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This work aims to reproduce simulations of merging current filaments (flux ropes) in a
MAST-like Cartesian geometry. Parameters are taken from [Stanier 2013]: A.Stanier et al.
Phys. Plasmas 20, 122302 (2013); doi: 10.1063/1.4830104.

All source code, inputs files, and analysis scripts used here are publicly available at
https://github.com/boutproject/merging-filaments

Model

A 2D zero-β model in Cartesian geometry. The vorticity ω and electromagnetic potential A||
are evolved with a constant density n0 and temperature Te = Ti. The magnetic field consists
of a constant “toroidal” field B0, and a time-evolving “poloidal” field so that the total field
is:

B = B0eφ − eφ ×∇A|| (1)

so A|| is the poloidal flux. The equations in SI units are:

∂ω

∂t
+

1

B0

b0 ×∇φ · ∇ω = ∇ ·
(
bJ||

)
+ ν∇2

⊥ω (2a)

∂A||
∂t

= −b · ∇φ+ ηJ|| (2b)

ω = ∇ ·
(
ρ0
B2

0

∇⊥φ
)

(2c)

J|| = − 1

µ0

∇2
⊥A|| (2d)

Where b0 = eφ is the “toroidal” magnetic field unit vector, and b = B/B0 is the unit vector
along the total magnetic field, assuming the poloidal magnetic field is small compared to the
toroidal field. ∇⊥ = ∇− b0b0 · ∇ is the component of the gradient in the poloidal plane.

The dissipation terms are the kinematic viscosity ν (units m2/s) and resistivity η (units
Ωm).

Normalised equations

Normalising to a reference mass density ρ0 gives an Alfvén timescale

τA =
√
µ0ρ0 (3)
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where we take a reference magnetic field of 1m and length of 1m. Other quantities are
normalised as:

Ĵ|| = µ0J|| Â|| = A|| (4a)

ω̂ =
τA
ρ0
ω φ̂ = τAφ (4b)

ν̂ = τAν η̂ =
τA
µ0

η (4c)

where quantities with hats on are normalised, and without hats are in SI units. Taking a
2D domain, assuming no variation in the toroidal direction, the normalised equations solved
are:
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and all terms of the form 1
B0
b0 ×∇f · ∇g are implemented as 2nd-order Arakawa brackets.

Simulation inputs

Parameters

Taking the MAST-like plasma parameters from [Stanier 2013], the plasma temperature is
taken to be 10eV, and the number density n0 = 5 × 1018m−3. The plasma is assumed
to be pure Deuterium so Z = 1, A = 2. For these parameters the Coulomb logarithm is
ln Λ ' 11.6, and collision times are τe ' 1.9 × 10−7s and τi ' 1.6 × 10−5s. The Spitzer
parallel resistivity is therefore ηS,|| ' 1.9× 10−5Ωm. The Braginskii perpendicular kinematic
viscosity is ν⊥,ci ' 3.9× 10−3m2/s, and the gyro-viscosity is ν⊥,g ' 5m2/s.

The normalisation timescale here is τA = 0.145µs, a factor of 2 smaller than in [Stanier
2013], due to the choice of 1T here for normalisation rather than 0.5T. This gives Braginskii
normalised dissipation parameters of η̂ = 2.2 × 10−6 and ν̂⊥ = 5.6 × 10−10 (collisional) or
ν̂⊥ = 7.2× 10−7 (gyro-viscous).

The normalised values used in [Stanier 2013] are η = 10−5 and ν = 10−3, which due to
the factor of 2 difference in normalisation correspond to η̂ = 5× 10−6 and ν̂ = 5× 10−4.

Geometry, initial and boundary conditions

The Cartesian geometry is 1.8m wide (in x), and 4.4m high (in z). Two flux ropes start
in the middle of the radial domain (x = 0.9m), 0.6m above and below the midplane in z
(z = 2.8m and z = 1.6m). The current profile in each flux rope is

J|| (r) =

{
jm

(
1− (r/w)2

)2
if r ≤ w

0 if r > w
(6)
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1 RESULTS

Figure 1: Snapshots of the flux ropes at t = 7.54µs, 10.58µs and 17.98µs. The current density
J|| (toroidal current) is shown as the colour, whilst the contour lines are of the poloidal flux
A||.
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Figure 2: Reconnection rate at the centre of the domain, normalised as in [Stanier 2013]

where r is the radius from the centre of the flux rope, and w = 0.4m is the flux rope radius.
The initial maximum current density is jm = 0.8MA/m2, giving a total plasma current of
Ip = 2× (πjmw

2/3) = 268kA.
The boundary of the domain is assumed superconducting, so we set φ = 0 and A|| = 0.

1 Results

A uniform 640 × 1280 grid was used in x − z. This is uniform, so the grid spacing in the
vertical direction is 3.4mm. In [Stanier 2013] a non-uniform grid was used, with a resolution
of 0.23mm in the middle of the domain where the current sheet forms. Snapshots of the
current density and flux are shown in figure 1

For a more quantitative comparison with Figure 4 of [Stanier 2013], the reconnection rate
(toroidal electric field) at the centre of the domain is shown in figure 2. This is calculated
from ∂tA|| = −Eφ = −ηJ||. All quantities in figure 2 have been converted to use the same
normalisations as in [Stanier 2013] for direct comparison. The maximum reconnection rate
is found to be 769V/m at t = 7.97µs, compared to 800V/m at t = 7.99µs in [Stanier 2013].
This value is observed to increase with resolution, so for a 320 × 640 grid the values are
720V/m at t = 12.2µs; a 160× 320 grid results in 627V/m at 12.3µs.
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