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This work aims to reproduce simulations of merging current filaments (flux ropes) in a
MAST-like toroidal geometry. Parameters are taken from [Stanier 2013]: A.Stanier et al.
Phys. Plasmas 20, 122302 (2013); doi: 10.1063/1.4830104.

All source code, inputs files, and analysis scripts used here are publicly available at
https://github.com/boutproject/merging-filaments

Model

A 2D zero-f8 model in toroidal geometry. The vorticity w and electromagnetic potential A
are evolved with a constant density ny and temperature T, = T;. The magnetic field consists
of a constant “toroidal” field By, and a time-evolving “poloidal” field so that the total field
is:
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where ¢ = RA| is the poloidal flux, and A); is the toroidal component of the vector potential,
here approximated by the parallel component. The equations in SI units are:
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Where by = e, is the “toroidal” magnetic field unit vector, and b = B/ B, is the unit vector

along the total magnetic field, assuming the poloidal magnetic field is small compared to the

toroidal field. V; =V — bgbg - V is the component of the gradient in the poloidal plane.
The dissipation terms are the kinematic viscosity v (units m?/s) and resistivity n (units

Normalised equations

Normalising to a reference mass density pg gives an Alfvén timescale

TA = v/ HopPo (4)


https://github.com/boutproject/merging-filaments

where we take a reference magnetic field of 1m and length of 1m. Other quantities are
normalised as:
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where quantities with hats on are normalised, and without hats are in SI units. Taking a
2D domain, assuming no variation in the toroidal direction, the normalised equations solved
are:
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and all terms of the form Biobo x Vf - Vg are implemented as 2"¢-order Arakawa brackets.

Results

The same parameters as for the Cartesian geometry simulations are used, with the same
resolution of 640 x 1280. The differences are the toroidal field, which is By = 0.5/R [T}, and
the addition of a uniform vertical field By = —0.03 [T].
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Figure 1: Snapshots of the toroidal current density (colour) and poloidal flux ¢ (black lines)



