Decision Tree for Bearing Fault Classification

Biswajit Sahoo

Most classification algorithms form a model (some sort of functional mapping) that maps input data to
output. But decision trees adopt a different strategy. Decision trees divide the input space into regions and
do classification based on majority vote in each region. Let’s consider an example that has a single predictor
and the target values are either 0, 1, or 2. Most of the times there is no clear separation of labels in terms
of predictor values. In that case, a predictor value is chosen that maximizes the information gain. If the
predictor varies between (0,100), first separation can be made anywhere between 1 to 99. So information
gain is computed for all possible separation points starting form 1 to 99. The first cut is made at a value for
which information gain is maximum.

Calculation of information gain is not direct. Rather, information gain depends on impurity function of each
group that appear after separation. There are several choices for impurity function. We will not go into the
details of it here. We will save that for a later time. For the time being interested readers can refer to this
excellent short paper or this excellent book.

We will show results of applying decision tree to condition monitoring data using R codes.

Description of data

Detailed discussion of how to prepare the data and its source can be found in this post. Here we will only
mention about different classes of the data. There are 12 classes and data for each class are taken at a load
of 1hp. The classes are:

o C1 : Ball defect (0.007 inch)

o C2: Ball defect (0.014 inch)

o C3: Ball defect (0.021 inch)

o C4 : Ball defect (0.028 inch)

o C5 : Inner race fault (0.007 inch
o C6 : Inner race fault (0.014 inch
o C7: Inner race fault (0.021 inch
o C8: Inner race fault (0.028 inch
e C9 : Normal

e C10 : Outer race fault (0.007 inch, data collected from 6 O’clock position)
o C11 : Outer race fault (0.014 inch, 6 O’clock)

e C12: Outer race fault (0.021 inch, 6 O’clock)

— — — —

Important Note: In the CWRU website, sampling frequency for the normal data is not mentioned. Most
research paper take it as 48k. Some authors also consider it as being taken at a sampling frequency of 12k.
Some other authors just use it without ever mentioning its sampling frequency. In our application we only
need segment of normal data of length 1024. So we will use the normal data segments available at the website
without going into the discussion of sampling frequency. Still, to be on the safer side, we will show results
including the normal data as a class as well as excluding it.

When we exclude normal data, we won’t consider “C9” class and study the rest 11 fault classes. At that
time “C09”, “C10”, and “C11” will correspond to outer race faults of fault depth 0.007, 0.014, and 0.021
inch respectively.

https://www.nature.com/articles/nmeth.4370
https://www.nature.com/articles/nmeth.4370
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/SVM_wavelet_energy_multiclass_cwru.pdf

Codes

library(reticulate)
use_condaenv("r-reticulate")

How to get data?

Readers can download the . csv file used in this notebook from here. Another convenient way is to download
the whole repository and run the downloaded notebooks.

data_wav_energy = read.csv(’./data/feature_wav_energy8_12k_1024_load_1.csv’,
header = T)
Change the above line to include your folder that contains data
set.seed (1)
index = c(sample(1:115,35),sample(116:230,35), sample(231:345,35),
sample (346:460,35) ,sample (461:575,35) ,sample(576:690,35),
sample (691:805,35) ,sample (806:920,35) ,sample(921:1035,35),
sample(1036:1150,35) ,sample(1151:1265,35) ,sample (1266:1380,35))

train_data = data_wav_energy[-index,]
test_data = data_wav_energy[index,]

Shuffle data
train_data = train_data[sample(nrow(train_data)),]
test_data = test_data[sample(nrow(test_data)),]

It should be noted that for some of the deterministic techniques, shuffling of data is not required. But some
other techniques like deep learning require the data to be shuffled for better training. So as a recipe we
always shuffle data whether the method is deterministic or not. This doesn’t hurt either for a deterministic
technique.

library(tree)

fit_tree = tree(fault~., train_data)

pred_tree =predict(fit_tree, test_data, type = "class")
Confusion matriz

test_confu = table(test_data$fault, pred_tree)

import seaborn as sns

import matplotlib.pyplot as plt

fault_type = [’C1’,’C2’,°C3’,’C4’,°C5’,°C6”,°C7’,°C8°,°C9”,°C10’,°C11’,°C12°]
plt.figure(1l,figsize=(18,8))

plt.subplot(121)

sns.heatmap(r.test_confu, annot = True,

xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x0000000017DAC688>

plt.title(’Test Confusion Matrix’)

plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.subplot (122)

sns.heatmap(r.test_confu/35, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x0000000027B80208>

https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/data/feature_wav_energy8_12k_1024_load_1.csv
https://codeload.github.com/biswajitsahoo1111/cbm_codes_open/legacy.zip/master
https://codeload.github.com/biswajitsahoo1111/cbm_codes_open/legacy.zip/master

plt.title(’Test Confusion Matrix (in %age)’)
plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.show()

Test Confusion Matrix Test Confusion Matrix (in %age)

1.0
i 0
-0 0057 0 0 0 0 ©0 0O O 0 0

0.8

c3
N w
® s
ca4 c3 c2 C1
' '

ca

cs
Cc5
'

0.6

True
c7 C6
True
c7 Cc6
' '

- 0.4

cs
°
8
o
o

c9
c9
'

-02

Ccl2 c11 Clo
Cl2 c11 co
' ' '

. ' ' - . . . ' ' ' ' -0.0
€l C2 €3 C4 C5 C6 C7 C8 C9 Cl0 Cl1 C12 €l C2 C3 C4 C5 C6 C7 C8 (€9 Cl0 Cl1 C12
Predicted Predicted

overall_test_accuracy = sum(diag(test_confu)) /420
sprintf ("Overall Test Accuracy: %.4f", overall_test_accuracy+*100)

[1] "Overall Test Accuracy: 97.8571"

We will also show the results excluding the normal data. The results are as below.

data_without_normal = read.csv("./data/feature_wav_energy8_12k_1024_load_1.csv",
header = T, nrows = 1265)

Change the above line to include your folder that contains data

set.seed(1)

index = c(sample(1:115,35),sample(116:230,35), sample(231:345,35),
sample (346:460,35) ,sample (461:575,35) ,sample(576:690,35),
sample(691:805,35) ,sample (806:920,35) ,sample(921:1035,35),
sample (1036:1150,35) ,sample(1151:1265,35))

train_new = data_without_normal [-index,]
test_new = data_without_normal [index,]

Shuffle data
train_data_new = train_new[sample(nrow(train_new)),]
test_data_new = test_new[sample(nrow(test_new)),]

fit_tree_new = tree(fault~., train_data_new)

pred_tree_new = predict(fit_tree_new, test_data_new, type = "class")
Confusion matric

test_confu_new = table(test_data_new$fault, pred_tree_new)

import seaborn as sns

import matplotlib.pyplot as plt

fault_type = [’C1’,°C2’,°C3’,°C4’,°C5,°C6°,°CT7’,°C8°,°C9°,°C10’,°C11°]
plt.figure(1,figsize=(18,8))

plt.subplot(121)
sns.heatmap(r.test_confu_new, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x00000000296B4C48>

plt.title(’Test Confusion Matrix’)

plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.subplot(122)

sns.heatmap(r.test_confu_new/35, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x000000002970C4C8>

plt.title(’Test Confusion Matrix (in %age)’)
plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.show()

Test Confusion Matrix Test Confusion Matrix (in %age)

1.0
s} 2 0 0 0 0 0 0 0 0 0 c 0.057 0 0 0 0 0 0 0 0 0
- -0 0.029 0 0 0 0 0 0 0 0

0.8

a3
e
g
- p
=
S
o
o
o
o
o
o
w
,
c 2
o
o

0 0.6

True
S
° °
° °
° °
° °
]
=]
° °
° °
° °
° °
° °
3
True
[
° °
° °

0 0.4

ce c7
i
i
.
.
.
.
o
\
ok
i
i
]
cs C7
e
-

c9
O
Q
Q
D
o
D
D
o
o
:
:
5
c9
o
o

-02

c10
C10
'

-0 0 0 0 0029 0 0 017 o0 0

c11
c11

€l €2 € ¢4 ¢ ¢C6 C7 €8 (C9 C10 C11 €6 C2 € 4 ¢ 6 C7 €8 C9 Cl0 C11
Predicted Predicted

overall_test_accuracy_new = sum(diag(test_confu_new))/385
sprintf ("New overall Test Accuracy: %.4f", overall_test_accuracy_new*100)

[1] "New overall Test Accuracy: 97.4026"

In Python, it is possible to obtain 100% accuracy using this dataset. The notebook can be found at this
link.

To see results of other techniques applied to public condition monitoring datasets, visit this page.

sessionInfo()

R version 3.6.2 (2019-12-12)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1
##

Matrix products: default

##

locale:

https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/decision_tree_12k_python.ipynb
https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/decision_tree_12k_python.ipynb
https://biswajitsahoo1111.github.io/project/personal-project/

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[56] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods Dbase

other attached packages:
[1] tree_1.0-40 reticulate_1.14

loaded via a namespace (and not attached):

[1] Recpp_1.0.3 digest_0.6.23 rappdirs_0.3.1 jsonlite_1.6.1
[56] magrittr_1.5 evaluate_0.14 rlang 0.4.4 stringi_1.4.5
[9] rmarkdown_2.1 tools_3.6.2 stringr_1.4.0 xfun_0.12
[13] yaml_2.2.0 compiler_3.6.2 htmltools_0.4.0 knitr_1.27

Last updated: 15" February, 2020

	Description of data
	Codes
	How to get data?

