
Tangent Normalization in Spark notes:

This document is for developers.

S : Number of case samples
S E: Number of eigensamples
T : Number of targets(this isusually the largest count , by far)

A : Reduced panel [T x SE]

C :Casesbeing projected [T x S]
P: Pseudoinverse of the reduced panel [SE xT]

Â : projection of case samplesinto the reduced hyperplane .[T x S]

β̂=CT PT [SxSE]
A β̂= Â [TxS]
C−Â [TxS]

APC= Â Unfortunately, this can eat a lot of RAM, since AP is [T x T].

So why not do A(PC), which never keeps a [TxT] matrix in RAM?
The issue with doing that is a practical concern when using Spark. When you do a matrix multiply in
Spark, the distributed matrix (RowMatrix) is always on the left (see the javadoc API). Multiplying two
distributed matrices is not trivially supported. If you were to implement A(PC), your workflow would
be:

1. Convert P to RowMatrix
2. Multiply P by C to get a new RowMatrix (PC)
3. Convert PC to local matrix (spark collect is called)
4. Convert A to RowMatrix
5. Multiply A by PC and convert to local matrix (spark collect is called).

The two collect calls will be expensive.

So… for ease of Spark
Â=(AP)C

⇒ ÂT
=CT

(PT AT
)

⇒ ÂT
=(CT PT

) AT

Now the RowMatrix is CT . CTPT is [S x SE] and (CTPT) AT is [S x T]

Then call collect.

Wed, January 6, 2016

