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I. SOMATIC LIKELIHOODS MODEL

We have a set of potential somatic alleles and read-allele likelihoods `ra ≡ P (read r|allele a). We don’t know which
alleles are real somatic alleles and so we must compute, for each subset A of alleles, the likelihood that the reads come
from A. A simple model for this likelihood is as follows: each read r is associated with a latent indicator vector zr

with one-hot encoding zra = 1 iff read r came from allele a ∈ A. The conditional probability of the reads R given
their allele assignments is

P (R|z,A) =
∏
r∈R

∏
a

`zra
ra . (1)

The alleles are not equally likely because there is a latent vector f of allele fractions – fa is the allele fraction of allele
a. Since the components of f sum to one it is a categorical distribution and can be given a Dirichlet prior,

P (f) = Dir(f |α). (2)

Then fa is the prior probability that a read comes from allele a and thus the conditional probability of the indicators
z given the allele fractions f is

P (z|f) =
∏

r

∏
a

fzra
a . (3)

The full-model likelihood is therefore

L(A) = P (R, z, f |A) = Dir(f |α)
∏

a

∏
r

(fa`ra)zra . (4)

And the marginalized likelihood of A, that is, the model evidence for allele subset A, is

P (R|A) =
∑

z

∫
df Dir(f |α)

∏
a

∏
r

(fa`ra)zra , (5)

where the integral is over the probability simplex
∑

a fa = 1.
The integral over f is the normalization constant of a Dirichlet distribution and as such we can simply look up

its formula. However, the sum over all values of z for all reads has exponentially many terms. We will get around
this difficulty by handling z with a mean-field approximation in which we factorize the likelihood as L ≈ q(z)q(f).
This approximation is exact in two limits: first, if there are many reads, each allele is associated with many reads
and therefore the Law of Large Numbers causes f and z to become uncorrelated. Second, if the allele assignments of
reads are obvious zr is effectively not a random variable at all (there is no uncertainty as to which of component is
non-zero) and also becomes uncorrelated with f .

In the variational Bayesian mean-field formalism the value of f that z “sees” is the expectation of logL with respect
to q(f) and vice versa. That is,

q(f) ∝ Dir(f |α)
∏

a

∏
r

f z̄ra
a ∝ Dir(f |α+

∑
r

z̄r), (6)
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where z̄ra ≡ Eq [zra], and

q(zr) =
∏

a

(
f̃a`ra

)zra
, f̃a = expE[ln fa] (7)

Because q(z) is categorical and q(f) is Dirichlet1 the necessary mean fields are easily obtained and we have

z̄ra = f̃a`ra∑
a′ f̃a′`ra′

(8)

and

ln f̃a = ψ(αa +
∑

r

z̄ra)− ψ(
∑
a′

αa′ +N) (9)

where ψ is the digamma function and N is the number of reads. To obtain q(z) and q(f) we iterate Equations 8 and 9
until convergence. A very reasonable initialization is to set z̄ra = 1 if a is the most likely allele for read r, 0 otherwise.
Having obtained the mean field of z, we would like to plug it into Eq 5. We can’t do this directly, of course, because
Eq 5 says nothing about our mean field factorization. Rather, we need the variational approximation (Bishop’s Eq
10.3) to the model evidence, which is

lnP (R|A) ≈
∑

z

∫
dfq(z)q(f) [lnP (R, z, f |A)− ln q(z)− ln q(f)] (10)

=Eq [lnP (R, z, f |A)]− Eq [ln q(z)]− Eq [ln q(f)] . (11)

Before we proceed, let’s introduce some notation. First, from Eq 6 the posterior q(f) is

q(f) = Dir(f |β), β = α+
∑

r

z̄r. (12)

Second, let’s define the log normalization constant of a Dirichlet distribution as g so that

ln Dir(f |ω) = g(ω) +
∑

a

(ωa − 1) ln fa, g(ω) = ln Γ(
∑

a

ωa)−
∑

a

ln Γ(ωa). (13)

Finally, define the Dirichlet mean log (aka “that digamma stuff”) as h:

EDir(f |ω) [ln fa] = ψ(ωa)− ψ(
∑
a′

ωa′) ≡ ha(ω). (14)

The log of Eq 4 is

lnP (R, z, f |A) = g(α) +
∑

a

(αa − 1) ln fa +
∑
ra

zra(ln fa + ln `ra). (15)

and thus the first term in Eq 11 is

Eq [lnP (R, z, f |A)] =g(α) +
∑

a

(αa − 1)ha(β) +
∑
ra

z̄ra (ha(β) + ln `ra) (16)

=g(α) +
∑

a

(βa − 1)ha(β) +
∑
ra

z̄ra ln `ra, (17)

where we used the relationship β = α+
∑

r z̄r.
The second term in Eq 11 is

−Eq [ln q(z)] = −
∑
ra

z̄ra ln z̄ra. (18)

1 Note that we didn’t impose this in any way. It simply falls out of the mean field equations.



3

FIG. 1: The probabilistic graphical model for the strand artifact model

The third term in Eq 11 is

−Eq [ln q(f)] = −g(β)−
∑

a

(βa − 1)Eq[ln fa] = −g(β)−
∑

a

(βa − 1)ha(β). (19)

Adding Eqs 17, 18, and 19 and noting the cancellation between parts of Eqs 17 and 19 we obtain

lnP (R|A) ≈ g(α)− g(β) +
∑
ra

z̄ra (ln `ra − ln z̄ra) . (20)

We now have the model evidence for allele subset A. This lets us choose which alleles are true somatic variants.
It also lets us make calls on somatic loss of heterozygosity events. Furthermore, instead of reporting max-likelihood
allele fractions as before, we may emit the parameters of the Dirichlet posterior q(f), which encode both the maximum
likelihood allele fractions and their uncertainty.

II. STRAND ARTIFACT MODEL

The strand artifact filter detects sequencing artifacts in which the evidence for the alt allele consists entirely of
forward strand reads alone or reverse strand reads alone. We must detect this while taking into account the fact that
at some loci, such as near the end of an exome target, all reads are biased towards one direction, and therefore a bias
towards a particular strand among alt reads is no cause for alarm.

Let z ∈ {z+, z−, zo} be a latent random variable with 1-hot encoding that represents the artifact state of a suspected
variant. z+ = 1 when the candidate variant is a forward strand artifact, z− = 1 when it’s a reverse artifact, and
zo = 1 when there’s no artifact. At each locus, the conditional distribution over the number of forward alt reads x+

is a binomial random variable

P (x+|f, ε, z) = Bin(x+|n+, f + ε(1− f))z+Bin(x+|n+, f)1−z+ (21)

where n+ is the number of total forward reads, f is the allele fraction, and ε is the artifactual error rate, which is
the probability that we mistakenly read a ref allele as alt due to strand artifact. We put a flat prior on f and a beta
prior on ε. The conditional distribution of x− is defined analogously.

In order to decide whether to filter a variant, we compute the posterior probabilities of z given the observed alt
read counts X = {x+, x−}. We obtain the likelihood P (X|z) by marginalizing the latent variables f and ε out of the
joint distribution P (X, f, ε|z), and we do this for each of the three possible values of z separately. First consider the
case z+ = 1, which we denote by the shorthand z+ below.
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P (X|z+) =
∫∫

P (X, f, ε|z+) df dε

=
∫∫

P (f)P (ε)P (x+|z+, f, ε)P (x−|z+, f, ε) df dε

=
∫∫

Beta(ε|α, β)Bin(x+|n+, f + ε(1− f))Bin(x−|n−, f) df dε (22)

where α and β are fixed hyperparameters to the beta prior on ε. By Bayes Rule the posterior probability of strand
bias for forward reads is therefore

P (z+|X) ∝ P (z+)P (X|z+) = π+P (X|z+) (23)

where π+ = P (z+) is a fixed prior probability of strand artifact. The posterior probability of reverse strand artifact
P (z−|X) may be derived analogously.

The derivation of P (zo|X) is similar except that the integral becomes much simpler because P (X|zo) does not
depend on the artifactual error rate ε.

P (X|zo) =
∫∫

P (ε)P (x+|zo, f, ε)P (x−|zo, f, ε) df dε

=
∫
P (x+|zo, f)P (x−|zo, f) df

∫
P (ε)dε

=
∫

Bin(x+|n+, f)Bin(x−|n−, f) df (24)

And the posterior probability is

P (zo|X) ∝ P (zo)P (X|zo) = πoP (X|zo) (25)

where πo = P (zo = 1) is the fixed prior probability of no artifact. We normalize the posteriors and filter the variant
if the posterior probability of z+ = 1 or z− = 1 exceeds the threshold.

III. GERMLINE FILTER

Suppose we have detected an allele such that its (somatic) likelihood in the tumor is `t and its (diploid) likelihood
in the normal is `n

2. By convention, both of these are relative to a likelihood of 1 for the allele not to be found. If
we have no matched normal, `n = 1. Suppose we also have the population allele frequency f of this allele. Then the
prior probabilities for the normal to be heterozygous and homozygous alt for the allele are 2f(1− f) and f2 and the
prior probability for the normal genotype not to contain the allele is (1− f)2. Finally, suppose that the prior for this
allele to arise as a somatic variant is π.

We can determine the posterior probability that the variant exists in the normal genotype by calculating the
unnormalized probabilities of four possibilities:

1. The variant exists in the tumor and the normal as a germline het. This has unnormalized probability 2f(1 −
f)`n`t(1− π).

2. The variant exists in the tumor and the normal as a germline hom alt. This has unnormalized probability
f2`n`t(1− π).

3. The variant exists in the tumor but not the normal. This has unnormalized probability (1− f)2`tπ.

2 This is the total likelihood for het and hom alt in the normal.
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We exclude possibilities in which the variant does not exist in the tumor sample because we really want the
conditional probability that the variant is germline given that it would otherwise be called.

Normalizing, we obtain the following posterior probability that an allele is a germline variant:

P (germline) = (1) + (2)
(1) + (2) + (3) =

(
2f(1− f) + f2) `n`t(1− π)

(2f(1− f) + f2) `n`t(1− π) + `t(1− f)2π
. (26)

The above equation, in which the factors of `t could cancel if we wished, is not quite right. The tumor likelihood
`t is the probability of the tumor data given that the allele exists in the tumor as a somatic variant. If the allele is
in the tumor as a germline het we must modify `t to account for the fact that the allele fraction is determined by the
ploidy – it must be either fg or 1 − fgwith equal probability, where fg is the minor allele fraction of germline hets.
It would be awkward to recalculate the tumor likelihood with the allele frequency constrained to these two values3,
but we can estimate a correction factor as follows: assuming that the posterior on the allele fraction in the somatic
likelihoods model is fairly tight, the likelihood of a alt reads out of n total reads is

(
n
a

)
(1− ft)n−afa, where ft is the

tumor alt allele fraction. That is, our sophisticated model that marginalizes over ft reduces to something more naive.
If the variant is a germline event, the likelihood becomes 1

2
(

n
a

) [
(1− fg)n−afa

g + fn−a
g (1− fg)a

]
. Thus, in case (1) we

have `t → χ`t, where

χ = 1
2

(1− fg)n−afa
g + fn−a

g (1− fg)a

(1− ft)n−afa
t

. (27)

For germline hom alts, both the tumor and normal allele fractions will be similarly large, so to decent approximation
we don’t have to modify `t. Of course, this only applies if the allele fraction is large. Rather than try to model the
count of ref reads within a germline hom alt site, we simply set a threshold of allele fraction 0.9, so that in case (2)
`t → I[ft > 0.9]`t. and the corrected germline probability is

P (germline) = (1) + (2)
(1) + (2) + (3) =

(
2f(1− f)χ+ I[ft > 0.9]f2) `n(1− π)

(2f(1− f)χ+ I[ft > 0.9]f2) `n(1− π) + (1− f)2π
. (28)

To filter, we set a threshold on this posterior probability.
So far we have assumed that the population allele frequency f is known, which is the case if it is found in our germline

resource, such as gnomAD. If f is not known we must make a reasonable guess as follows. Suppose the prior distribution
on f is Beta(α, β). The mean α/(α+β) of this prior is the average human heterozygosity θ ≈ 10−3, so we have β ≈ α/θ.
We need one more constraint to determine α and β, and since we are concerned with imputing f when f is small we use
a condition based on rare variants. Specifically, the number of variant alleles n at some site in a germline resource with
N/2 samples, hence N chromosomes, is given by f ∼ Beta(α, β), n ∼ Binom(N, f). That is, n ∼ BetaBinom(α, β,N).
The probability of a site being non-variant in every sample is then P (n = 0) = BetaBinom(0|α, β,N), which we
equate to the empirical proportion of non-variant sites in our resource, about 7/8 for exonic sites in gnomAD. Solving,
we obtain approximately α = 0.01, β = 10 for gnomAD. Now, given that some allele found by Mutect is not in the
resource, the posterior on f is Beta(α, β +N), the mean of which is, since β << N , about α/N . By default, Mutect
uses this value.

IV. CONTAMINATION FILTER

Suppose our tumor bam has contamination fraction α and that at some site we have a alt reads out of d total
reads. Suppose further that the alt allele has population allele frequency f . We will compute a simple estimate of the
posterior probability that these alt reads came from a contaminating sample and not from a true somatic variant. Let
π be the prior probability of somatic variation as above. Our crude model for the alt count distribution of somatic
variation is a uniform distribution. That is, we assume that any value of a from 0 to d is equally likely. Then the
likelihood of the data given a true somatic variant is

P (a|somatic) = 1
d+ 1 . (29)

3 The model could easily accommodate this change, but the likelihoods are long gone from memory once the germline computation occurs.
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We consider two models of contamination. If there are multiple contaminants we approximate each contaminant
read as independent. Then the probability of any given read being an alt contaminant read is αf , so we have

P (a|many contaminant) = Binom(a|d, αf). (30)

If there is a single contaminating sample it is heterozygous with probability 2f(1 − f) and homozygous for the alt
with probability f2, in which cases fractions α/2 and α of all reads to be alt contaminants. The contaminant is
homozygous for the ref with probability (1− f)2, which yields no alt reads. Thus

P (a|one contaminant) = 2f(1− f)Binom(a|d, α/2) + f2Binom(a|d, α) + (1− f)2I[a = 0]. (31)

We take the likelihood P (a|contamination) to be the maximum of these, which admittedly is not quite rigorous.
Usually one will be overwhelmingly larger than the other, however, so it’s a decent approximation. Our posterior
probability of contamination is then

P (contamination|a) = P (a, contamination)
P (a, contamination) + P (a, somatic) = (1− π)P (a|contamination)

(1− π)P (a|contamination) + πP (a|somatic) (32)

We filter by setting a threshold on this posterior probability.

V. FINDING ACTIVE REGIONS

Mutect triages sites based on their pileup at a single base locus. If there is sufficient evidence of variation Mutect
proceeds with local reassembly and realignment. As in the downstream parts of Mutect we seek a likelihood ratio
between the existence and non-existence of an alt allele. Instead of obtaining read likelihoods via Pair-HMM, we
assign each base a likelihood. For substitutions we can simply use the base quality. For indels we assign a heuristic
effective quality that increases with length. Supposing we have an effective quality for each element in the read pileup
we can now estimate the likelihoods of no variation and of a true alt allele with allele fraction f . Let R and A denote
the sets of ref and alt reads. The likelihood of no variation is the likelihood that every alt read was in error. Letting
εi be the error probability of pileup element i we have:

L(no variation) =
∏
i∈R

(1− εi)
∏
j∈A

εj ≈
∏
j∈A

εj , (33)

where the approximation amounts to ignoring the possibility that ref reads are actually alt, or, equivalently, giving
each ref read infinite quality. This is not necessary but it speeds the computation because, as we will see, we will only
need to keep alt base qualities in memory.

L(f) =
∏
i∈R

[(1− f)(1− εi) + fεi]
∏
j∈A

[f(1− εj) + (1− f)εj ] ≈ (1− f)Nref
∏
j∈A

[f(1− εj) + (1− f)εj ] , (34)

where we again assign infinite base quality to ref reads and let Nref = |R|.
This is equivalent to the following model in which we give the nth alt read a latent indicator zj which equals 1

when the read is an error:

P (reads, f, z) = (1− f)Nref

Nalt∏
n=1

[(1− f)εn]zn [f(1− εn)]1−zn (35)

We will approximate the model evidence L(f) =
∑

z
∫
dfP (reads, f, z) via a mean field variational Bayes approxima-

tion in which we factorize the full data likelihood as P (reads, f, z) ≈ q(f)q(z) = q(f)
∏

n q(zn)4. For simplicity and
speed, we will not iteratively compute q(f). Rather, we use the fact that zn is almost always 0 to see, by inspection,
that

q(f) ≈ Beta(f |α, β), α = Nalt + 1, β = Nref + 1. (36)

4 The latter step is an induced factorization – once f and z are decoupled, then the different zn become independent as well.
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Here the “+1”s come from the pseudocounts, one ref and one alt, of a flat prior of f . Then, following the usual
recipe of averaging the log likelihood with respect to f and re-exponentiating, we find that zn “sees” the following
distribution:

q(zn) ∝
[
εn exp ln(1− f)

]zn [
(1− εn) exp ln f

]1−zn (37)

= [εnρ]zn [(1− εn)τ ]1−zn , (38)

where we have defined the standard Beta distribution moments (with respect to q(f)) ln ρ ≡ ln(1− f) = ψ(β) −
ψ(α+ β) and ln τ ≡ ln f = ψ(α)− ψ(α+ β). By inspection, we see that

q(zn) = Bernoulli(zn|γn), γn = ρεn
ρεn + τ(1− εn) . (39)

Then, Equation 10.3 of Bishop gives us the variational lower bound on L(f):

L(f) ≈ Eq [lnP (reads, f, z)] + entropy[q(f)] +
∑

n

entropy[q(zn)] (40)

= H(α, β) +Nref ln ρ+
∑

n

[γn ln (ρεn) + (1− γn) ln (τ(1− εn)) +H(γn)] , (41)

where H(α, β) and H(γ) are Beta and Bernoulli entropies. We summarize these steps in the following algorithm:

1: Record the base qualities, hence the error probabilities εn of each alt read.
2: α = Nalt + 1, β = Nref + 1
3: ρ = exp (ψ(β) − ψ(α+ β)), τ = exp (ψ(α) − ψ(α+ β)).
4: γn = ρεn/ [ρεn + τ(1 − εn)]
5: L(f) ≈ H(α, β) +Nref ln ρ+

∑
n

[γn ln (ρεn) + (1 − γn) ln (τ(1 − εn)) +H(γn)]

To get the log odds we subtract the log likelihood,
∑

n ln εn, from L(f).

VI. CALCULATING CONTAMINATION

Below, we present the GATK’s fast, simple, and accurate method for calculating the contamination of a sample.
This methods does not require a matched normal, makes no assumptions about the number of contaminating samples,
and remains accurate even when the sample has a lot of copy number variation.

The inputs to our tool are a bam file and a vcf of common variants – for example ExAC, gnomAD, or 1000 Genomes
– with their allele frequencies. The basic idea, which comes from ContEst5 by Kristian Cibulskis and others in the
Broad Institute Cancer Genome Analysis group, is simply to count ref reads at hom alt sites and subtract the number
of ref reads expected from sequencing error to obtain the number of ref reads contaminating these hom alt sites.
Finally, we use the allele frequencies to account for the fact that some contaminating reads have the alt allele. The
only subtlety is in distinguishing hom alt sites from loss of heterozygosity events, which we describe below.

Suppose we have a set H of SNPs at which our sample is homozygous for the alternate allele. Let Nref be the total
number of ref reads at these sites. We can decompose Nref as follows:

Nref = N error
ref +N contamination

ref , (42)

where N error
ref and N contamination

ref are as the number of ref reads due to error and contamination, respectively. We can
obtain Nref by counting reads, and we estimate N error

ref as follows. Suppose, WLOG, that the ref allele is A and the
alt is C. Then, assuming that all substitution errors are equally likely, N error

ref is approximately half the number of Gs
and Ts. This is, of course, not a perfect assumption for any one site, but on average over all the sites in H it is very
good.

5 ContEst: estimating cross-contamination of human samples in next-generation sequencing data, Bioinformatics 27, 2601 (2011)
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Next we take the expectation of both sides of Equation 42 to obtain

〈Nref −N error
ref 〉 =

〈∑
s∈H

number of contaminant ref reads at s
〉

(43)

=
∑
s∈H
〈number of contaminant ref reads at s〉 (44)

=
∑
s∈H
〈number of contaminant reads at s× ref fraction of contaminant reads at s〉 (45)

=
∑
s∈H
〈number of contaminant reads at s〉 × 〈ref fraction of contaminant reads at s〉 (46)

where we have used the linearity of the expectation and the independence of the total number of contaminant reads
with the fraction of contaminant reads that are ref. The expectation of the total number of contaminant reads is the
depth ds at site s times the contamination, which we denote by χ. The expected fraction of contaminant reads that
are ref is one minus the alt allele frequency fs. Crucially, this fact is independent of how many contaminating samples
there are. Thus we have

〈Nref −N error
ref 〉 = χ

∑
s∈H

ds(1− fs) (47)

and obtain the estimate

χ̂ ≈ Nref −N error
ref∑

s∈H ds(1− fs) (48)

Let us now roughly estimate the error bars on this result. Under normal conditions sequencing error is rare, so we
will estimate the variance due to the sampling error of the number of contaminating ref reads. As discussed above,
the probability of a read at site s being a contaminating ref is χ(1− fs), so the quantity in the numerator of Eq. 48
is distributed as

∑
s Binom(ds, χ(1− fs) and therefore has variance

(var)(Nref −Nerror
ref ) =

∑
s

dsχ(1− fs) (1− χ(1− fs)) < χ
∑

s
ds(1− fs) (49)

And thus the variance of Eq. 48 is bounded as

var(χ̂) <
χ
∑

s ds(1− fs)(∑
s∈H ds(1− fs)

)2 = χ∑
s∈H ds(1− fs) , (50)

which gives the following bound for the standard deviation:

std(χ̂) <
[

χ∑
s∈H ds(1− fs)

]1/2
<

[
χ∑

s∈H ds

]1/2
(51)

This standard deviation is quite small. For example, in an exome with 1000 hom alt sites (as is typical) and an
average depth of 30 reads, a true contamination of 0.05 is estimated with an error of 0.0013.

It remains to describe how we determine which sites are hom alt. The fundamental challenge here is that in cancer
samples loss of heterozygosity may cause het sites to look like hom alt sites. Our strategy is to partition the genome
into allelic copy-number segments, then infer the minor allele fraction of those segments. We segment the genome just
as in GATK CNV, using a kernel segmenter with a Gaussian kernel computed on the alt fraction. A nonlinear kernel
is important because each segment is multimodal, with peaks for hom ref, alt minor het, alt major het, and hom alt.
In practice we remove most hom refs heuristically by filtering sites with alt fraction below some small constant in
order to enrich the meaningful signal, which are the alt minor and alt major hets. We infer the minor allele fraction
of each segment by heuristically assigning its hets to be those sites with allele fraction between 0.2 and 0.8 and then
maximizing the following likelihood by brute force, that is, by plugging in different values of the minor allele fraction:∏

hets s

1
2 [Binom(as|ds, f) + Binom(as|ds, 1− f)] (52)
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where as and ds are the alt and total counts at site s and f is the minor allele fraction. This approach might seem to
break down in the case of loss of heterozygosity when many hets are outside of the heuristic range, but if this happens
the likelihood will be maximized at the end of the range and we will still detect loss of heterozygosity. Also, due to
contamination the true distributions are overdispersed relative to a pure binomial. However, the important thing is
inferring f and not obtaining a perfect model fit. Overdispersion worsens the fit but does not significantly affect the
estimate of f .

Once the minor allele fraction is determined we compare the posterior probabilities of hom alt and het. For hets we
use the above likelihood, Equation 52, with a prior of 2q(1− q), where q is the population allele frequency. For hom
alts we use a binomial likelihood Binom(as|ds, 1−α), where α is the contamination, and a prior of q2. These priors are
not normalized since at this point we have thrown away obvious hom ref sites, but only their ratio matters. The fact
that this likelihood requires the contamination means that after initializing with some guess for the contamination we
iterate the entire procedure described above6 to obtain successive estimates of the contamination. These likelihoods
are crude, as they must be because we do not know how many contaminant samples there are, or what their copy
numbers are at each site. This generally doesn’t matter because for most segments hom alts are easily distinguished
from hets. Since low minor allele fractions can lead to confusion, we only use hom alt sites from segments with minor
allele fraction as close to 1/2 as possible. Specifically, we use the largest cutoff of minor allele fraction that gives us
at least 100 hom alt sites.

VII. PROPOSED TUMOR IN NORMAL ESTIMATION TOOL

Note: the following notes are just a proposal for which no GATK tool yet exists. A popular tool is DeTiN7 by
Amaro Taylor-Weiner and others at the Broad Institute Cancer Genome Analysis group.

Similar to the spirit of CalculateContamination, the fraction of tumor reads in the normal bam is a single number
with a large amount of evidence and is probably well-estimated by simple descriptive statistics rather than a full-
fledged probabilistic model. It shouldn’t be much more complicated than finding somatic variants and comparing
their signal in the normal sample to that in the tumor.

We propose the following steps to obtain our input of confident somatic SNVs:

• Run Mutect in tumor-only mode to obtain a preliminary list of somatic SNVs. For the sake of speed, we could
implement a pileup-based mode in which we skip reassembly and equate read likelihoods with base qualities.
This would allow us to obtain variant annotations using the existing architecture of Mutect and therefore to
filter calls with no new code. It would probably make sense at this stage to filter more stringently than usual
based on population allele frequencies in gnomAD.

• Run FilterMutectCalls. With default settings this eliminates the great majority of sequencing artifacts. To
eliminate even more we could increase the log odds threshold slightly, essentially requiring a slightly larger alt
allele count. Normally we don’t do this because it sacrifices some sensitivity, but for our purposes here a 10 or
20 percent loss of sensitivity is perfectly acceptable as long as we are left with enough SNVs for our estimate.

• Remove all SNVs that have enough read counts in the normal that we conclude they are germline variants, as
opposed to tumor in normal contamination. We could also accomplish this by using tumor-normal mode in the
first step, but we would need to modify our active region determination which currently would mark a region as
inactive based only on a small number of tumor-in-normal alt reads. We would also have to turn off the normal
artifact filter.

The above steps are all very reliable, so at this point we can assume we have a collection of confident biallelic
somatic SNVs that are hom ref in the germline. Similar to CalculateContamination, we can now estimate the number
of alt reads in the normal at these sites:

alt in normal ≈
∑
sites

(depth in normal)× (alt fraction in tumor)× (tumor in normal fraction) (53)

Hence we estimate

tumor in normal fraction ≈ total number of alt reads in normal at somatic SNV sites∑
somatic SNV sites(depth in normal)× (alt fraction in tumor) (54)

6 This excludes segmentation, which is independent.
7 DeTiN: overcoming tumor-in-normal contamination, Nature Methods 15, 531 (2018)
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VIII. MUTECT FILTERS

Mutect2 emits candidate variants with a set of annotations. After that FilterMutectCalls produces filtered calls
by subjecting these variants to a series of hard filters that reject sites if some annotation is out of an allowable range.
Here are the command line arguments that control these filters, along with the annotations they relate to.

• tumor-lod is the minimum likelihood of an allele as determined by the somatic likelihoods model required to
pass.

• max-events-in-region is the maximum allowable number of called variants co-occurring in a single assembly
region. If the number of called variants exceeds this they will all be filtered.

• unique-alt-read-count is the minimum number of unique (start position, fragment length) pairs required
to make a call. This count is a proxy for the number of unique molecules (as opposed to PCR duplicates)
supporting an allele. Normally PCR duplicates are marked and filtered by the GATK engine, but in UMI-aware
calling this may not be the case, hence the need for this filter.

• max-alt-allele-count is the maximum allowable number of alt alleles at a site. By default only biallelic
variants pass the filter.

• max-germline-posterior is the maximum posterior probability, as determined by the above germline proba-
bility model, that a variant is a germline event.

• normal-artifact-lod is the maximum acceptable likelihood of an allele in the normal by the somatic likelihoods
model. This is different from the normal likelihood that goes into the germline model, which makes a diploid
assumption. Here we compute the normal likelihood as if it were a tumor in order to detect artifacts.

• max-strand-artifact-probability is the posterior probability of a strand artifact, as determined by the
model described above, required to apply the strand artifact filter. This is necessary but not sufficient – we also
require the estimated max a posteriori allele fraction to be less than min-strand-artifact-allele-fraction.
The second condition prevents filtering real variants that also have significant strand bias, i.e. a true variant
that also has some artifactual reads.

• min-median-base-quality is the minimum median base quality of bases supporting a SNV.

• min-median-mapping-quality is the minimum median mapping quality of reads supporting an allele.

• max-median-fragment-length-difference is the maximum difference between the median fragment lengths
reads supporting alt and reference alleles. Note that fragment length is based on where paired reads are mapped,
not the actual physical fragment length.

• min-median-read-position is the minimum median length of bases supporting an allele from the closest end
of the read. Indels positions are measured by the end farthest from the end of the read.

• If FilterMutectCalls is passed a contamination-table from CalculateContamination it will filter alleles
with allele fraction less than the whole-bam contamination in the table8.

Additionally, there are two unadjustable filters. the panel of normals filter removes all alleles at a site belonging to
the panel of normals, which is a vcf of blacklisted artifact sites. It can be disabled by not passing a panel of normals
to Mutect2. There is also an STR contraction filter which removes variants that are the deletion of a single repeat
unit of an STR when this repeat unit contains more than one base. This filter can be disabled with the argument
-XA TandemRepeat which turns off the TandemRepeat annotation.

Here for convenience is a table of Mutect2 filters with their corresponding annotations specified by the -A argument9,
vcf keys for these annotations, and command line arguments controlling filtering thresholds.

8 This should be made more sophisticated by integrating the possibility of contamination into the germline model.
9 Most of these are default annotations and do not need to be invoked explicitly.
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Filter Annotation Key Argument

t lod - TLOD tumor lod
clustered events - ECNT max-events-in-region

duplicate evidence UniqueAltReadCount UNIQ ALT READ COUNT unique-alt-read-count
multiallelic - - max-alt-alleles-count
germline risk - P GERMLINE max-germline-posterior

artifact in normal - N ART LOD normal-artifact-lod
strand artifact StrandArtifact SA POST PROB, SA MAX AF max-strand-artifact-probability

base quality BaseQuality MBQ min-median-base-quality
mapping quality MappingQuality MMQ min-median-mapping-quality
fragment length FragmentLength MFRL max-median-fragment-length-difference
read position ReadPosition MPOS min-median-read-position

panel of normals - IN PON panel-of-normals
contamination - - contamination-table

str contraction TandemRepeat RU, RPA -

IX. READ ORIENTATION ARTIFACT FILTER

The read orientation artifact, also known as the orientation bias artifact, arises due to a chemical change in the
nucleotide during library prep that results in, for example, G base-paring with A. This kind of artifact has a clear
signature (e.g. C to A SNP that occurs predominantly for the middle C in the DNA sequence CCG), and it’s single-
stranded in nature. Downstream, this artifact manifests as low allele fraction SNPs whose evidence for the alt allele
consists almost entirely F1R2 reads or F2R1 reads. A read pair is F1R2 (forward 1st, reverse 2nd) if the sequence of
bases in Read 1 maps to the forward strand of the reference (F1), and the sequence of Read 2 to the reverse strand
of the reference (R2). F2R1 is defined similarly.

Without loss of generality, suppose that the reference context at locus i is ACT. Let zi denote the genotype at
locus i with the one-hot encoding zik = 1 iff the genotype of locus i is k, where the possible genotypes are

zi ∈ {F1R2A,F1R2G,F1R2T ,F2R1A,F2R1G,F2R1T ,Hom Ref,Germline Het,Somatic Het,Hom Var}

zi = F1R2A denotes that at locus i we have an artifact in which the evidence for alt allele A consists entirely of reads
in the F1R2 orientation. The remaining artifact states are defined analogously. Let π denote the prior probabilities
of the zi under the reference context ACT. Then we have

P (zi) =
∏

k

πzik

k (55)

The number of alt reads at a locus depends on the genotype zi. Let ni and mi denote the total depth and alt depth
at locus i, respectively. The conditional distribution of mi is

P (mi|zik = 1) = BetaBinomial(mi|ni, αk, βk) (56)

where αk and βk are fixed hyperparameters for genotype zk. When the site’s genotype indicates in mi alt reads we
expect a heavily skewed distribution of F1R2 reads. This is captured in the conditional distribution of F1R2 alt reads.
Let ci denote the number of F1R2 reads among the mi alt reads at locus i. Then we have

P (ci|mi, zik = 1) = BetaBinomial(ci|mi, α
′
k, β
′
k) (57)

We learn the prior artifact probabilities π based on the observed values of ni, mi, ci for each of N loci using the
EM algorithm. In the E-step, we compute the posterior probabilities of zi for i = 1...N . The joint probabilities of z
factorizes over i, thus the the posteriors over z are independent across loci.

P (zik = 1|mi, ci) ∝ P (zik = 1,mi, ci) = πkBetaBinomial(mi|ni, αk, βk)BetaBinomial(ci|mi, α
′
k, β
′
k) (58)

In the M-step we maximize the expectation of the log complete-data likelihood with respect to π. The log complete
data likelihood is given as

lnP (z,m, c) =
∑

i

∑
k

zik

(
ln πk + ln BetaBinomial(mi|ni, αk, βk) + ln BetaBinomial(ci|mi, α

′
k, β
′
k)
)

(59)
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Maximizing the log likelihood under the constraint
∑

k πk = 1 gives us

πk = Nk

N
(60)

where Nk =
∑

i P (zik|mi, ci) is the effective count of loci with genotype k. We alternate E-step and M-step until
convergence. We then use the learned prior genotype probabilities to compute the posterior artifact probabilities of
variants in a vcf. The filtering threshold is set such that the false discovery rate doesn’t exceed a specified value, as
described below.

X. FILTERING FALSE DISCOVERY RATE

Let p1 ≤ p2 ≤ ... ≤ pn denote ordered posterior probabilities that given variants are sequencing artifacts. Suppose
we filter variants for which pi > pj for some index j; that is, we keep the first j variants as PASS and filter the rest.
Then the expected number of false positives is

E[FP(j)] =
j∑

i=1
pi (61)

And the expected false positive rate is

E[FPR(j)] = 1
j

j∑
i=1

pi (62)

We choose the threshold so as to maximize the number of variants to let through while keeping the false positive rate
below δ ∈ [0, 1]. In other words, we solve for

j∗ = argmaxjE[FPR(j)] = 1
j

j∑
i=1

pi (63)

under the constraint E[FPR(j)] < δ. We can prove by induction that E[FPR(j)] is monotonically increasing in j.
Thus we test E[FPR(j)] for j = 1, · · · , k, where k is the smallest integer such that E[FPR(k)] > δ, and set j∗ = k− 1.


