
Boosting for Bearing Fault Classification

Biswajit Sahoo

Boosting is slow learning procedure. In boosting, a tree is not allowed to grow fully. Rather, the depth is
fixed to a small number. In some cases, a tree is build with only one branch and two nodes. But subsequent
trees are built on top of it. Further, contributions from subsequent trees are also shrinked and added to
previously built tree. Though an individual tree might preform badly for the classification, combination of
many trees perform surprisingly well. For more details regarding the algorithm, readers can refer to this
excellent book.

In this post we will apply boosting to classify multiclass bearing fault.

Description of data

Detailed discussion of how to prepare the data and its source can be found in this post. Here we will only
mention about different classes of the data. There are 12 classes and data for each class are taken at a load
of 1hp. The classes are:

• C1 : Ball defect (0.007 inch)
• C2 : Ball defect (0.014 inch)
• C3 : Ball defect (0.021 inch)
• C4 : Ball defect (0.028 inch)
• C5 : Inner race fault (0.007 inch)
• C6 : Inner race fault (0.014 inch)
• C7 : Inner race fault (0.021 inch)
• C8 : Inner race fault (0.028 inch)
• C9 : Normal
• C10 : Outer race fault (0.007 inch, data collected from 6 O’clock position)
• C11 : Outer race fault (0.014 inch, 6 O’clock)
• C12 : Outer race fault (0.021 inch, 6 O’clock)

Important Note: In the CWRU website, sampling frequency for the normal data is not mentioned. Most
research paper take it as 48k. Some authors also consider it as being taken at a sampling frequency of 12k.
Some other authors just use it without ever mentioning its sampling frequency. In our application we only
need segment of normal data of length 1024. So we will use the normal data segments available at the website
without going into the discussion of sampling frequency. Still, to be on the safer side, we will show results
including the normal data as a class as well as excluding it.

When we exclude normal data, we won’t consider “C9” class and study the rest 11 fault classes. At that
time “C09”, “C10”, and “C11” will correspond to outer race faults of fault depth 0.007, 0.014, and 0.021
inch respectively.

Codes

library(reticulate)
use_condaenv("r-reticulate")
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How to get data?

Readers can download the .csv file used in this notebook from here. Another convenient way is to download
the whole repository and run the downloaded notebooks.
data_wav_energy = read.csv(’./data/feature_wav_energy8_12k_1024_load_1.csv’,

header = T)
# Change the above line to include your folder that contains data
set.seed(123)
index = c(sample(1:115,35),sample(116:230,35), sample(231:345,35),

sample(346:460,35),sample(461:575,35),sample(576:690,35),
sample(691:805,35),sample(806:920,35),sample(921:1035,35),
sample(1036:1150,35),sample(1151:1265,35),sample(1266:1380,35))

train_data = data_wav_energy[-index,]
test_data = data_wav_energy[index,]

# Shuffle data
train_data = train_data[sample(nrow(train_data)),]
test_data = test_data[sample(nrow(test_data)),]

It should be noted that for some of the deterministic techniques, shuffling of data is not required. But some
other techniques like deep learning require the data to be shuffled for better training. So as a recipe we
always shuffle data whether the method is deterministic or not. This doesn’t hurt either for a deterministic
technique.

We will perform gradient boosting using ‘gbm’ package.
library(gbm)

## Loaded gbm 2.1.5

boosting_fit = gbm(fault~., train_data, distribution = "multinomial",
interaction.depth = 2, n.trees = 200)

pred_boosting = predict(boosting_fit, test_data,n.trees = 200,
type = "response")

dim(pred_boosting)

## [1] 420 12 1

Note that boosting prediction is in terms of a matrix. The rows correspond to data points and columns
correspond to fault classes. Each row of this matrix gives the probability of the observation being in the class
corresponding to the column. The data point is classified to a category for which it has highest probability
of occurrence. This can be done by the following code
prediction = colnames(pred_boosting)[apply(pred_boosting, 1, which.max)]
# Confusion matrix
test_confu = table(test_data$fault, prediction)

import seaborn as sns
import matplotlib.pyplot as plt
fault_type = [’C1’,’C2’,’C3’,’C4’,’C5’,’C6’,’C7’,’C8’,’C9’,’C10’,’C11’,’C12’]
plt.figure(1,figsize=(18,8))
plt.subplot(121)
sns.heatmap(r.test_confu, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

## <matplotlib.axes._subplots.AxesSubplot object at 0x000000001EB05C48>
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plt.title(’Test Confusion Matrix’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)
plt.subplot(122)
sns.heatmap(r.test_confu/35, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

## <matplotlib.axes._subplots.AxesSubplot object at 0x000000002F610208>

plt.title(’Test Confusion Matrix (in %age)’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)
plt.show()
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overall_test_accuracy = sum(diag(test_confu))/420
sprintf("Overall Test Accuracy: %.4f", overall_test_accuracy*100)

## [1] "Overall Test Accuracy: 100.0000"

We will also show the results excluding the normal data. The results are as below.
data_without_normal = read.csv("./data/feature_wav_energy8_12k_1024_load_1.csv",

header = T, nrows = 1265)
# Change the above line to include your folder that contains data
set.seed(123)
index = c(sample(1:115,35),sample(116:230,35), sample(231:345,35),

sample(346:460,35),sample(461:575,35),sample(576:690,35),
sample(691:805,35),sample(806:920,35),sample(921:1035,35),
sample(1036:1150,35),sample(1151:1265,35))

train_new = data_without_normal[-index,]
test_new = data_without_normal[index,]

# Shuffle data
train_data_new = train_new[sample(nrow(train_new)),]
test_data_new = test_new[sample(nrow(test_new)),]
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boosting_fit_new = gbm(fault~., train_data_new, distribution = "multinomial", interaction.depth = 2, n.trees = 100)
pred_boosting_new = predict(boosting_fit_new, test_data_new,n.trees = 100,

type = "response")
prediction_new = colnames(pred_boosting_new)[apply(pred_boosting_new, 1, which.max)]
# Confusion matrix
test_confu_new = table(test_data_new$fault, prediction_new)

import seaborn as sns
import matplotlib.pyplot as plt
fault_type = [’C1’,’C2’,’C3’,’C4’,’C5’,’C6’,’C7’,’C8’,’C9’,’C10’,’C11’]
plt.figure(1,figsize=(18,8))
plt.subplot(121)
sns.heatmap(r.test_confu_new, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

## <matplotlib.axes._subplots.AxesSubplot object at 0x0000000031245E08>

plt.title(’Test Confusion Matrix’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)
plt.subplot(122)
sns.heatmap(r.test_confu_new/35, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

## <matplotlib.axes._subplots.AxesSubplot object at 0x00000000310B75C8>

plt.title(’Test Confusion Matrix (in %age)’)
plt.xlabel(’Predicted’)
plt.ylabel(’True’)
plt.show()
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overall_test_accuracy_new = sum(diag(test_confu_new))/385
sprintf("New overall Test Accuracy: %.4f", overall_test_accuracy_new*100)

## [1] "New overall Test Accuracy: 100.0000"

There are several hyper-parameters in this model, number of trees, interaction depth, and shrinkage. Optimal
values for each of these parameters can be obtained by cross validation. In this post, we have chosen some
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of the commonly used values. Other values can also be tried.

To see results of other techniques applied to public condition monitoring datasets, visit this page.
sessionInfo()

## R version 3.6.2 (2019-12-12)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] gbm_2.1.5 reticulate_1.14
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.3 lattice_0.20-38 digest_0.6.23 rappdirs_0.3.1
## [5] grid_3.6.2 gtable_0.3.0 jsonlite_1.6.1 magrittr_1.5
## [9] evaluate_0.14 rlang_0.4.4 stringi_1.4.5 Matrix_1.2-18
## [13] rmarkdown_2.1 splines_3.6.2 tools_3.6.2 stringr_1.4.0
## [17] survival_3.1-8 xfun_0.12 yaml_2.2.0 compiler_3.6.2
## [21] htmltools_0.4.0 knitr_1.27 gridExtra_2.3

Last updated: 15th February, 2020
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