deleted segments.

Second, we can improve upon a naive union of breakpoints by merging segments that are spuriously created due
to the inexact overlap of copy-ratio and minor-allele-fraction breakpoints. Not allowing the formation of segments
by the addition of minor-allele-fraction breakpoints near the starts and ends of segments that originate from the
copy-ratio segmentation partially addresses this issue. Likewise, merging those segments formed by the addition
of minor-allele-fraction breakpoints to the middle of segments that originate from the copy-ratio segmentation also
reduces oversegmentation.5 Here, whether such a segment is merged with the adjacent segment to the left or with
the adjacent segment to the right is decided by nonparametric tests of similarity between the tangent-normalized
coverages and the allele counts in the segments and the genomic distances between the segments. These tests are also
used for small-segment merging, which we describe next.

2 An issue is filed to relax this assumption, which is only made so that maximum-likelihood estimates of the minor allele fraction can
be easily cached as a function of the ref and alt counts. In future releases, we may also incorporate the distribution across samples of
reference bias at each site, which can be learned from an allelic panel of normals (discussed in Sec. V A), into the het-segmentation step.

3 Note that there are several issues filed concerning this step and that it will most likely be modified in the near future.
4 This can be somewhat alleviated by using the undo.splits parameter of CBS, with varying results. With undo.splits="sdundo",

CBS will merge segments within a certain number of standard deviations of each other (analogous to the heuristic procedure we use
to perform similar-segment merging, which is discussed in Sec. II J). With undo.splits="prune", CBS instead merges segments that
result in a proportional increase of the squared error that is less than a specified threshold; however, note that enabling this option often
causes CBS to hang indefinitely on samples with a large number (&200-300) of segments. Issues are filed to investigate alternatives to
segmentation algorithms that could offer the possibility of controlling the amount of segmentation in a more principled way than those
offered by CBS.

5 Both of these procedures treat the copy-ratio segments as the primary segmentation, to which the minor-allele-fraction breakpoints
are added. This is done for legacy reasons, even though, as previously mentioned, the copy-ratio segmentation often contains residual
segmentation from systematic noise. Furthermore, both corrections are only necessary because a naive union of breakpoints only
approximates the true procedure we would like to perform here—that is, using changepoints in one series of data to identify changepoints
in a second series of data, in the case where the locations of the data points from both series do not strictly overlap. Perhaps a better
procedure would be: 1) perform multiple changepoint detection (e.g., using CBS) on both series, 2) use single changepoint detection to
look for additional changepoints in the first series that fall in between those from the second series, and vice versa.
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H. Small-segment merging

Using CBS to segment the targets in GATK CNV results in segments that contain at least a specified minimum
number of targets nt (by default, nt = 3). However, after taking the union of target and SNP segments, small
segments with less than nt targets may be introduced. To be consistent with CBS and CNV, ACNV treats these
small segments as spurious, and removes them by merging them with adjacent segments.

For each small segment, the question we want to answer is: which of the two adjacent segments (i.e., those to the
left or right of the small segment in the center) is most similar to the small segment, and hence, should be merged
with it? We would like to determine this based on the tangent-normalized log2 coverages, allele counts, and genomic
locations of each of the three segments. Note that each segment may be missing either coverages or allele counts, but
not both. However, this question is not statistically well defined, so we will use the following heuristic procedure:

We first examine the allele counts (as opposed to the coverages—this is because the center segment has a small
number of targets, by construction, and so the ability to determine which adjacent segment is more similar to it using
the coverages is inherently limited). In particular, we examine the alternate-allele fractions in each of the segments;
these should have a bimodal (unimodal) distribution for unbalanced (balanced) segemnts. The Kolmogorov-Smirnov
test statistic, which measures the similarity of two data sets, is used to construct two distances between the alternate-
allele fractions in the left and center segments and those in the right and center segments, respectively. Including
corrections that account for the sizes of the data sets, the distances are used to construct a pair of scores for merging
with the left and right segments, respectively. The adjacent segment with the higher score has alternate-allele fractions
that are more similar, and hence should be merged with the center small segment.

However, if the Kolmogorov-Smirnov distances are not sufficiently dissimilar, if they are both close to unity (i.e.,
if the alternate-allele fractions in neither the left nor the right segment overlap significantly with those in the center
segment), or if there are not enough hets (>2 data points in each data set) to calculate the Kolmogorov-Smirnov
distances, we instead use the inverse minor-allele fractions in each of the three segments. These, ideally, have a
distribution that is roughly unimodal in each segment. Two distances between the two pairs of data sets are constructed
using the Hodges-Lehmann estimator, which gives a measure of the difference in the location parameters of two data
sets, and these distances are used to construct a pair of scores as above.

If the scores generated from the allele counts are too similar or if any of the segments is missing hets, then we
attempt to use the coverages instead. Here, we simply use the Hodges-Lehmann estimator to construct two distances
and a corresponding pair of scores as above.

If the scores generated from the coverages are too similar or if any of the segments is missing targets, we then
simply use genomic distance (defined between adjacent breakpoints) to decide which adjacent segment is closer. For
consistency, we also convert the two genomic distances into a pair of scores that sum to unity.

In the unlikely event that all of the above scores are equal, we randomly choose one of the adjacent segments and
merge it with the center small segment.

Although this procedure is admittedly quite ad-hoc, it performs reasonably well on simulated data. Furthermore,
it is unlikely that incorrect merging of small segments has a significant adverse effect on the subsequent model-fitting
step, which we discuss next.

I. Model fitting

At this point, a common segmentation of the genome has been derived from both the tangent-normalized coverage
and the het allele counts. Each segment contains at least nt coverages and may or may not also contain hets.

We now proceed to separately fit a copy-ratio model to the coverages and a minor-allele-fraction model to the allele
counts. Both models contain local, segment-level parameters which represent the log2 copy ratio and minor allele
fraction, respectively, as well as global parameters that attempt to model systematic noise and biases arising from
sequencing. These models are discussed in detail in Sec. III.

We use Markov Chain Monte Carlo (MCMC) to generate a specified number of samples from the posteriors of each
of the parameters. These samples are used to generate posterior summary statistics; the posterior mode, the 95%
highest posterior density credible interval, and deciles are reported for the segment-level parameters.
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J. Similar-segment merging

We next perform a smoothing step on the fitted copy-ratio and minor-allele-fraction models to further reduce the
segmentation.6 Proceeding across the genome from left to right, we examine the posterior summaries for adjacent
pairs of segments. If both the credible intervals for the local copy-ratio and minor-allele-fraction parameters overlap by
a specified amount, the segments are merged. The posterior summaries for the newly created segment are determined
from those of the original two segments by approximating all posteriors as Gaussian (i.e., using inverse-variance
weighting). The new segment is then repeatedly checked for similarity against the adjacent segment to the right and
merged until it is no longer similar, at which point we proceed to the next pair of adjacent segments. After one
complete traversal of the genome, we optionally refit both models using MCMC.

This procedure is iterated until the segmentation converges or the number of iterations reaches a specified limit. Both
models are then refit using MCMC if necessary, resulting in the final output of GATK ACNV: posterior summaries
for both log2 copy ratio and minor allele fraction in each segment.

K. Detection of het sites using a Bayesian model

Here, we describe a procedure for calling heterozygous (Het) sites that (1) takes into account the base read alignment
and sequencing qualities, and (2) works for both normal and tumor data. This procedure is implemented by the GATK
command-line tool GetBayesianHetCoverage.

Provisioning situations that only the tumor data is available to us (“tumor-only”), in addition to the presently
considered situation of paired normal-tumor data (“paired normal-tumor”), we need to modify our criterion for
calling a Het site. Conceptually, since reads from tumor samples are not pure (contaminated with subclones, normals,
etc), a statistical test that rejects the Het hypothesis based on the premise of having equal probability of Ref and Alt
reads is bound to reject Het cases when applied to tumor reads. Here, we propose a more sensible Bayesian model.

Notation: Let us first focus on a single site j, with Rkj ∈ {A,C, T,G} denoting the mapped base at site j from
read k, and εBkj and εMk denoting the err probability of base calling and mapping. Also, let Refj and Altj denote the
Ref and Alt alleles at this site.

Definition of error: In case of a base error event, the base could be read as any other three bases with equal
probability. In case of a mapping error event, we assume equal probability for all four bases.

Rareness of somatic SNP events: In order to proceed with the model, we assume that somatic SNPs are rare
events such that Hom/Het sites retain their germline identity.

Likelihood of Homj: Assuming that site j is homozygous (Hom), we find the likelihood of the reads by conditioning
over the allele and error events. We easily find:

P (Rkj |Homj) = P (Refj |Homj)

Nj∏
k=1

[
εBkj
3

+
εMk
4

+

(
1− 4

3
εBkj − εMk

)
δRkj ,Refj

]
+

P (Altj |Homj)

Nj∏
k=1

[
εBkj
3

+
εMk
4

+

(
1− 4

3
εBkj − εMk

)
δRkj ,Altj

]
. (1)

We need to know the two priors P (Refj |Homj) and P (Altj |Homj), both of which can be estimation from the
statistics of the population to which the sample belongs. If this data is not available, we may use the flat prior
P (Refj |Homj) = P (Altj |Homj) = 1/2 with little harm.

Likelihood of Hetj: Assuming that site j is Het, and that the the probability of the Ref allele in the sample is fj,R,

6 This step is analogous to the aforementioned undo.splits="sdundo" procedure optionally performed by CBS.
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we have:

pkj,R ≡ P (Rkj = Refj |Hetj , fj,R) = (1− εBkj − εMk ) fj,R +
εBkj
3

(1− fj,R) + εMk /4,

pkj,A ≡ P (Rkj = Altj |Hetj , fj,R) = (1− εBkj − εMk ) (1− fj,R) +
εBkj
3
fj,R + εMk /4,

pkj,◦ ≡ P (Rkj 6= Refj ,Altj |Hetj , fj,R) =
εBkj
3

+
εMk
4
. (2)

Therefore, the likelihood reads:

P ({Rkj}|Hetj) =

∫ 1

0

dfj,R P (fj,R|Hetj)
Nj∏
k=1

p
I(Rkj=Refj)
kj,R p

I(Rkj=Altj)
kj,A p

I(Rkj 6=Refj ,Altj)
kj,◦ . (3)

The integration over fR,j is not as trivial as before since (1) the error probabilities differs from site to site, and (2)
the prior is not necessary conjugate to Het likelihood. For the uniformity of notation, we define:

Rkj = Refj ⇒ αkj ≡
εBkj
3

+
εMk
4
, βkj = 1−

4 εBkj
3
− εMk

4
,

Rkj = Altj ⇒ αkj ≡ 1− εBkj −
3 εMk

4
, βkj = −1 +

4 εBkj
3

+ εMk . (4)

such that:

P ({Rkj}|Hetj) =

[ ∏
k∈I◦

εkj
3

][∫ 1

0

df P (f |Het)
∏

k∈IRA

(αkj + βkjf)

]
, (5)

where I◦ are the indices of reads that are neither Ref or Alt at site j, and IRA are indices of reads that either
Ref or Alt. Furthermore, P (f |Het) is the common prior for Ref allele fraction. For a given prior, we calculate the
f -integral numerically with a fixed-order quadrature. Since the integrand is polynomial of f , a Gaussian quadrature
is well-suited to approximate the integral provided that the prior is also smooth.

Caveats: (1) sensitivity to error underestimation: if the read/alignment qualities are overestimated, even a single
deviation from the Homj hypothesis can dramatically reduce the likelihood. (2) Loss of heterozygosity can manifest
itself has homozoygosity; in practice, it should not be an issue since the samples are not pure and germline
heterozygosity should yield sufficient evidence to reject the Hom hypothesis. (3) Heterozygosity in a sizable subclone
resulting from a somatic SNP may manifest itself as germline heterozygosity. This is also expected not to be a major
issue since somatic SNPs are rare.

A model prior for allele fraction at Het sites: In this section, we construct a simple prior for the Ref allele
fraction at Het sites. To this end, we assume (1) a minimum (maximum) fraction ρmin (ρmax) of the cells in the
sample may have events that change the allele fraction with respect to germline (large copy number events, CNLOH,
etc). Furthermore, we assume that the maximum copy number is bounded from above by Nc. Otherwise, we assume
flat priors over both the copy number and non-germline fraction. Under these assumptions, the distribution of the
Ref allele fraction is given by:

P (f |Het) =
1

(Nc + 1)2

Nc∑
n,m=0

∫ ρmax

ρmin

dρ

ρmax − ρmin
δ

(
f − (1− ρ) + ρm

2(1− ρ) + ρ(m+ n)

)
. (6)

Since the prior will be symmetric under the transformation f → 1 − f , we will assume f < 1/2 hereafter. The ρ
integration is trivially performed and we find:

P (f |Het) =
1

(Nc + 1)2

Nc∑
n,m=0

1

ρmax − ρmin

|n−m|
[1−m+ f(n+m− 2)]2

θ

(
f − (1− ρmax) + ρmaxm

2(1− ρmax) + ρmax(m+ n)

)
× θ

(
(1− ρmin) + ρminm

2(1− ρmin) + ρmin(m+ n)
− f

)
. (7)
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FIG. 1: Two examples of the Ref allele fraction prior P (f |Het) at Het sites based on minimum/maximum non-germline cells
and maximum copy number. The blue lines denote the continuous approximation given in Eq. (8), The discontinuous organge
lines denote the result with discrete copy number summation given in Eq. (the delta function peak at f = 1/2 is not shown).

The summand is ambiguous for n = m = 1 since f evalues to 1/2 independent of ρ. The correct prescription is to
replace it with δ(f − 1/2)/(ρmax − ρmin).

The discrete summation over the copy numbers (n,m) result in a discontinuous prior. It is convenient to approximate
the discrete summations with integrals over n and m. This approximation preserves the main features of the prior
while converges to the discrete result for large Nc. The double integral over (n,m) must be performed with diligence
since the Heaviside functions restrict the integration region depending on the value of f . We leave out the details and
just quote the final result:

P (f |Het) =

{
P<(f) fth ≤ f ≤ f∗,
P>(f) f∗ < f ≤ 1

2 ,
(8)

where:

fth =
1− ρmax

Nc ρmax + 2(1− ρmax)
,

f∗ =
1− ρmin

Nc ρmin + 2(1− ρmin)
,

P<(f) =
(ρmax(fNc − 1)− 1)(f((Nc − 2)ρmax + 2) + ρmax − 1) + 2ρmax(f(fNc − 2) + 1) log

(
ρmax(f(Nc−2)+1)

1−2f

)
2 (f − 1)2 f2N2

c ρmax (ρmax − ρmin)
,

P>(f) =
(ρmax − ρmin)(ρmaxρmin(f(Nc − 2) + 1)(fNc − 1) + 2f − 1) + 2ρmaxρmin(f(fNc − 2) + 1) log

(
ρmax

ρmin

)
2 (f − 1)2 f2N2

c ρmax ρmin (ρmax − ρmin)
. (9)

Fig. 1 shows two examples of this prior along with the version with discrete copy number summations.

The Bayesian decision rule: Using the Bayes’ theorem, the log odds of heterozygosity is found as:

log odds(Hetj) = log P ({Rkj}|Hetj) + log P (Hetj)− log P ({Rkj}|Homj)− log P (Homj). (10)

In order to evaluate the right hand side, we need to have knowledge of the prior P (Hetj). This can be worked out
from population statistics. Otherwise, we may use the flat prior P (Hetj) = 1/2.

Having the log odds, the decision rule is simple: we call a Het site if its odds exceeds a given threshold:

Call Hetj ⇔ log odds(Hetj) > log
1− 10−sHet

10−sHet
= log(10sHet − 1), (11)

where we have defined the Het calling stringency parameter sHet as a convenient parametrization of the decision
boundary. Finally, we note that the log likelihoods scale linearly with the read depth Nj (each read results in an
additional multiplicative term). Therefore, the statistic log odds(Hetj) linearly deviates from the decision threshold

7
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log(10sHet − 1) ∝ sHet as the read depth increases.

Increasing power using haplotype information: Todo. The basic idea is to utilize SNP correlations to test multi-
ple correlated sites simultaneously for heterozygosity (1) to increase power, and (2) to improve the prior on Refj/Altj .
A good starting point to run HaplotypeCaller on a few normal/tumor reads and check the strength/range/size of
correlations between SNP constellations.

III. GATK CNV/ACNV MODELS

A. Copy-ratio model

We fit a simple, heuristic copy-ratio model to the segmented, tangent-normalized log2 coverages. Our primary goal
is to estimate accurate mean log2 copy ratios within each segment for use in downstream tools, so a simple model
suffices assuming that the tangent-normalization step has removed most of the systematic noise.

The model assumes that the tangent-normalized log2 coverages in each segment are distributed as a mixture of: 1)
a Gaussian distribution, with mean given by a segment-level log2 copy-ratio parameter and a variance that is common
to all the segments7, and 2) a uniform distribution, which is meant to model outlier log2 coverages and is truncated
at the minimum and maximum observed values.

This model can be expressed in terms of local target-level outlier indicators and segment-level parameters for the
mean log2 copy ratio, as well as global parameters for the variance and outlier-distribution mixture fraction. We
generate posterior samples by Gibbs sampling the conditional distributions for each parameter in succession; slice
sampling is used for continuous parameters.

B. Allelic model

We want a generative model for allelic fractions that infers its parameters from the data. We observe alt and
ref read counts for each het site and wish to infer the minor allelic fraction of every segment. Let’s consider what
other hidden variables belong in the model. Read counts obey an overdispersed binomial distribution in which the
probability of an alt read is a site-dependent random variable. Letting θj be the probability that a mapped read at
het j is an alt we have

P (aj , rj |θj) =

(
aj + rj
aj

)
θ
aj
j (1− θj)rj =

(
nj
aj

)
θ
aj
j (1− θj)rj , (12)

where aj and rj are alt and ref read counts and nj = aj + rj is the total read count at site j. Now we consider
θj . Suppose site j belongs to a segment with minor allelic fraction f and is alt minor, such that P (alt) = f
and P (ref) = 1 − f are the probabilities that a random DNA fragment will contain the alt and ref alleles. Let

x
alt(ref)
j = P (mapped|alt(ref)) be the probabilities that an alt (ref) DNA fragment at site j eventually gets sequenced

and mapped. Then θj is the conditional probability that a mapped read comes from an alt fragment:

θj = P (alt|mapped) =
P (alt)P (mapped|alt)

P (alt)P (mapped|alt) + P (ref)P (mapped|ref)
(13)

=
fxaltj

fxalt + (1− f)xrefj
=

f

f + (1− f)λj
, (14)

where λj = xrefj /xaltj is the “bias ratio” of ref to alt sequenceability and mappability at site j. A similar result for
ref minor sites follows from substituting f ↔ 1 − f . In addition to the bias ratio λj we need an indicator variables

7 Note that this differs from AllelicCapSeg, which assumed that non-outlier, tangent-normalized non-log2 coverages were Gaussian dis-
tributed with variance proportional to the mean in each segment. However, examination of many samples shows that this proportionality
is only weakly exhibited, on average, in the non-log2 coverages—and even less so in the log2 coverages, which exhibit a variance than
is, on average, constant with mean log2 copy ratio. It is true that allowing the variance in each segment to be drawn from a global
distribution, rather than fixed to a single number, would provide a better fit to the data; however, the estimates of the mean log2 copy
ratio are not likely to be strongly biased under the simple model. Furthermore, this copy-ratio model will soon be superseded by the
generative coverage model proposed in Sec. V B.

8



(ARCHIVED) Notes on CNV Methods

FIG. 2: Graphical model for ACNV allelic model

zj with three states, alt minor, ref minor, and an outlier state that gives robustness to anomalous events. For this
outlier state we average the binomial likelihood over all θ to get:

P (aj , rj |outlier) =

(
nj
aj

)∫ 1

0

θ
aj
j (1− θj)rj dθj =

(
nj
aj

)
aj !rj !

(nj + 1)!
(15)

For notational convenience we give zj a one-of-K encoding zj = (zja, zjr, zjo) in which one component equals 1 and
the rest 0.

The contribution of site j to the likelihood is

P (aj , rj |fj , λj , zj) =

(
nj
aj

)[
f
aj
j (1− fj)rjλ

rj
j

(fj + (1− fj)λj)nj

]zja [
(1− fj)ajf

rj
j λ

rj
j

(1− fj + fjλj)
nj

]zjr [
aj !rj !

(nj + 1)!

]zjo
(16)

where fs is the minor allele fraction of the segment containing site j. We will consider f to be drawn from a uniform
distribution on [0, 1/2] – that is, we give it a flat prior – but in the future we can obtain some sort of clustering
behavior, representing the fact that events in the same subclone that exhibit the same integer copy numbers will have
the same minor allelic fractions, by drawing fs from a Dirichlet process.

We assume that the bias ratios come from a common Gamma distribution with parameters α, β:

P (λj |α, β) =
βα

Γ(α)
λα−1j e−βλj (17)

Note that bias ratios tend to be near 1.0 and so the choice of distribution is not too important as long as it has ad-
justable mean and standard deviation. We choose the Gamma distribution because it is the simplest such distribution
on R+. We will give the parameters α and β a flat prior P (α, β) ∝ 1.

Finally, the indicator zj is a multinomial random variable distributed according to parameter vector π:

P (zja(r,o) = 1|π) = πa(r,o) (18)

We set the alt and ref minor probabilities equal so that the only free parameter is π = πo, with πa(r) = (1 − π)/2.
The Bayesian network corresponding to this model is shown in Figure III B.

As with the other parameters, we put a flat prior on π. Putting all the pieces together the likelihood is

L =
∏
j

βα

Γ(α)
λα−1j e−βλj

[
(1− π)f

aj
j (1− fj)rjλ

rj
j

(fj + (1− fj)λj)nj

]zja [
(1− π)(1− fj)ajf

rj
j λ

rj
j

(1− fj + fjλj)
nj

]zjr [
2πaj !rj !

(nj + 1)!

]zjo
. (19)
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The dependence on λ for alt minor sites is

g(λj , α, β, fj , aj , rj) =
βα

Γ(α)

f
aj
j (1− fj)rjλ

α+rj−1
j e−βλj

(fj + (1− fj)λj)nj
. (20)

For ref minor sites the dependence is the same but with f ↔ 1−f . We show in show in Appendix A that this function
can be integrated analytically, and thus we can marginalize λ out of the model to obtain the likelihood∏

j

[
1− π

2
φ(α, β, fj , aj , rj)

]zja [1− π
2

φ(α, β, 1− fj , aj , rj)
]zjr [ πaj !rj !

(nj + 1)!

]zjo
, (21)

where φ(α, β, fj , aj , rj) =
∫∞
0
g(λ, α, β, f, a, r) dλj . Pseudocode for computing φ is presented in Appendix A. Further-

more, marginalizing out z is trivial – simply sum each term over its three possible states. We then have a collapsed
likelihood

p(f, α, β, π) ∝
∏
j

[
1− π

2
φ(α, β, fj , aj , rj) +

1− π
2

φ(α, β, 1− fj , aj , rj) +
πaj !rj !

(nj + 1)!

]
(22)

Integrating out the latent variables removes the strongest correlations from the model – intuitively, f should not be
too sensitive to α and β, for example – and significantly improves mixing. The exception is α and β, since adjusting
one with the other fixed changes the mean of the prior on λ. Thus we reparameterize in terms of µ and σ2, the
mean and variance of the common gamma distribution of biases, where α = µ2/σ2 and β = µ/σ2. Due to the weak
correlations our MCMC method does not need to be very sophisticated. We choose to sample each variable with
one-dimensional adaptive Metropolis, tuning the proposal step size to achieve some reasonable acceptance rate like
0.4 or so. Thus we have completely specified an MCMC scheme for this model, given by Algorithm 1:

Algorithm 1 MCMC algorithm for ACNV allelic model

1: Initialize all parameters to a maximum likelihood initial guess (see below).
2: repeat
3: Sample each fs with adaptive Metropolis
4: Sample π with adaptive Metropolis
5: Sample µ with adaptive Metropolis
6: Sample β with adaptive Metropolis
7: until convergence

We initialize the model by finding the mode of likelihood. This significantly reduces burn-in time of our MCMC
sampling. Also, it allows us to give the adaptive Metropolis samplers better initial guesses for their step sizes. Since
in practice there is a single global maximum of the likelihood it is easy to find. After initializing the initialization
with rough guesses for the parameters, we successively find one-dimensional maxima adjusting one parameter at a
time until the likelihood converges. One could use multidimensional optimization to obtain faster convergence, but
after marginalizing out latent parameters the remaining correlations are weak and thus this simple approach performs
quite well. Since we may delegate one-dimensional maximization to mathematical libraries, the only thing left to
describe is our initial coarse guess.

In the initial guess we set the outlier probability πo = 0.01, µ = 1.0, and σ2 = 0.1. With the exception of σ2 these
are all reasonable guesses. We choose σ2 to be larger than what we actually believe because µ converges more slowly
from a bad initial guess if σ2 is too small. The only non-trivial part of the initial guess is the minor allele fractions.
For each segment, we wish to set the minor allele fraction to the number of reads from minor alleles divided by to
total number of reads – this is an unbiased estimator if allelic bias is absent. The problem is that we have counts of
alt and ref reads, not minor and major reads. Our solution is to weight the alt and ref read counts on each het by
probabilities that the het is alt and ref minor, respectively. That is, we set

fS ≈
∑
j∈S ajP (zja = 1) + rjP (zjr = 1)∑

j∈S(aj + rj)(P (zja = 1) + P (zjr = 1))
(23)

For this coarse guess we ignore the possibility of outliers, so that P (zja = 1) + P (zjr = 1) = 1. Ignoring bias and
outliers the alt minor likelihood of het j is proportional to f

aj
j (1 − fj)rj . Since we don’t know f yet, we integrate

this (including the normalization) from f = 0 to f = 1/2 in order to get P (zja = 1). This quantity is called the
incomplete regularized beta function I. Thus we have

P (zja = 1) ≈ I(1/2, aj + 1, rj + 1), P (zjr = 1) = 1− P (zja = 1). (24)

10
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C. Calling segments after allelic CNV workflow

After running the allelic fraction and copy ratio model, we have a list of segments s, each with its own posterior
pdfs fCR

s and fMAF
s of the copy ratio and minor allele fraction8. That is, fMAF

s (x) is the posterior probability density
from ACNV that segment s has minor allele fraction x. We assume that for each segment some fraction ρ of sequenced
cells carry m and n copies of the original homologs, while the remaining 1 − ρ cells are diploid. This assumption
is compatible with both normal contamination and tumor heterogeneity but not with distinct subclones containing
different CNVs at overlapping segments. It can express distinct subclones that inherit a CNV from a common ancestor,
as well as a single subclone that incurs overlapping CNVs as long as both are fixed (in the population genetics sense)
in that subclone.

Each distinct value of ρ therefore corresponds to a node in the tumor’s phylogenetic tree, its value being the
proportion of sequenced cells belonging to subclones descended from that node. We therefore expect its values to
be drawn from a discrete multinomial distribution, on which we place a symmetric and sparse Dirichlet prior. That
is, let ρ take on values ρ1, ρ2 . . . ρK and let zs be a binary-valued indicator vector such that zsk = 1 if the CNV on
segment s occurs in fraction ρk of sequenced cells. Then

P (π|α) =
Γ(α)

Γ(α/K)K

∏
k

π
α/K−1
k (25)

P (zs|π) =
∏
k

πzskk (26)

Here α is the concentration parameter such that the smallness of α/K enforces sparseness9, i.e. most cluster com-
ponents will not be used. The K → ∞ limit is a Dirichlet process and for finite K to work well, K must be larger
than the number of components needed; in practice making K twice as large as the number of components works
well. The expected number of clusters found in data of size N (here, the number of segments) is roughly α lnN , so
we place a vague prior on α that corresponds to roughly a single- or double-digit number of clusters. For example, a
broad gamma prior with mean 1:

P (α) = Gamma(α|1, 1) (27)

We have little prior knowledge on tumor’s phylogeny, so we put a uniform prior on the values of ρ: P (ρk) = 1.
Next we relate copy ratio and minor allele fraction to (m,n, ρ). The total copy number is a weighted sum of (1−ρ)

diploid cells and ρ cells with copy number m+ n.

cr(m, p, ρ) ≡ (2(1− ρ) + ρ(m+ n)) /2. (28)

Similarly, the minor allele fraction is a weighted sum of 1− ρ diploid cells with a single copy of the minor allele and
ρ cells with min(m,n) copies, divided by the total:

maf(m,n, ρ) ≡ (1− ρ) + ρ min(m,n)

2(1− ρ) + ρ(m+ n)
(29)

It is convenient to represent the latent state (m,n) via binary indicator variables v and w with e.g. vsm = 1, wsn = 1
if segment s has m and n copies of the original homologs.

Finally, we place a simple factorized multinomial prior on (m,n): P (m,n) = P (m)P (n) = φmφn, which we can
do if we set of maximum copy number of, say, m,n < 4. The factorization assumption realistic regarding the origin
of CNVs but not necessarily regarding their viability. For example, a homozygous deletion could be lethal when a
heterozygous deletion is not. However, we expect this effect to be less dramatic for small segments, which have less
phenotypic impact. Large segments ought to have sufficient statistical power that the prior is less important. Taking
into account the copy ratio and minor allele fraction posteriors from ACNV as well as the multinomial prior, the
model likelihood is

P (zs, vs, ws, π, φ, ρ, α) = P (α)
Γ(α)

Γ(α/K)K

∏
k

π
α/K−1
k

∏
s,k,n,m

[
πkφmφnf

CR
s (cr(m,n, ρk)fMAF

s (maf(m,n, ρk)
]zskvsmwsn

(30)

8 ACNV obtains MCMC samples from these posteriors; we assume that a reasonable distribution has been fit to these posterior samples.
9 If α < K the prior is singular as πk → 0 for any k.
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FIG. 3: Graphical model for ACNV caller. “ACNV” represents posterior probability output of ACNV; v, w are indicators of
homolog integer copy numbers; ρ is the set of values of purity × cancer cell fraction; z is the corresponding indicator; φ is the
multinomial prior on homolog counts; π is the multinomial prior on z; α is a Dirichlet concentration parameter encouraging a
sparse set of ρ values.

Note that we have simply multiplied of contributions of copy number and minor allele fraction. This is justified
because we inferred the former only from total read counts, while the inference for the latter was conditioned on the
total read depth of each het. Thus there is no double-counting of evidence. This argument is somewhat heuristic
because ACNV infers copy number from target read counts and minor allele fraction from SNP allele counts, but is
valid to the extent that total depth at het sites is correlated with depth and the targets they belong to. For off-target
SNPs it is not heuristic at all.

The graphical model is shown in Figure III C.
We will obtain maximum likelihood estimates of ρ and φ and give the remaining variables the variational factorized

distribution p(α, π, z, v, w) → q(α)q(π)q(z, v, w). We now proceed to carry out the standard recipe of the EM and
variational Bayes algorithms. Denoting one variable or group of variables by X, all other variables by Z, and the
joint probability by p(X,Z), the mean-field posterior on X is

ln q(X) = Eq(Z)[ln p(X,Z)] + const (31)

For those variables X for which we seek a point estimate and not a full posterior we employ a similar formula

X = arg max
[
Eq(Z)[ln p(X,Z)]

]
(32)

We will henceforth drop the subscript q(Z) from the expectation Eq(Z) – all expectations are with respect to the
factorized distribution. Following this prescription, we find that the posterior on α is

q(α) ∝ P (α)Γ(α)

Γ(α/K)K
exp

(
α

K

∑
k

E [lnπk]

)
(33)

The posteriors on π and φ are

q(π) ∝
∏
k

π
E[α]/K−1+

∑
s E[zsk]

k , q(φ) ∝
∏
j

φ
∑

s E[vsj+wsj ]
j (34)

12
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The maximization objective for ρ is

ρk = arg max
∑

s,k,n,m

E[zskvsmwsn]
[
ln fCR

s (cr(m,n, ρk) + ln fMAF
s (maf(m,n, ρk)

]
(35)

Lastly, q(z, v, w) is a categorical distribution which we evaluate by plugging in values:

E [zskvsmwsn] =
φmφne

E[lnπk]fCR
s (cr(m,n, ρk)fMAF

s (maf(m,n, ρk)∑
k,m,n “ ”

(36)

Equations 33 – 36 require the expectations E[α], E[lnπ], E [zsk], E[vsj ], E[wsj ], and E[zskvsmwsn]. The last of
these is the E step Equation 36. Three more follow directly from marginalization:

E [zsk] =
∑
m,n

E[zskvsmwsn], E[vsj ] = E[wsj ] =
∑
k,n

E[zskvsjwsn] (37)

By inspection, the Dirichlet posterior q(π) of Equation 34 yields the following logarithmic moments:

E[lnπk] = ψ

(
E[α]/K +

∑
s

E [zsk]

)
− ψ

E[α] +
∑
s,k

E [zsk]

 , (38)

where ψ is the digamma function. Likewise, q(φ) is Dirichlet and is maximized with

φj =

∑
sE [vsj + wsj ]∑
s,iE [vsi + wsi]

(39)

E[α] is not analytic but requires only a single numerical integral per iteration:

E[α] =

∫
α q(α) dα∫
q(α) dα

(40)

We therefore have a self-contained iteration scheme in terms of expectations only, Algorithm 2.

Algorithm 2 calling allele counts of ACNV segments

1: Initialize E[α] = 1
2: Initialize (ρ1, ρ2, . . . ρK) = (1/K, 2/K, . . . 1)
3: Initialize E[lnπj ] = ln(1/K) for all j.
4: Initialize φ in some reasonable way, i.e. φ1 > φ2 > φ0 > φ3.
5: repeat
6: Update E[zskvsmwsn] via Equation 36.
7: Update E [zsk], E[vsj ], E[wsj ] via Equation 37.
8: Update E[lnπk] via Equation 38
9: Update φ via Equation 39

10: Update E[α] via Equation 40
11: Update ρ via Equation 35
12: until convergence

Once this converges, the main objects of interest are the posterior probabilities of different allele counts, P (vsm =
1, wsn = 1) =

∑
k E [zskvsmwsp]. For the purposes of guessing phylogeny the fractions ρk are also interesting.

IV. GERMLINE EXOME CNVS

The GATK treats germline CNVs differently from somatic CNVs. This is partly due to fundamental differences,
such as the absence of subclones in the germline setting. However, many arbitrary inconsistencies are historic in
nature, arising from the germline algorithm’s origins in the XHMM method. It is important to keep this in mind
when reading these notes. The two most significant differences between the GATK’s germline and somatic workflows
is are the neglect of allelic information (i.e. alt and ref read counts at het sites) in the germline workflow and the use
of an HMM for simultaneous segmentation and calling in the germline workflow.

We will treat the HMM as a black box. Although the GATK has its own implementation, the functionality is
standard. Thus we will only describe how we define its states, initial probabilities, transition probabilities, and
emission distributions. Besides that, it suffices to describe what is done to raw coverage data before it is fed into the
HMM.
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A. Normalization of raw germline data

The germline model does not separate the creation of a panel of normals from a case workflow. Rather, it calls
CNVs simultaneously for all samples in a cohort. Its starting point is an S × T matrix of raw coverage, where S is
the number of samples and T is the number of targets. We then normalize by each sample’s average coverage to get
an S × T proportional coverage matrix P :

Pst =
(raw coverage)st

average depth of sample s
(41)

Next, as in the somatic workflow, we perform principal components analysis (PCA) on the proportional coverage in
order to remove noise due to laboratory conditions etc. from the coverage, leaving (we hope) only a CNV signal and
a small amount of residual noise. For purely historical reasons PCA is expressed here in slightly different terms from
the somatic case. PCA yields a length-T mean proportional coverage vector µ and set of M principal vectors vk, also
of length T , such that the proportional coverage of each sample is approximated by the mean coverage µ plus a linear
combination of the principal components:

Ps ≈ µ+

M∑
k=1

βskvk (42)

Because the principal components capture the shared variation among all samples, we expect them not to capture
individual variation due to CNVs. There is necessarily some contamination because the samples we call are the same
samples used to decide the principal components – there is no separate PoN. Nonetheless, this effect should be small
if there are enough samples. Therefore, the next step is to produce the tangent-normalized coverage X, which is again
an S × T matrix:

Xs = Ps − µ−
M∑
k=1

βskvk. (43)

(Here a single subscript for a matrix denotes an entire row).
Finally, the tangent-normalized coverage is converted to a Z-score coverage in which each target is mean-centered

(tangent-normalization should yield a mean of zero for each target over all samples, so this part is trivial) and divided
by the standard deviation of tangent-normalized coverage of that target over all samples:

Zst = Xst/std(X·t) (44)

The codebase also allows for filtering at each stage of coverage based on target GC and repeat fraction and various
coverage descriptive statistics such as mean, standard deviation and interquartile range of targets across samples and
vice versa. However, we do not yet have a sense of best practices for these. Furthermore, what constitutes best
practices will change as we improve the model.

B. Germline HMM

Each sample’s Z-score coverage is segmented and called separately via the Viterbi algorithm, which finds the
maximum-likelihood solution of an HMM. The hidden states are neutral, deletion, and duplication – the XHMM
model does not take into account homozygous deletions or multiple duplications.

The HMM’s transition matrix is guided by the principle (an approximation, of course) that there is some underlying
biological HMM on a per-base level and that per-target transitions are simply the realization of this underlying HMM
on a coarser scale. The per-base transition matrix is defined by two parameters. The first is the probability p to to
make a transition from a neutral state to a CNV state. Equivalently, 1/p is, roughly, the average separation between
CNVs. The second is the probability 1/D that a CNV state ends. Equivalently, D is the average CNV length in base
pairs. The probability for a CNV to terminate between two consecutive targets a distance d apart is 1− e−d/D.

Letting f = e−1/D the transition matrix T between two adjacent bases is

T =


from\to − 0 +

− f 1− f 0
0 p 1− 2p p
+ 0 1− f f

 (45)
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We neglect transitions between different types of CNVs at consecutive bases, which are extremely rare. Note that
this in no way precludes CNVs of different types occurring at adjacent targets. The transition matrix for two targets
separated by d bases is T d. We can compute this very cheaply by first diagonalizing T as T = UΣV T , where Λ is a
diagonal matrix. Then T d = UTΛdU . For numerical stability one usually works with log transition probabilities, so
we have:

log
(
T d
)
ij

= log
∑
k

UTi kΛdkkUkj (46)

= log
∑
k

ΛdkkUkjUki (47)

= log
∑
k

exp (d log Λkk + logUkj + logUki) (48)

In this form we can work entirely in log space and exploit the log-sum-exp trick for stability.
The emission model is as follows. Each hidden state emits a normally-distributed Z-score. The means are −M ,

0, and +M for deletion, neutral, and duplication states, respectively, where M is s user-specified parameter whose
default is 3. Each emission distribution is given unit variance. This model is quite wrong. Consider a duplication. The
tangent-normalized coverage ought be be roughly 0.5 times the proportional coverage – the raw coverage is 3/2 that
of a diploid target, leaving 1/2 remaining after (ideal) tangent-normalization. Then division by the target standard
deviation to get a Z-score yields who-knows-what. Since different targets have different average proportional coverage,
the global parameter M is misguided. Basically, the current model is not a model at all, but a heuristic.

V. PROPOSED METHODS

A. Using Panel of Normals for Allelic Fraction Model

The GATK ACNV allelic model learns a global distribution on allelic biases and uses it as a shared prior for the
allelic biases of SNPs. While better than nothing, it would be much more powerful to use prior knowledge of the
allelic bias at each SNP individually. We can learn these per-SNP biases from a panel of normals using the allelic
model, but with two simplifications. First, minor allele fractions are always 1/2 since normal samples are diploid and
do not exhibit subclonality. Second, we do not account for outliers; that is, we set the outlier probability π = 0. The
reason for this is that the panel of normals reflects typical distributions of allelic biases and censoring data via an
outlier classification could render these distributions artificially tight. If the allelic bias at some SNP site varies a lot
we want to know about it. The overall likelihood is∏

j

βα

Γ(α)
λα−1j e−βλj

∏
s∈Hj

λ
rsj
j

(1 + λj)
nsj

(49)

=
∏
j

βα

Γ(α)
e−βλj

λ
α+r·j−1
j

(1 + λj)
n·j (50)

where λj is the allelic bias ratio of SNP j (for samples sequenced and mapped using the same technology as the panel
of normals), Hj is the set of samples in the panel of normals that are heterozygous at SNP j, r·j =

∑
s∈Hj

rsj , and

n·j =
∑
s∈Hj

nsj . As before, the biases are assumed to come from a common distribution Gamma(α, β), but due to

the large number of samples in the panel of normals the data will yield a posterior distribution on each λj that may
be quite different from the global prior. It is these posteriors that we will use as input to ACNV. Although they
are the object of interest, however, we will first marginalize them out of the likelihood in order to obtain maximum
likelihood estimates of α and β. We have in fact already performed this marginalization – Equation 50 is the special
case f = 1/2, π = 0 of the allelic-model likelihood, Equation 16, and thus its marginalization over latent variables is
obtained by substituting f = 1/2, π = 0 into Equation 22, which yields

p(α, β) =
∏
j

φ(α, β, f = 1/2, n·j − r·j , r·j). (51)

This likelihood is easily maximized numerically to obtain MLE values of α and β. Having done this, we can then
approximate the posterior on each λj as a gamma distribution using the method of Appendix A. As shown there, the
posterior on λj is Gamma(ρj , τj) where ρj and τj are computed in Algorithm 4, with a→ n·j − r·j and r → r·j .
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Once we have the posteriors on each λj from the panel of normals, they are used as priors for λj in the ACNV
allelic model. This obviates the hyperparameters α and β, and Equation 22 becomes

p(f, π) ∝
∏
j

[
1− π

2
φ(ρj , τj , fj , aj , rj) +

1− π
2

φ(ρj , τj , 1− fj , aj , rj) +
πaj !rj !

(nj + 1)!

]
(52)

where f and π may once again be sampled via adaptive Metropolis.

B. Generative Model for Read Counts

We wish to address several goals in this section:

1. Connect copy ratio (or copy number) and raw read counts in a single probabilistic model without transforming
the data.

2. Take into account the Poisson nature of coverage depth, thereby giving less weight to low-coverage targets and
separating the inherent variance due to Poisson statistics from experimental noise. We want to use the panel of
normals to subtract only the latter.

3. Choose the number of principal components to use in an automatic and principled manner.

4. Use an algorithm that does not waste time calculating all principal components when we only want the few
most significant ones.

5. Make a universal panel of normals for both sexes by taking into account targets on sex chromosomes on par
with autosomal targets.

6. Make a reliable method for detecting and excluding outlier samples from the panel of normals, in particular,
those with abnormal ploidy.

7. Correct for CNV events that occur in the panel of normals.

1. The model

Suppose we have vectors of read counts over a set of T targets for S samples, ns, s = 1 . . . S where nst is the
coverage of sample s at target t. In order to include both sexes on an equal footing, we further define a “germline
ploidy matrix” Pst such that Pst is the germline ploidy10 of target t of sample s. We imagine that laboratory conditions
for a particular sample yielding an underlying bias vector bs, where ebst is the propensity of target t to be captured,
sequenced, and mapped in the preparation of sample s. Suppose also that sample s has an average depth ds and a
vector of copy numbers cs, where the latent variable cst is the copy number of sample s at target t. Our model for
coverage is11:

nst ∼ Poisson(dsPstcstebst) (53)

We can achieve many of the goals listed above by performing probabilistic PCA not on directly n, but rather on b.
One one hand, the Poisson parameters must be positive and therefore, exp(b) is a well-defined parametrization of the
multiplicative bias. On the other hand, a Gaussian model for b implies a log-normal distribution for exp(b) which
is indeed the expected distribution when the multiplicative bias arises from several independent sources according to
the central limit theorem12. We model b as:

z ∼ N (0, I),

b ∼ N (Wz + m,Ψ), (54)

10 For human autosomal targets, Pst = 2 for both sexes. In female samples, Pst = 2 for X chromosome targets and Pst = 0 for Y
chromosome targets. Finally, Pst = 1 for X and Y chromosomes in male samples

11 In Equation 53 the quantity ds is a hypothetical quantity representing average coverage in the absence of bias. Since this is impossible
to know we use average coverage instead. This doesn’t matter since any constant factor will be absorbed into eb via the parameter m.

12 Let B =
∏NB
j=1Bj be the total multiplicative bias where Bj ∈ (0,∞) are independent components of the bias. For NB � 1, ln(B) ∼ N

and therefore, B has a log-normal distribution.
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FIG. 4: Gaussian approximation to the Poisson likelihood (see Eq. 55). The left and right panels show Poisson(n|α eb) and
n−1N (b| ln(n/α), n−1), respectively for α = 0.1 (top) and α = 10.0 (bottom). The black lines show b = ln(n/α) the maximum
likelihood bias estimate. The Gaussian approximation breaks down at n = 0 (no coverage). It also slightly overestimates the
variance at small n. Otherwise, it is an excellent approximation.

where z ∈ RD is a low-dimensional latent vector of laboratory conditions, W ∈ RT×D is a linear map from latent
space to target space, m ∈ RT is the vector of mean biases, and Ψ ∈ RT×T is a diagonal matrix of residual variance
not explained by the latent features. We approximate the Poisson as a Gaussian and expand the argument of the
Gaussian exponential about the mode of bst to quadratic order to obtain:

Poisson(nst|dsPstcstebst) ' ΣstN (bst|mst,Σst), (55)

where:

mst = ln(nst/(Pstcstds)),
Σst = 1/nst. (56)

Note that Σst can be thought of as the width of the distribution of bst about its maximum likelihood estimate such
that in the limit nst, ds → ∞, Poisson(nst|dscstebst) → δ(bst − b∗st) where b∗st = limn,d→∞mst is the true bias. The
above approximation, while being excellent for well-covered targets (see Fig. 4), inevitably breaks down for targets
that are uncovered ex ante in some samples, such as Y chromosome targets in female samples. To this end, we define
a “sample-target mask matrix” Mst such that Mst = 0 if Pst = 0, and Mst = 1 if Pst 6= 0, and for each sample-target
pair (s, t), we only consider targets where the Mst 6= 0 in the joint likelihood function. The latter is thus written as:

P (n,b, z|c,W,m,Ψ) ∝
∏
s

N (zs|0, I)
∏

t|Mst 6=0

N (bst|(Wzs)t +mt,Ψt)N (bst|mst,Σst) (57)

We can integrate out b via the identity
∫ +∞
−∞ N (x|µ1, σ

2
1)N (x|µ2, σ

2
2) dx = N (µ1|µ2, σ

2
1 + σ2

2) to obtain:

P (n, z|c,W,m,Ψ) ∝
∏
s

N (zs|0, I)
∏

t|Mst 6=0

N (mst|(Wzs)t +mt,Ψt + Σst) (58)

Save for the presence of a sample-dependent bias uncertainty Σst, our learning objective is essentially the factor
analysis problem. The MLE for parameters (Ψ,W,m) can be obtained via the EM algorithm. The presence of Σst,
in particular its dependence on s, introduces undesirable complexities which we wish to avoid. To gain more insight
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about the role of Σst, let us marginalizing zs from Eq. (58). The final result can be put in a simple form using the
Woodbury identity and properties of projection matrices:

P (n|c,W,m,Ψ) ∝ exp

(
−1

2

∑
s

(m−ms)
TMs(Ψ + Σs + MsWWTMs)

−1Ms(m−ms)

)
(59)

To simplify the discussion, let us assume that all samples share the same targets, i.e. Ms = I. First, note that
Ψ + WWT is the covariance of log-coverage due to experimental conditions, both those included explicitly in W
and the residual (“unexplained”) covariance Ψ. The quantity Ψ + Σs + WWT is essentially a weighting factor that
decreases the role of lower-coverage samples (i.e. those with larger Σ) in the likelihood. If variations in Σ tend to be
small compared to Ψ + WWT , then these weights will be very similar between samples and we may use the simple
formula that assigns each sample the same weight. It is an empirical fact that the noise before normalization is much
greater than noise after normalization, which implies that Σ is small compared to Ψ + WWT . Variations in Σ are,
of course, even smaller, especially in the typical case that all PoN samples have similar depth. Furthermore, if the
depths of PoN samples are not correlated with their positions in latent space (as is reasonable) our approximation
is an unbiased estimator, because for any given position in latent space our failure to use the exact weights will on
average wash out. Finally, suppose, contrary to empirical fact, that Σ tended to be large compared to Ψ+WWT . In
this case, either the shared source of bias is small and we don’t need this fancy model in the first place, or the depth
of coverage is very poor, in which case accurate normalization is hopeless regardless. In summary, replacing Σst with
a typical sample-independent value Σ̄ is a very reasonable approximation.

A natural choice for Σ̄t will be made apparent soon. In the meantime, we notice that Σs always appears in the
combination Σs + Ψ such that the specific choice of Σ̄t may seem to be immaterial: if Ψ∗ is the MLE estimate
obtained using the choice Σ̄∗, we may infer that Ψ∗+ Σ̄∗− Σ̄′ is the MLE estimate had we used Σ̄′ instead. However,
the constraint Ψt > 0 implies that Ψ∗t + Σ̄t > 0, such that our choice of Σ̄t effectively sets a lower bound on the
unexplained variance.

2. Estimating the mean read depth ds

Let us define λst ≡ Pstcstebst as the total Poisson parameter multiplicative factor per sample per target. Assuming
λst is sharply peaked about its mode, the MLE for ds can be easily found by approximating the Poisson distributions
with Gaussian distributions as discussed earlier:

P (ns|dsλs) =
∏

t|Mst 6=0

Poisson(nst|dsλst) '
∏

t|Mst 6=0

N (nst|dsλst, dsλst)

∝
∏
t

[
1√
dsλst

exp

(
− (nst − dsλst)2

2dsλst

)]Mst

. (60)

Replacing λst with its mode, the log likelihood of read depth is given as:

logP (ns|ds) = −1

2

∑
t

Mst

[
log ds +

1

dsλst
(nst − dsλst)2

]
+ const. (61)

Maximizing yields a quadratic equation with only one acceptable root:

ds =

√
4n2 λ−1s λs + 1− 1

2λs
, (62)

where we have defined the masked target average ·s as:

vs ≡
∑
tMstvst∑
tMst

. (63)

If nst � 1, we may approximate the result as ds '
√
n2λ−1s λ

−1
s . Before learning the parameters of the coverage

model, we may set λst → Pst to obtain a first estimate of ds. This estimate can be updated along the way as better
estimates for cst and bst are found.
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3. EM algorithm for obtaining MLE of (W,Ψ,m):

We may obtain maximum likelihood estimates of the parameters via an iterative EM approach in which we
alternate between computing the Gaussian posteriors of each zs (E step) and maximizing the log-likelihood with
respect to W, Σ, m, and c (M step). The EM algorithm for W, Σ, and m is similar to the factor analysis model
discussed in Chapter 12 of Bishop. We note calling c while learning (W,Ψ,m) allows us to correct for CNV events
that may be present in the panel of normals13.

The E step follows from substituting Ψ→ Ψs ≡ Ψ + Σs in Bishop’s Eqs. 12.66-67 and including the sample-target
mask matrix M. The result is:

Gs =
(
I + WTMsΨ

−1
s W

)−1
,

E [zs] = GsW
TMsΨ

−1
s (ms −m),

E
[
zsz

T
s

]
= Gs + E[zs]E[zs]

T . (64)

In the M step, we calculate the expectation value of the complete-data log likelihood with respect to the posterior
estimate of zs. Save for terms independent of the model parameters, the result is:

L = −1

2

∑
st

{
Mst ln Ψst +MstΨ

−1
st

[(
WE[zsz

T
s ]WT

)
tt

+ 2(mt −mst) (WE[zs])t + (mt −mst)
2
]}
, (65)

The stationarity condition for L with respect to m gives:

mt =

(∑
s

MsΨ
−1
s

)−1∑
s

[
MsΨ

−1
s (ms −WE[zs])

]
. (66)

The stationarity condition with respect to Ψt gives:∑
s

Mst

[
1

Ψt + Σst
− Bst

(Ψt + Σst)2

]
= 0, (67)

where:

Bst =
(
WE[zsz

T
s ]WT

)
tt

+ 2(mt −mst) (WE[zs])t + (mt −mst)
2 (68)

The above nonlinear equation must be solved for each target, which is a computationally demanding task for a large
number of targets. If this is to be avoided, we offer two approximation schemes:

(Scheme 1) Assuming small sample to sample variations in Σst: Had Σst been constant, then Eq. (67) would
have the following simple solution:

Ψapprox
t = Bt − Σ̄t, (69)

where Σ̄t is the sample-independent value of Σst, and we have defined the double angle bracket average as:

Bt ≡
∑
sMstBst∑
sMst

. (70)

It is tempting to replace Σ̄t with its M -averaged value. However, a more principled approach is to choose Σ̄t such
that the approximation solution given in (70) is as close to the exact solution as possible. To this end, we assume
Σst = Σ̄t+ (Σst− Σ̄t) such that |Σst− Σ̄t| � Σ̄t, expand Eq. (67) in Σst− Σ̄t to linear order, and require that Ψapprox

t

represents the exact solution. This procedure yields:

Σ̄t =
2BΣt −ΣtBt

Bt
. (71)

13 If our copy-ratio calling algorithm is a maximum-likelihood method, for example calling via the Viterbi algorithm for an HMM, then
provided that our likelihood is averaged with respect to the E step for z the entire process including optimization of (c,W,Ψ,m) is an
EM algorithm and thus will increase likelihood at each iteration and converge.
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Plugging this result back in Eq. (70), we find:

Ψapprox
t = Bt + Σt − 2

BΣt

Bt
. (72)

This solution is accurate to linear order in deviations of Σst about Σ̄t.

(Scheme 2) Newton iterations: The complexity of solving Eq. (67) numerically is not too high given that the
Hessian matrix is diagonal. Expanding L about Ψ0, we find:

L(Ψ) = L(Ψ0) + αt (Ψt −Ψ0,t) +
1

2
βt (Ψt −Ψt,0)2 + . . . (73)

where:

αt =
∂L
∂Ψt

= −1

2

∑
s

Mst

[
1

Ψt + Σst
− Bst

(Ψt + Σst)2

]
,

βt =
∂2L
∂Ψ2

t

= +
1

2

∑
s

Mst

[
1

(Ψt + Σst)2
− 2Bst

(Ψt + Σst)3

]
. (74)

The Newton’s approximate solution is therefore:

Ψt,1 = Ψt,0 −
αt(Ψ0)

βt(Ψ0)
. (75)

One may start iterations using the result of Scheme 1 as the initial guess and continue until convergence.

Remark: In practice, when sample-to-sample variance of Σ was large (e.g. read depths varying from 50 to 1000
randomly), we noticed that the best approach was to use Brent root finding for each target. On average, 10 function
calls yields the solution within a 10−6 tolerance. Newton’s method required approximately 20 evaluations of αt and
βt to converge within the same tolerance. Also, we found that the most robust scheme was to start from Ψt = 0
rather than using Eq. (72).

In the M step equation for W, we may incorporate an automatic relevance determination (ARD) prior:

P (W) =
∏
µ

(αµ
2π

)T/2
exp

(
−1

2
αµ
∑
t

W 2
tµ

)
. (76)

If αµ →∞, the latent feature µ is effectively turned off. Thus we can initially choose a liberal estimate of D and the
model will automatically become more parsimonious. The M step log likelihood times the ARD prior depend on the
t-th row of W as:

−1

2

(
−
∑
µ

lnαµ +
∑
µν

Wtµ (Aµν +Qtµν)Wtν − 2
∑
µ

Wtµvtµ

)
, (77)

where A ≡ diag(α1, α2 . . . αD) and we have defined:

Qtµν =
∑
s

MstΨ
−1
st E [zsµzsν ] , vtµ =

∑
s

MstΨ
−1
st (mst −mt)E[vsµ]. (78)

The maximum a posteriori result for Wtµ is:

Wtµ =
∑
ν

(A + Qt)
−1
µν vtν . (79)

In the approximation Σs → Σ̄, this formula is unchanged but Qt is S times as fast to calculate. The other M steps and
the E step are not affected by the ARD prior. To determine αµ, we re-exponentiate expression (77)14 and integrate

14 This is the distribution on W that we would obtain from a mean-field variational factorization q(z)q(W).
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out W to obtain the evidence for A:

P (n|A) ∝
∏
k

α
T/2
k

∏
t

∫
q(W|t)

∏
µ

dWtµ, (80)

where:

q(W|t) ≡ exp

(
−1

2

∑
µν

Wtµ(Aµν +Qtµν)Wtν −
∑
µ

Wtµvtµ

)
. (81)

The ARD coefficients α are determined by maximizing the log evidence. That is, we set

∂

∂αk
lnP (n|A) = 0⇒ 1

2

(
T

αµ
−
∑
t

〈
W 2
tµ

〉)
= 0⇒ αµ =

T∑
t

〈
W 2
tµ

〉 , (82)

where the average
〈
W 2
tµ

〉
is taken with respect to the density q(W|t). Completing the square, we find that q(Wt·) is

Gaussian with covariance (A + Qt)
−1 and mean (A + Qt)

−1vt. Note that this mean is precisely the M step value for
q(W|t), as we would hope! Thus we get: 〈

W 2
tµ

〉
= W 2

tµ + (A + Qt)
−1
µµ (83)

Let us now summarize these steps:

• E step: Gs =
(
I + WTMsΨ

−1
s W

)−1
, E [zs] = GsW

TΨ−1s (ms −m), E
[
zsz

T
s

]
= Gs + E[zs]E[zs]

T .

Gs and all the E[zs] are each O(D2TS). E[zsz
T
s ] is O(D2S). The E step overall is O(D2TS).

• m =
(∑

s MsΨ
−1
s

)−1∑
s

[
MsΨ

−1
s (ms −WE[zs])

]
is O(DTS).

• Bst =
(
WE[zsz

T
s ]WT

)
tt

+ 2(mt −mst) (WE[zs])t + (mt −mst)
2 is O(D2TS)

• Solving Eq. (67) for each t is O(TS) with a prefactor equal to the number of evaluations required to find a root
(approximately 10 ∼ 20). As long as this number is less than D2 this step is subleading.

• Qt =
∑
sMstΨ

−1
st E[zsz

T
s ] is O(D2TS).

• vt =
∑
sMstΨ

−1
st (mst −mt)E[zs] is O(DTS).

• Wt· = Wtµ =
∑
ν (A + Qt)

−1
µν vtν is O(D3T ).

•
〈
W 2
tµ

〉
= W 2

tµ + (A + Qt)
−1
µµ is O(D3T ).

• αµ = T/
∑
t

〈
W 2
tµ

〉
is O(DT ).

The leading cost is a few terms of O(D2TS) flops, each with small prefactors, per iteration. Assuming a total
prefactor of 10 and T = 2 × 105, D = 10, S = 500 a full EM iteration costs 1011 flops in exact mode. On a single 1
GHz core (109 flops per second) this comes out to roughly 100 or 10 seconds.

We can apply the parameters learned from the panel of normals to single-sample calling, which requires the likelihood
as a function of the copy numbers c. Applying the same E step as above, the likelihood is

P (n|c,W,m,Ψ) ∝
∏
t

exp

[
−1

2
MstΨ

−1
st

(
ln (nst/(dsPst))− ln(cst)−mt − (WE[zs])t

)2]
, (84)

We have only kept factors that depends on c in the above likelihood. Note that this is factorized into independent
likelihood terms for each target and is thus suitable for the emission model of an HMM. This likelihood is not
Gaussian in c, but it does not need to be for the Viterbi and forward-backward algorithms. Also, note that when
cst = 0 is the most likely solution, this must be incorporated in the mask matrix Mst in order to avoid ambiguous
expressions due to the breakdown of the Laplace approximation used to replace the Poisson with a Gaussian.
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4. GC bias correction

We can easily integrate sample-specific GC bias into this model. Let fs(GC) be the GC bias of GC content GC
for sample s. Then this enters into the model as an additional multiplier to the Poisson parameter. That is, we
replace dscst → dscstfs(GCt), which affects the model learning and inference only via the definition of mst. We can
iteratively re-estimate the GC bias function fs by regressing the bias not explained by the latent factors. That is, for
each target the Poisson parameter is, ignoring GC effects,

cstds exp (WtE[zs] +mt) (85)

and thus the ratio nst/ [cstds exp (WtE[zs] +mt)] (with error bars of size 1/
√
n if we want to do a weighted regression)

is an estimate of fs(GCt) that we can feed into our favorite regression model. This is more sophisticated than the
standard approach of simply regressing n versus GC in that it seeks to explain with GC only the bias that cannot be
explained by linear latent features.

5. PCA and the curse of small samples

PCA-like denoising approaches minimize the total variance by learning and subtracting the contribution of the
underlying latent features from the data. In practice, this objective is achieved using either the maximum variance
principle (usual PCA) or the maximum likelihood principle on a linear-Gaussian model as explained earlier. In either
method, when the number of samples largely exceeds the dimension of the latent space, sample-specific variations
become immaterial and the true underlying latent features can be learned from the data. On the other hand, when the
number of samples is comparable to the number of latent features, the statistical power for separating sample-specific
variations from mutual variations is significantly reduced.

Let us assume that we have an oracle for the first few major latent features, and that we have already subtracted
the contribution arising from these features. Let σ2

` be the variance associated with the next leading latent feature.
Subtracting this latent feature reduces the total variance by Sσ2

` , where S is the number of samples. Now, if one of the
samples has an individual leftover variance of magnitude σ2

s such that σ2
s & Sσ2

` , then the maximum variance principle
implies choosing the next principal component along the direction of that specific sample. In other words, the pro-
cedure erroneously learns a sample-specific signal as a source of noise. Note that this artifact occurs only if S . σ2

s/σ
2
` .

Why does it matter? — We have no theoretical guarantee that the MLE problem for (W,m,Ψ, c) is convex. In
all likelihood, if one of the samples has a large germline CNV event, it may be picked up as a principal component
and be interpreted as experimental noise such that the MLE for c fails to call that CNV event. It is possible that the
likelihood function has numerous such local maxima. Therefore, we wish to ensure that sample-specific nuisances are
not picked up as Gaussian noise, no matter how strong they are. We discuss a number of such approaches in what
follows.

(Idea 1) Blind source separation — One remedy is to use a blind source separation approach, such as independent
component analysis (ICA), to separate the signal from the noise as a first step, followed by learning the latent features
of the noise using PCA. In ICA-like methods, one decomposes the signal into additive subcomponents and minimizes
the mutual information between them (or maximizes the non-Gaussianity by taking into account higher moments such
as the kurtosis). Even though this method is quite appealing, we follow a more context-specific heuristic approach here.

(Idea 2) Imposing context-specific constraints on the structure of variations — Fortunately, we have some
idea about the spatial structure of the CNV events: they are amplification or attenuation of the read count over
several consecutive targets. In the absence of noise, we expect the frequency spectrum of the CNV signal (as obtained
by taking a Fourier transform of mst in t) to be significantly enhanced at spatial frequencies corresponding to the
inverse length scale of the size of the CNV event. Similarly, the variation subtracted from sample s, i.e. Wzs, will
exhibit an enhanced spectral power if a CNV event is erroneously picked up. Let f̃(k) be the Fourier transform of a
linear filter that approximately represents a range of CNV events. For example, we may use a midpass filter such as:

f̃(k) =

 1 kl ≤ k∗ ≤ kh,

0 k∗ > kh or k∗ < kl,
(86)

Here, k∗ = min(k, T − 1 − k), kl ∼ bT/`maxc and kl ∼ bT/`minc, where `min and `max denote roughly the minimum
and maximum length of the CNV events in the units of targets. The filtered spectral power of the noise in sample s
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is given as:

κs ≡
T−1∑
k=0

f̃(k) |FFT [Wzs]k|
2

=
1

T

T−1∑
t,t′=0

Ftt′WtµWt′ν zsµ zsν , (87)

where Ftt′ = f(t − t′) ≡ T−1
∑T−1
k=0 e

2πik(t−t′)/T f̃(k) is the inverse DFT of f̃(k). Now, in order to avoid picking up
event-like variations as noise, we simply penalize variations with large κ. To this end, we regularize the coverage
likelihood function Eq. (58) with the following multiplicative factor:

Rf ≡ exp

(
−λ

2

S∑
s=1

κs

)
= exp

− λ
T

S∑
s=1

T−1∑
t,t′=1

f(t− t′)WtµWt′ν zsµ zsν

 . (88)

We will discuss a proper choice of λ later. Since this regularizer is quadratic in z, the Gaussian structure of the
likelihood is preserved and the E step remains as simple as before. The only difference is the presence of an additional
term in G−1s :

G−1s → I + WT
[
MsΨ

−1
s + λF

]
W. (89)

Since F is not diagonal in the target space, a naive matrix multiplication implies a multiplication complexity of
O(D2T 2) for the new term. However, this complexity can be reduced to a manageable O(D2T log T ) using FFT:

(WTFW)µν =

T−1∑
t=0

Wµt FFT−1t

[
T−1∑
k=0

f̃(k) FFTk[Wtν ]

]
. (90)

The M step equations for Ψ and M remain the same. For W, we find:∑
ν

QtµνWtν + λ
∑
ν,t′

ZµνFtt′Wt′ν = vtµ, (91)

where Q and v are defined as before and:

Z =

S∑
s=1

E[zsz
T
s ]. (92)

As one would expect, the regularizer mixes different targets such that t is no longer a mere label in the stationarity
condition for W. The direct solution to Eq. (91) is impractical since it involves inverting a matrix of size DT ×DT .

Fortunately, the linear operator in question, Q + λZ⊗ F, is the sum of two sparse operators: Q is diagonal in the
target space, and A ≡ Z ⊗ F is diagonal in Fourier space (Z acts on the latent space, F acts on the target space).
Both Q and Z ⊗ F are dense in the latent space, but this space has a low dimensionality and is not prohibitive in
numerics. Eq. (91) can be solved very efficiently using preconditioned iterative Krylov space solvers such as conjugate
gradients or GMRES. A decent preconditioner for A can be constructed by taking a target average of Qtµν :

Ã ≡ Q̃ + λZ⊗ F, Q̃ =
1

T

∑
t

Qt. (93)

Note that Ã is now easily invertible in the Fourier space. In iterative methods, we only need to be able to calculate
Ã−1W for arbitrary W. The complexity for this is O(D3T log T ) using FFT:(

Ã−1W
)
tµ

= FFT−1t

[(
Q̃ + λf̃(k)Z

)−1
FFTk[Wt]

]
. (94)

Note that if target-to-target variance Qt is small (which is the case if the targets have a comparable degree of

unexplained variance), Ã−1v is an excellent approximate solution to Eq. (91) and can be used as a starting point.
In practice, we found preconditioned CG iterations to converge within an error tolerance of 10−6 within less than 10
steps. The complexity of each CG step is also O(D3T log T ).

Choice of λ — The regularizer “kicks in” when λ ∼ Ψ−1, as it can be inferred directly from Eq. (91). One may
initially choose λ ∼ 1000 Ψ−1 and progressively relax it as CNV calls stabilize.
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FIG. 5: Comparison of PCA with the probabilistic coverage model in different modes. Top two rows: D = 10; random events,
correlated events. Bottom two rows: D = 20; random events, correlated events.

6. Results

In this section, we present the result of the algorithm on synthetic coverage data where the ground truth is known
(this section must be eventually supplemented with real data). We synthesize the data according to Eq. (53) along
with random duplication events of varying lengths. We choose T = 4000 targets, D = 10 true latent variables,
S = 100 samples, mean read depth d uniformly sampled from [50, 1000], mean bias mt ∼ N (0, 1), eigenvalues of
the covariance matrix WWT uniformly sampled from [0, 10], and residual variance Ψt uniformly sampled from
[0.01, 0.05]. Finally, the length of CNV events are randomly sampled from [50, 500] targets.

Figs. ?? and ?? compares PCA denoising against our probabilistic model with different features turned on/off
(ARD, CNV event regularization) for random and correlated events, respectively. It is clearly observed that the
regularized model retains all of the events even when the number of latent features chosen is greater than the true
number.
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C. Inferring sex genotype from raw read counts

The probabilistic target coverage model requires the germline copy number of the targets as an input for dealing
with mixed-sex cohorts. In this section, we propose a simple statistical test for inferring sex from raw read counts
when the phenotypic sex is not known.

Let TX and TY be a set of targets on X and Y chromosomes. Let {nt} be the raw read counts on sex chromosome
targets. The likelihood of reads for either of XX or XY genotypes can be calculated from Eq. (53). Since we have
no prior knowledge of the germline CNV events15, we proceed by assuming cst = 1. We have no prior knowledge
about the multiplicative bias ebt either. However, it is reasonable to assume that a major source of the mean target
bias is the target length lt. In particular, if the reads are corrected for the GC bias, we expect a strong ebt ∝ lt
proportionality. Finally, the average read depth, d, can be reliably estimated from the read counts on autosomal
targets (see Sec. V B 2). Put together, for XX genotype we have:

(XX genotype) nt ∼

 Poisson(2 ρ lt) t ∈ TX ,

Poisson(εM lt) t ∈ TY ,
(95)

where ρ is average read count per base per homologous copy, lt is the target length (number of overlapping bases), and
εM ∼ 10−5 is the (small) probability of a mapping error that may result in a (small) number of reads to be mapped
to the Y chromosome for an XX genotype sample. Similarly, for the YY genotype we have:

(XX genotype) nt ∼ Poisson(ρ lt) t ∈ TX ∪ TY . (96)

At this point, we may either proceed with a likelihood model for individual reads, or for compound reads. We discuss
both cases below.

Individual reads likelihood: using the previous two equations, and assuming independent reads on different targets,
we have:

P (n|XX) =
∏
t∈TX

Poisson(nt|2 ρ lt)
∏
t∈TX

Poisson(nt|εM ρ lt e
bt),

P (n|XY) =
∏

t∈TX∪TY

Poisson(nt|ρ lt). (97)

Compound reads likelihood: we define compounds reads on X and Y chromosomes as NX ≡
∑
t∈TX

nt and

NY ≡
∑
t∈TY

nt, respectively, both of which also have a Poisson distribution. The compound likelihoods are given as:

P (NX , NY |XX) = Poisson(NX |2ρLX)× Poisson(NY |εMρNY ),

P (NX , NY |XY) = Poisson(NX |ρLX)× Poisson(NY |ρLY ). (98)

We have defined LX(Y ) ≡
∑
t∈TX(Y )

lt as the total length of targets in X and Y chromosomes.

Having a likelihood function, the logarithmic odds of XX to XY genotype is readily found from Bayes’ theorem:

log odds(XX/XY) = logP (n|XX) + logP (XX)− logP (n|XY)− logP (XY). (99)

If the compound reads likelihood model is used, the compound likelihood functions must be used accordingly:

log odds(XX/XY) = logP (NX , NY |XX) + logP (XX)− logP (NX , NY |XY)− logP (XY). (100)

15 The germline CNV events will be known only after training the target coverage model. The latter, however, requires the sex genotype
as an input.
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D. HMM-based segmentation of somatic CNVs

In CNV segmentation, the hidden states are defined at genomic loci – targets or SNPs. The transition matrix of
an HMM for segmentation will be a function of the distances between consecutive loci, similar to what already exists
in our germline code. The emission likelihoods of the HMM will be given by probabilistic models for allele counts
at het sites (which we already have) and total coverage of targets (another proposed method). Broadly speaking, all
that remains is to define the hidden states and to tweak the transition model for the somatic case. For concreteness
we will begin the discussion in terms of het allele fraction segmentation.

We already have a probabilistic model P (ai, ri|fi), where ai and ri are observed alt and ref allele counts at het site i
and fi is the underlying minor allele fraction of the segment to which this het belongs. This is the emission likelihood
of our HMM. The hidden states are therefore are discrete set of minor allele fractions f . The discreteness of these
states follows from the discreteness of the tumor’s phylogeny. In order to learn a finite set of minor allele fractions
without knowing its size a priori we choose some sufficiently large number (i.e. an overestimate of the number of
different values of f) K combined with a sparsity-promoting Dirichlet prior on the multinomial weights for the different
values of f . A simple transition model assumes a length scale D, so that over d bases the CNV state is unchanged
with probability e−d/D, and with probability 1 − e−d/D a new CNV state is chosen from a multinomial distribution
π. Thus every site n has an associated binary indicator sn with prior probability P (sn = 0) = e−dn/D, where dn is
the distance from the previous het to the nth het. This corresponds to the following transition probabilities for the
nth site:

P (fj → fk) =
[
e−dn/Dδjk

]1−sn [
(1− e−dn/D)πk

]sn
(101)

We encourage sparsity by placing a symmetric Dirichlet prior with concentration parameter α, π|α ∼
Dir(α/K, . . . α/K), on π. Letting znk be a binary indicator for hidden state fk at het site n, the model likelihood is

P (α)P (π|α)

(∏
nk

P (an, rn|fk)znk

)∏
njk

([
e−dn/Dδjk

]1−sn [
(1− e−dn/D)πk

]sn)z(n−1)jznk

 (102)

Supposing that we can obtain the posterior joint probability of the hidden states s and z, we can take the logarithm
of Equation 102 and read off the M step equations. The M step for D is

D = argmax
D

∑
n

(
E [sn] ln(1− e−dn/D)− dn

D
E [(1− sn)]

)
(103)

The M step for fk is

fk = argmax
fk

∑
nk

E[znk] lnP (an, rn|fk) (104)

Due to the singularity of the Dirichlet prior we must use variational Bayes, rather than maximum likelihood, on π.
By conjugacy of the likelihood Equation 102 to the Dirichlet prior, we see that each πk is associated with

Nk ≡
∑
nj

E[snz(n−1)jznk] (105)

pseudocounts and thus the M step posterior on π is

q(π) = Dir(π|α/K +N1, . . . α/K +NK) (106)

By inspection (i.e. by seeing how πk enters into the logarithm of Equation 102) we also see that the variational Bayes
prescription for πk to be used in the E step for z and the M step for α is the replacement

πk → π̄k ≡ expE[lnπk] = exp

(
ψ(α/K +Nk)− ψ(α+

∑
k

Nk)

)
(107)

where ψ is the digamma function and we have used a standard result for log-moments of a Dirichlet distribution.
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It is also seen by inspection that the effective value of α to be used in the M step for π is the mean ᾱ of the posterior
q(α) (that is, the part of the likelihood containing α with the replacement πk → π̄k), which amounts to a simple 1-D
quadrature. Substituting in the dependence of the Dirichlet prior on π on α, we find that

q(α) ∝ P (α)

(
Γ(α)

Γ(α/K)K

∏
k

π̄
α/K
k

)
, ᾱ =

∫∞
0
αq(α) dα∫∞

0
q(α) dα

(108)

The above model contains a hidden chain of states zn along with an additional hidden node sn for each n that is a
parent of zn in the DAG16. This model cannot be fed into a black-box HMM due to the extra nodes. It is trivial to
marginalize out the sn to obtain a simple HMM with transition matrix

P (fj → fk) = e−dn/Dδjk + (1− e−dn/D)π̄k, (109)

however using such a model the forward-backward algorithm will only output the E step posteriors E[znk] and
E[z(n−1)jznk], while we need E[snz(n−1)jznk] and E[sn]. Fortunately, these are actually easy to obtain from Bayes’
Rule.

E
[
snz(n−1)jznk

]
=P (sn = 1, z(n−1)j = 1, znk = 1) (110)

=P (z(n−1)j = 1, znk = 1)P (sn = 1|z(n−1)j = 1, znk = 1) (111)

=E[z(n−1)jznk]
P (znk = 1|z(n−1)j = 1, sn = 1)P (sn = 1)

P (znk = 1|z(n−1)j = 1)
(112)

=E[z(n−1)jznk]
(1− e−dn/D)πk

e−dn/Dδjk + (1− e−dn/D)πk
, (113)

after which we easily obtain E[sn] =
∑
jk E

[
snz(n−1)jznk

]
and E[1 − sn] = 1 − E[sn]. Thus we can perform the

desired E step using only the forward-backward algorithm of the marginalized model.
The M step amounts to K + 1 numerical optimizations (for D and {fk}) of objectives containing T terms each

along with several very cheap operations. The E step’s time complexity is the cost O(K2T ) of the forward-backward
algorithm. We note that since the allele-fraction model requires segmentation information, during EM iteration we
should also perform segmentations via the Viterbi algorithm and relearn the parameters of the allele-fraction model.
The Viterbi algorithm also has cost O(K2T ). The steps described above are summarized in Algorithm 3.

Algorithm 3 HMM segmentation of somatic allele fraction

1: Initialize D with a reasonable guess of an average CNV size.
2: Initialize (f1, f2, . . . fK) = (1/(2K), 2/(2K), . . . 1/2)
3: Initialize π̄k = 1/K for all k.
4: repeat
5: Run the forward-backward algorithm on the HMM given by transitions Eq. 109 to obtain E[znk] and E[z(n−1)jznk].

6: Calculate E
[
snz(n−1)jznk

]
from Eq. 113.

7: Calculate E[sn] =
∑
jk E

[
snz(n−1)jznk

]
and E[1− sn] = 1− E[sn].

8: Update D via Eq. 103.
9: Update fk via Eq. 104.

10: Calculate Nk via Eq. 105.
11: Calculate π̄k via Eq. 107.
12: Calculate ᾱ from Eq. 108.
13: until convergence

The framework we described above works equally well for hidden copy ratio states, provided we have a generative
model for copy ratio with an associated likelihood. Furthermore, by using two-dimensional hidden states containing
minor allele fraction and copy ratio we may segment both simultaneously. The HMM machinery has no difficulty
with heterogeneous emission likelihoods.

16 Note that the sn have no links with each other and are not a chain.
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Appendix A: Marginalizing out latent variables of the allelic model

We wish to evaluate

φ(α, β, f, a, r) =

∫ ∞
0

g(λ, α, β, f, a, r) dλ (A1)

where

g(λ, α, β, f, a, r) =
βα

Γ(α)

faj (1− f)rλα+r−1e−βλ

(f + (1− f)λ)
a+r (A2)

An extremely good approximation for all values of f , α, β, and a, r is

g(λ, α, β, f, a, r) ≈ cλρ−1e−τλ. (A3)

where ρ and τ are chosen to reproduce the mode of g(λ, α, β, f, a, r) and the curvature at its mode. Having approxi-
mated our integrand as a gamma distribution’s pdf on λ, we integrate it analytically

φ(α, β, f, a, r) = c

∫ ∞
0

λρ−1e−τλ dλ = c
Γ(ρ)

τρ
(A4)

The mode λ0 is found by setting logarithmic derivatives to zero:

d

dλ
[(α+ r − 1) lnλ− βλ− n ln (f + (1− f)λ)]λ0

=0 (A5)

α+ r − 1

λ0
− β − n(1− f)

fj + (1− fj)λ0
=0 (A6)

Multiplying out the denominators yields a quadratic equation. Taking the positive root gives

λ0 =

√
w2 + 4βf(1− f)(r + α− 1− w

2β(1− f)
, w = (1− f)(a− α+ 1) + βf. (A7)

The second derivative of ln f at λ0 is

κ = −r + α− 1

λ20
+

n(1− f)2

(f + (1− f)λ0)
2 (A8)

The mode of the approximating gamma distribution is (ρ−1)/τ and the log second derivative is −(ρ−1)/λ20. Equating
these, we obtain

ρ = 1− κλ20, τ = −κλ0 (A9)

Finally, we choose c so that the values of ln f and the approximation match at λ0:

ln c = α lnβ − ln Γ(α) + a ln f + r ln(1− f) + (r + α− ρ) lnλ0 + (τ − β)λ0 − n ln (f + (1− f)λ0) (A10)

Algorithm 4 shows the entire computation.
See the ipython notebook docs/CNV/allele-fraction-model-approximation.ipynb for some plots that justify

this approximation.
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Algorithm 4 Calculating φ(α, β, f, a, r)
1: n = a+ r
2: w = (1− f)(a− α+ 1) + βf

3: λ0 =
(√

w2 + 4βf(1− f)(r + α− 1− w
)
/ (2β(1− f))

4: κ =
(
n(1− f)2

)
/ (f + (1− f)λ0)2 − (r + α− 1) /λ2

0

5: ρ = 1− κλ2
0

6: τ = −κλ0

7: ln c = α lnβ − ln Γ(α) + a ln f + r ln(1− f) + (r + α− ρ) lnλ0 + (τ − β)λ0 − n ln (f + (1− f)λ0)
8: return cΓ(ρ)/τρ

29


