Random Forest for Bearing Fault Classification

Biswajit Sahoo

As we have mentioned in a previous post, random forest is very similar to bagging. As in bagging, many
different trees are also grown on bootstrap samples in random forest. The difference between the two methods
is the number of variable considered while doing a split in the tree. In bagging, to make a split, all predictor
variables are considered and the best one is selected with a suitable value. But in random forest only a
random sample of few variables are chosen for each split. If training data have p features, usually ,/p feature
are chosen at random at each split and out of those best one is selected. This helps in reducing correlation
between trees. Due to this, usually random forest produces better results than bagging.

In this post, we will use random forest to classify different bearing faults. The dataset has 8 variables
corresponding to wavelet energy value in each packet. In random forest we will use 4 random features at the
time of split.

Description of data

Detailed discussion of how to prepare the data and its source can be found in this post. Here we will only
mention about different classes of the data. There are 12 classes and data for each class are taken at a load
of 1hp. The classes are:

o C1 : Ball defect (0.007 inch
o C2: Ball defect (0.014 inch
o C3: Ball defect (0.021 inch
o C4 : Ball defect (0.028 inch
e C5 : Inner race fault (0.007 inch
o C6 : Inner race fault (0.014 inch
o C7 : Inner race fault (0.021 inch
o C8: Inner race fault (0.028 inch
e C9: Normal

o C10 : Outer race fault (0.007 inch, data collected from 6 O’clock position)
o C11 : Outer race fault (0.014 inch, 6 O’clock)

o C12: Outer race fault (0.021 inch, 6 O’clock)

NEANEANE AN

NESANE AN AN

Important Note: In the CWRU website, sampling frequency for the normal data is not mentioned. Most
research paper take it as 48k. Some authors also consider it as being taken at a sampling frequency of 12k.
Some other authors just use it without ever mentioning its sampling frequency. In our application we only
need segment of normal data of length 1024. So we will use the normal data segments available at the website
without going into the discussion of sampling frequency. Still, to be on the safer side, we will show results
including the normal data as a class as well as excluding it.

When we exclude normal data, we won’t consider “C9” class and study the rest 11 fault classes. At that
time “C09”, “C10”, and “C11” will correspond to outer race faults of fault depth 0.007, 0.014, and 0.021
inch respectively.

https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/SVM_wavelet_energy_multiclass_cwru.pdf

Codes

library(reticulate)
use_condaenv("r-reticulate")

How to get data?

Readers can download the . csv file used in this notebook from here. Another convenient way is to download
the whole repository and run the downloaded notebooks.

data_wav_energy = read.csv(’./data/feature_wav_energy8_12k_1024_load_1.csv’,
header = T)
Change the above line to include your folder that contains data
set.seed(132)
index = c(sample(1:115,35),sample(116:230,35), sample(231:345,35),
sample (346:460,35) ,sample (461:575,35) ,sample(576:690,35),
sample (691:805,35) ,sample (806:920,35) ,sample(921:1035,35),
sample(1036:1150,35) ,sample(1151:1265,35) ,sample (1266:1380,35))

train_data = data_wav_energy[-index,]
test_data = data_wav_energy[index,]

Shuffle data
train_data = train_data[sample(nrow(train_data)),]
test_data = test_data[sample(nrow(test_data)),]

It should be noted that for some of the deterministic techniques, shuffling of data is not required. But some
other techniques like deep learning require the data to be shuffled for better training. So as a recipe we
always shuffle data whether the method is deterministic or not. This doesn’t hurt either for a deterministic
technique.

Results of random forest might vary for different iterations. As we have set the seed previously, we won’t
set another seed.

library(randomForest)

randomForest 4.6-14

Type rfNews() to see new features/changes/bug fixes.

forest_fit = randomForest(fault~., train_data, mtry = 4)
pred_forest = predict(forest_fit, test_data)

Confusion matric

test_confu = table(test_data$fault, pred_forest)

import seaborn as sns

import matplotlib.pyplot as plt

fault_type = [’C1’,°C2’,°C3’,°C4’,°C5°,°C6°,°C7’,°C8°,°C9’,°C10°,°C11’,°C12°]
plt.figure(l,figsize=(18,8))

plt.subplot(121)

sns.heatmap(r.test_confu, annot = True,

xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0xO00000001A7A7EO08>

https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/data/feature_wav_energy8_12k_1024_load_1.csv
https://codeload.github.com/biswajitsahoo1111/cbm_codes_open/legacy.zip/master
https://codeload.github.com/biswajitsahoo1111/cbm_codes_open/legacy.zip/master

plt.title(’Test Confusion Matrix’)

plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.subplot(122)

sns.heatmap(r.test_confu/35, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x0000000028710348>

plt.title(’Test Confusion Matrix (in Y%age)’)
plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.show()

Test Confusion Matrix Test Confusion Matrix (in %age)

o o 0 0 0 0 0 o0 0o 0o 0 o0 ©0 0 0

o
°
w
8
e a
; |
°
°
o o
°
°
°
°
°
°
°
o o
o o
5

0.8

c3

ca
'

cs
C5
'

0.6

True
c6
True
c6
'

c7
c7
'

- 0.4

8
o
o
o
o
o
o
cs8
'
o
o

c9
c9
'

-0.2

c12 c11 c1o
€12 c11 cwo
' ' '

| | | | | | | | | ' ' - | | | | | | | . . ' ' -0.0
€l €2 €3 4 C5 C6 C7 €8 C9 Cl0 Cl1 Cl12 €1 C2 €3 Cc4 C5 C6 C7 C8 C9 Cl0 Ci1 C12
Predicted Predicted

overall_test_accuracy = sum(diag(test_confu)) /420
sprintf ("Overall Test Accuracy: %.4f", overall_test_accuracy*100)

[1] "Overall Test Accuracy: 100.0000"

In the above code, we have fixed the number of variables chosen at the time of split to be 4. But a different
number of variables other than 4 can also be selected. In the code below we will fit random forest models
by choosing variables starting from 1 to 8. Classification accuracy of each of those models is also calculated.

accuracy = double(8)
for (i in 1:8){
temp_mod = randomForest(fault~., train_data, mtry = i)
temp_pred = predict(temp_mod, test_data)
accuracy[i] = sum(diag(table(temp_pred, test_data$fault)))/420
}

accuracy

[1] 1.000000 1.000000 1.000000 1.000000 0.997619 0.997619 0.997619 1.000000

We will also show the results excluding the normal data. The results are as below.

data_without_normal = read.csv("./data/feature_wav_energy8_12k_1024_load_1.csv",
header = T, nrows = 1265)

Change the above line to include your folder that contains data

set.seed(892)

index = c(sample(1:115,35),sample(116:230,35), sample(231:345,35),
sample (346:460,35) ,sample (461:575,35) ,sample(576:690,35),
sample(691:805,35) ,sample(806:920,35) ,sample(921:1035,35),
sample(1036:1150,35) ,sample(1151:1265,35))

train_new = data_without_normal [-index,]
test_new = data_without_normal [index,]

Shuffle data
train_data_new = train_new[sample(nrow(train_new)),]
test_data_new = test_new[sample(nrow(test_new)),]

forest_fit_new = randomForest(fault~., train_data_new, mtry = 4)
pred_forest_new = predict(forest_fit_new, test_data_new)

Confuston matriz

test_confu_new = table(test_data_new$fault, pred_forest_new)

import seaborn as sns

import matplotlib.pyplot as plt

fault_type = [’C1’,°C2’,°C3’,’C4’,°C5’,°C6°,°C7?,°C8°,°C9°,°C10’,°C11°]
plt.figure(1l,figsize=(18,8))

plt.subplot(121)

sns.heatmap(r.test_confu_new, annot = True,

xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x0000000029732388>

plt.title(’Test Confusion Matrix’)

plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.subplot (122)

sns.heatmap(r.test_confu_new/35, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")

<matplotlib.axes._subplots.AxesSubplot object at 0x00000000295B90C8>

plt.title(’Test Confusion Matrix (in %age)’)
plt.xlabel(’Predicted’)

plt.ylabel(’True’)

plt.show()

Test Confusion Matrix Test Confusion Matrix (in %age) 10

0 0 0 0 0 0 0 0 0

0.8

c2 c1
o
o
o o
o o
o o
o
o
o
o
o
o
w
s

c3
o
a
o
w
:
D
D
D
D
D
D
D

0 0 0 0.6

True
[S]
° o
° o
° o
° o

[

L |8
° o
° o
° o
° o
° o

&

True

o o0 © 0.4

cs c7
o o
o° °
o o
o o
° o
o o
o
o
o o
o °
o °
-
Iy

c9
:
.
.
.
.
.
.
.
%]
.
:
.
c9
:
.
.
.
.
.
.
.
(-]
:
.

-02

c10
o
°
o
o
o
o
°
o
°
°

L

Cc10
o
o
o
o
o
o
o
o
°

- |
o

c11
c11
|

. ' - . . . ' ' -0.0
€l €2 €3 ¢4 ¢ C6 C7 €8 (C9 C10 C11 €L C2 €3 4 ¢ 6 C7 €8 (€9 Cl0 C11
Predicted Predicted

overall_test_accuracy_new = sum(diag(test_confu_new))/385
sprintf ("New overall Test Accuracy: %.4f", overall_test_accuracy_new*100)

[1] "New overall Test Accuracy: 100.0000"

To see results of other techniques applied to public condition monitoring datasets, visit this page.

sessionInfo()

R version 3.6.2 (2019-12-12)

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
##

Matrix products: default

##

locale:

[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

##

attached base packages:

[1] stats graphics grDevices utils datasets methods Dbase
##

other attached packages:
[1] randomForest_4.6-14 reticulate_1.14

##

loaded via a namespace (and not attached):

[1] Rcpp_1.0.3 digest_0.6.23 rappdirs_0.3.1 jsonlite_1.6.1
[5] magrittr_1.5 evaluate_0.14 rlang 0.4.4 stringi_1.4.5
[9] rmarkdown_2.1 tools_3.6.2 stringr_1.4.0 xfun_0.12

[13] yaml_2.2.0 compiler_3.6.2 htmltools_0.4.0 knitr_1.27

Last updated: 15" February, 2020

https://biswajitsahoo1111.github.io/cbm_codes_open/

	Description of data
	Codes
	How to get data?

