In this document the ${MATAM_DIR}
is the location of your clone of MATAM.
Follow the procedure to install MATAM from the sources.
Then install some more packages:
(matam)$ conda install -y rpy2 jupyter pandas matplotlib ggplot imagemagick
The SILVA DB is needed:
(matam)$ index_default_ssu_rrna_db.py -d ${MATAM_DIR}/db --max_memory 10000
Install docker
WARNING: The coverage of the code by the tests is really low. Moreover the functional test based on quast has loose threshold. For exemple, the test will be a success when the error_rate < 0.15.
$ cd ${MATAM_DIR} && python -m pytest -rsx
MATAM is not deterministic, so we can observe little differences each time we run MATAM.
You can try to catch this diversity with the following scripts
$ cd ${EVAL_AND_RELEASE_DIR}/test_matam && bash -i run_matam_multiple_times_releases.sh . TAG
where TAG can be develop, master, v1.6.0 or even a commit number
It will create an output dir wit the name of TAG and put the 100 matam.log in this directory.
A script is available to be able to compared the results between different version of MATAM:
#go in the test_matam directory & run jupyter$ cd ${EVAL_AND_RELEASE_DIR}/test_matamjupyter notebook#if you use a remote server for jupyter & want to access from your locale machine:ssh -N -f -L localhost:8888:localhost:8888 login@ip
Then open your favorite navigator on localhost:8888
Update the "results_dir" variable of the first cell to suite your environment.
This dir looks like:
test_matam/├── 2019-08-28_11-09-42.pdf├── compare_matam_versions.ipynb├── run_matam_multiple_times_releases.sh├── db├── v0.9.7├── v0.9.8├── v1.0.0├── v1.1.0├── v1.2.0├── v1.2.1├── v1.3.0├── v1.4.0└── v1.5.3
Then, run all the cells and see the generated graphs.
Exemple:
This workflow extend the contribution workflow of Bioconda
git clone https://github.com/<USERNAME>/bioconda-recipes.gitcd bioconda-recipesgit remote add upstream https://github.com/bioconda/bioconda-recipes.git
./bootstrap.py /tmp/minicondasource ~/.config/bioconda/activate# optional lintingbioconda-utils lint --git-range master# build and testbioconda-utils build --docker --mulled-test --packages matam
anaconda loginanaconda upload /tmp/miniconda/miniconda/conda-bld/linux-64/matam-*.bz2 --user bonsai-team --label dev
Test the build on various OS (update variables to suit your env)
OPERATING_SYTEMS=#SIMPLE TESTS (basically only invoke the help of various commands)#ADVANCED TESTS (run pytest)
WARNING: checks out that the right matam package was used!
if you are happy with your new package, remove the conda package from anaconca and perform a pull request to Bioconca team.