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Most classification algorithms form a model (some sort of functional mapping) that maps input data to
output. But decision trees adopt a different strategy. Decision trees divide the input space into regions and
do classification based on majority vote in each region. Let’s consider an example that has a single predictor
and the target values are either 0, 1, or 2. Most of the times there is no clear separation of labels in terms
of predictor values. In that case, a predictor value is chosen that maximizes the information gain. If the
predictor varies between (0,100), first separation can be made anywhere between 1 to 99. So information
gain is computed for all possible separation points starting form 1 to 99. The first cut is made at a value for
which information gain is maximum.

Calculation of information gain is not direct. Rather, information gain depends on impurity function of each
group that appear after separation. There are several choices for impurity function. We will not go into the
details of it here. We will save that for a later time. For the time being interested readers can refer to this
excellent short paper or this excellent book.

We will show results of applying decision tree to condition monitoring data using R codes.

Description of data

Detailed discussion of how to prepare the data and its source can be found in this post. Here we will only
mention about different classes of the data. There are 10 classes and data for each class are taken at a load
of 1hp. The classes are:

• C1 : Ball defect (0.007 inch)
• C2 : Ball defect (0.014 inch)
• C3 : Ball defect (0.021 inch)
• C4 : Inner race fault (0.007 inch)
• C5 : Inner race fault (0.014 inch)
• C6 : Inner race fault (0.021 inch)
• C7 : Normal
• C8 : Outer race fault (0.007 inch, data collected from 6 O’clock position)
• C9 : Outer race fault (0.014 inch, 6 O’clock)
• C10 : Outer race fault (0.021 inch, 6 O’clock)

Codes

library(reticulate)
use_condaenv("r-reticulate")

How to get data?

Readers can download the .csv file used in this notebook from here. Another convenient way is to download
the whole repository and run the downloaded notebooks.
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library(tree)
data_wav_energy = read.csv(’./data/feature_wav_energy8_48k_2048_load_1.csv’,

header = T)
# Change the above line to include your folder that contains data
set.seed(3243)
index = c(sample(1:230,75),sample(231:460,75), sample(461:690,75),

sample(691:920,75),sample(921:1150,75),sample(1151:1380,75),
sample(1381:1610,75),sample(1611:1840,75),sample(1841:2070,75),
sample(2071:2300,75))

train_data = data_wav_energy[-index,]
test_data = data_wav_energy[index,]

# Shuffle data
train_data = train_data[sample(nrow(train_data)),]
test_data = test_data[sample(nrow(test_data)),]

It should be noted that for some of the deterministic techniques, shuffling of data is not required. But some
other techniques like deep learning require the data to be shuffled for better training. So as a recipe we
always shuffle data whether the method is deterministic or not. This doesn’t hurt either for a deterministic
technique.
fit_tree = tree(fault~., train_data)
pred_tree =predict(fit_tree, test_data, type = "class")
# Confusion matrix
test_confu = table(test_data$fault, pred_tree)

import seaborn as sns
import matplotlib.pyplot as plt
fault_type = [’C1’,’C2’,’C3’,’C4’,’C5’,’C6’,’C7’,’C8’,’C9’,’C10’,’C11’,’C12’]
plt.figure(1,figsize=(18,8))
plt.subplot(121)
sns.heatmap(r.test_confu, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

## <matplotlib.axes._subplots.AxesSubplot object at 0x000000001B8BCD08>

plt.title(’Test Confusion Matrix’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)
plt.subplot(122)
sns.heatmap(r.test_confu/75, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

## <matplotlib.axes._subplots.AxesSubplot object at 0x0000000027BAC4C8>

plt.title(’Test Confusion Matrix (in %age)’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)
plt.show()

2
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74 0 0 0 0 0 0 0 1 0

3 66 4 0 0 0 0 0 2 0

0 1 71 0 0 1 0 0 1 1

0 0 0 75 0 0 0 0 0 0

0 0 0 0 75 0 0 0 0 0

0 0 0 0 0 61 0 0 0 14

0 0 0 0 0 0 75 0 0 0

0 0 0 0 0 0 0 75 0 0

33 6 0 0 0 0 0 0 36 0

0 2 0 0 0 0 0 0 0 73
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0.99 0 0 0 0 0 0 0 0.013 0

0.04 0.88 0.053 0 0 0 0 0 0.027 0

0 0.013 0.95 0 0 0.013 0 0 0.013 0.013

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0.81 0 0 0 0.19

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0.44 0.08 0 0 0 0 0 0 0.48 0

0 0.027 0 0 0 0 0 0 0 0.97
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overall_test_accuracy = sum(diag(test_confu))/750
sprintf("Overall Test Accuracy: %.4f", overall_test_accuracy*100)

## [1] "Overall Test Accuracy: 90.8000"

Usually, the default tree grown by the algorithm contains many nodes and generalizes poorly. One strategy
to overcome this is to prune the tree at certain number of nodes. The optimal cut size can be obtained from
cross validation.
set.seed(101)
tree_fit_cv = cv.tree(fit_tree, FUN = prune.misclass)
plot(tree_fit_cv)
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As the lowest misclassification accuracy is obtained when the tree is completely grown, we don’t prune the
tree.

In Python, we can get an accuracy of 94.53% on this dataset. The notebook can be found at this link.

To see results of other techniques applied to public condition monitoring datasets, visit this page.
sessionInfo()

## R version 3.6.2 (2019-12-12)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] tree_1.0-40 reticulate_1.14
##
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## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.3 digest_0.6.23 rappdirs_0.3.1 jsonlite_1.6.1
## [5] magrittr_1.5 evaluate_0.14 rlang_0.4.4 stringi_1.4.5
## [9] rmarkdown_2.1 tools_3.6.2 stringr_1.4.0 xfun_0.12
## [13] yaml_2.2.0 compiler_3.6.2 htmltools_0.4.0 knitr_1.27
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