Multiclass classification using SVM on time domain features

Biswajit Sahoo

In this post, we will use Case Western Reserve University Bearnig dataset for our multiclass classification
problem.

Description of dataset

A bearing has four major parts: inner race, outer race, rolling element and cage. Fault can occur in any of
these components. The CWRU data set contains bearing data consisting of inner race fault, outer race fault
and ball defect. A baseline (normal) bearing data with no faults is also available. Some data are collected at
a sampling frequency of 12 kHz and some other are collected at 48 kHz. In this study, we will only consider
data acquired at 48 kHz sampling frequency. The faults have varying fault depths (0.007 inch, 0.014 inch,
0.021 inch). There is also load variation in motor (No load, 1 hp, 2 hp, 3hp). For this study, we will consider
all the data with 1 hp external load.

There are 10 classes for this external load (1 hp). The classes are:

o C1: Ball defect (0.007 inch)

o C2: Ball defect (0.014 inch)

o C3: Ball defect (0.021 inch)

o C4 : Inner race fault (0.007 inch)

o C5 : Inner race fault (0.014 inch)

e C6 : Inner race fault (0.021 inch)

o C7: Normal

o C8: Outer race fault (0.007 inch, data collected from 6 O’clock position)
o C9 : Outer race fault (0.014 inch, 6 O’clock)

o C10 : Outer race fault (0.021 inch, 6 O’clock)

Solution Approach

Our task is to classify these 10 types of fault given time data. There are many approaches to solve this. We
will take one known as ‘Shallow Approach’ In the age of deep learning these methods are shallow for several
reasons. These methods require hand crafted features to be designed and fed into the learning algorithm.
Another name for shallow approach is feature based approach. We will use support vector machine (SVM)
to do the classification. We will apply other techniques including deep learning techniques in later posts.

We have used time domain features as input to SVM. First data for each fault type are collected and
segmented into smaller parts. In our case, one segment for each fault type contains 2048 data points. Then
time domain features for each segment are calculated and assembled in a feature matrix. There are 230
segments for each fault and we have taken 9 time domain features. The time domain features are maximum,
minimum, mean value, standard deviation, root mean square value (RMS), skewness, kurtosis, crest factor,
and form factor. Thus our feature matrix is of size (2300 x 9). One column containing fault type is also
added to the feature matrix. Thus final feature matrix is of size (2300 x 10).

Before applying SVM, the data are first separated into a training set and a test set. The test set contains
75 rows of fault matrix chosen for each fault type. Thus its size is (750 x 10). The rest are taken as training

https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website

set.

SVM is applied to training set data and best parameters are chosen by cross validation. The best parameters
are then applied to test set data to predict final classification result. We will use R to implement SVM. We
will use Python to plot the confusion matrix.

library(reticulate)
use_condaenv("r-reticulate")

How to get data?

Readers can download the .csv file used in this notebook from here. Another convenient way is to download
the whole repository and run the downloaded notebooks.

library(e1071)
data_time = read.csv(’./data/feature_time_48k_2048 load_1.csv’, header = T)
Change the above line to include your folder that contains data
set.seed(123)
index = c(sample(1:230,75),sample(231:460,75), sample(461:690,75),
sample (691:920,75) ,sample (921:1150,75) ,sample(1151:1380,75),
sample (1381:1610,75) ,sample(1611:1840,75) ,sample(1841:2070,75),
sample (2071:2300,75))

train_data = data_time[-index,]
test_data = data_time[index,]

Shuffle data
train_data = train_data[sample(nrow(train_data)),]
test_data = test_data[sample(nrow(test_data)),]

We apply cross-validation over a different set of parameters to obtain best set of parameters. This cross-
validation is done by the ‘tune’ command and the parameters considered are the cost and gamma values
as mentioned in the codes. Radial basis is used. The command ‘svim_ tune$best.model’ is the best model
obtained from cross validation. This model is used in later lines.

set.seed(11)
svm_tune = tune(svm,train_datal[,-dim(train_data) [2]],
train_datal[,dim(train_data) [2]] ,kernel = ’radial’,
ranges = list(cost = c¢(1,10,50,100,200,300),
gamma = ¢(0.05,0.1,0.5,1,5)))
pred_train = predict(svm_tune$best.model,train_datal,-dim(train_data) [2]])
pred_test = predict(svm_tune$best.model,test_datal,-dim(train_data) [2]])
Confusion matric
train_confu = table(train_datal[,dim(train_data) [2]],pred_train)
test_confu = table(test_datal,dim(train_data) [2]],pred_test)

Finally, we will use python’s seaborn package to visualize confusion matrix for both training and test data.
RStudio makes it convenient to run both R and Python scripts simultaneously. RStudio is great!

import seaborn as sns

import matplotlib.pyplot as plt

fault_type = [’C1’,’C2’,°C3’,°C4’,°C5°,°C6°,°C7°,°C8°,°C9’,°C10°]
plt.figure(1,figsize=(18,8))

plt.subplot(121)

sns.heatmap(r.train_confu, annot= True, cmap = "Blues",fmt = "d",
xticklabels=fault_type, yticklabels=fault_type)

https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/data/feature_time_48k_2048_load_1.csv
https://codeload.github.com/biswajitsahoo1111/cbm_codes_open/legacy.zip/master
https://codeload.github.com/biswajitsahoo1111/cbm_codes_open/legacy.zip/master
https://www.rstudio.com/

<matplotlib.axes._subplots.AxesSubplot object at 0x000000001A9D2688>

plt.title(’Training Confusion Matrix’)
plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.subplot(122)

sns.heatmap(r.train_confu/155, annot= True, cmap = "Blues",
xticklabels=fault_type, yticklabels=fault_type)

<matplotlib.axes._subplots.AxesSubplot object at 0x000000002BFB83C8>

plt.title(’Training Confusion Matrix(in %age)’)
plt.xlabel (’Predicted’)

plt.ylabel(’True’)

plt.subplot (122)

plt.show()

Training Confusion Matrix Training Confusion Matrix(in %age)

150 0 0013 0 0 0 0 0 0032 0

c1
c1

0 0 0 0 0 0026 0

c2
c2

120

- 3 2 pEL] 0 0 3 0 0 8 0 il 0.019 0.013 0 0 0019 0 0 0052 0

c3

ca
ca

-90

cs
cs

True
c6

True
Cc6

c7
c7

cs

cs
D
:
:
:
:
:
o
-]
.
o

- 6 4 4 0 0 [0 0 0 @ -0.039 0026 0.026 0 0 0 0 o KK o

c9

c1o
C10

c1 Cc2 € ¢4 ¢ 6 C7 €8 C9 Clo c6 Cc2 € €4 C5 6 C7 €8 C9 Cl0
Predicted Predicted

plt.figure(2,figsize=(18,8))

plt.subplot(121)

sns.heatmap(r.test_confu, annot = True, cmap = "Blues",
xticklabels=fault_type, yticklabels=fault_type)

<matplotlib.axes._subplots.AxesSubplot object at 0x000000002C862F48>

plt.title(’Test Confusion Matrix’)

plt.xlabel (’Predicted’)

plt.ylabel(’True’)

plt.subplot(122)

sns.heatmap(r.test_confu/75, annot = True, cmap = "Blues",
xticklabels=fault_type, yticklabels=fault_type)

<matplotlib.axes._subplots.AxesSubplot object at 0x000000002C743308>

plt.title(’Test Confusion Matrix(in %age)’)
plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.show()

r 1.0

0.8

-0.6

-0.4

-0.2

Test Confusion Matrix Test Confusion Matrix(in %age) 10

0 0 0027 0

0 0 0.04 0.013
0.8
0 0 0.04 0.013

¢ c4a c3
.
5 E
=
g

0.6

True
True

c6

- 0.4

~-
3]

c7

-2 2 2 0 0 [0 0 0 @-0.027 0027 0.027 0 0 0 0 [0.92 Y

c9

-0 0 0013 0013 © 0 0 0 0 0.97

c1o
c10

. - . . . ' . . . ' ' -0.0
Cc1 c2 c3 ca c5 c6 c7 c8 9 c1o C1 c2 c3 ca C5 Cc6 c7 c8 c9 Cl0
Predicted Predicted

overall_test_accuracy = sum(diag(test_confu))/750
sprintf ("Overall Test Accuracy: %.4f", overall_test_accuracy+*100)

[1] "Overall Test Accuracy: 97.3333"

The overall test accuracy is 97.3% which is pretty satisfactory considering the fact that we are only taking
time domain features. We will show in the next post that accuracy improves even further when wavelet
features are used. Check this page for other methods.

sessionInfo()

R version 3.6.2 (2019-12-12)

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
##

Matrix products: default

##

locale:

[1] LC_COLLATE=English United States.1252
[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

##

attached base packages:

[1] stats graphics grDevices utils datasets methods Dbase
##

other attached packages:

[1] e1071_1.7-2 reticulate_1.14

##

loaded via a namespace (and not attached):

[1] Rcpp_1.0.3 class_7.3-15 digest_0.6.23 rappdirs_0.3.1
[5] jsonlite_1.6.1 magrittr_1.5 evaluate_0.14 rlang 0.4.4

[9] stringi_1.4.5 rmarkdown_2.1 tools_3.6.2 stringr_1.4.0
[13] xfun_0.12 yaml_2.2.0 compiler_3.6.2 htmltools_0.4.0

[17] knitr_1.27
Last modified: 14" February, 2020

https://biswajitsahoo1111.github.io/cbm_codes_open/

	Description of dataset
	Solution Approach
	How to get data?

