
diamond v0.9.26 September 16, 2019

The DIAMOND protein aligner

Introduction

DIAMOND is a sequence aligner for protein and translated DNA searches, designed for high
performance analysis of big sequence data. The key features are:

• Pairwise alignment of proteins and translated DNA at 500x-20,000x speed of BLAST.

• Frameshift alignments for long read analysis.

• Low resource requirements and suitable for running on standard desktops or laptops.

• Various output formats, including BLAST pairwise, tabular and XML, as well as taxonomic
classification.

DIAMOND was published in Nature Methods in 2015 [1]. Please cite this paper when using the
program in published research.

Support & updates are available at http://github.com/bbuchfink/diamond/.

1 Quick start guide

We assume to have a protein database file in FASTA format named nr.faa and a file of DNA reads
that we want to align named reads.fna. In order to set up a reference database for DIAMOND,
the makedb command needs to be executed with the following command line:

diamond makedb --in nr.faa -d nr

This will create a binary DIAMOND database file with the specified name (nr.dmnd). The align-
ment task may then be initiated using the blastx command like this:

diamond blastx -d nr -q reads.fna -o matches.m8

The output file here is specified with the -o option and named matches.m8. By default, it is
generated in BLAST tabular format.

Note:

• The program may use quite a lot of memory and also temporary disk space. Should the
program fail due to running out of either one, you need to set a lower value for the block size
parameter -b (see 3.7).

• Use the options --sensitive or --more-sensitive for searches with higher sensitivity.

• The runtime of the program is not linear in the size of the query file and it is more efficient
for large query files (> 1 million sequences) than for smaller ones.

• Low complexity masking is applied to the query and reference sequences by default. Masked
residues appear in the output as X.

• The default e-value cutoff of DIAMOND is 0.001 while that of BLAST is 10, so by default the
program will search a lot more stringently than BLAST and not report weak hits.

1

http://github.com/bbuchfink/diamond/


diamond v0.9.26 September 16, 2019

2 Installation & requirements

DIAMOND compiles as generic C++ code and has no particular requirements on the hardware ar-
chitecture, but it makes use of the SSE instruction set of the Intel/AMD x86-64 platform if available
and will run considerably faster on that platform. It runs on POSIX-compatible operating systems
(Linux, FreeBSD, OS X) as well as on Microsoft Windows.

A high-memory server is recommended for better performance, but the program can be run
on standard desktop computers or laptops.

Compiled binaries are available for download for Linux, macOS (via Bioconda), FreeBSD (via
pkg) and Windows. For best performance, it is recommended to compile the software from source
on the target system.

2.1 Binary download

2.1.1 Linux

A precompiled binary is available for recent Linux systems and may be downloaded for immediate
use:

wget http://github.com/bbuchfink/diamond/releases/download/v0.9.26/diamond-linux64.tar.gz

tar xzf diamond-linux64.tar.gz

The binary requires a fairly current CPU that supports POPCNT and SSSE3. If the binary does
not work on your system, i.e. you are getting error messages like Illegal instruction or Kernel
too old, please try another installation method or compile the software from source.

2.1.2 Linux/macOS (via Bioconda)

Install Bioconda on your system if not already present, then install DIAMOND using this shell
command:

conda install -c bioconda diamond

Regularly updating to the latest version is also recommended:

conda update diamond

2.1.3 Linux (via Docker)

To pull the latest version of the official Docker container:

docker pull buchfink/diamond

To pull a specific version:

docker pull buchfink/diamond:version0.9.26

2

https://bioconda.github.io/


diamond v0.9.26 September 16, 2019

2.1.4 FreeBSD

On FreeBSD, you can use pkg install diamond to install the software.

2.1.5 Windows

A binary executable for Windows can be downloaded at the DIAMOND github page. You also
need to install the Visual C++ Redistributable.

2.2 Compiling from source

Compilation requires GCC 4.1 or later, CMake 2.6 or later as well as libpthread and zlib including
development headers. To compile DIAMOND from source, invoke the following commands on the
shell:

wget http://github.com/bbuchfink/diamond/archive/v0.9.26.tar.gz

tar xzf v0.9.26.tar.gz

cd diamond-0.9.26

mkdir bin

cd bin

cmake ..

make install

Note:

• Use cmake -DCMAKE INSTALL PREFIX=... to install to a different prefix.

• Use cmake -DBUILD STATIC=ON to create a statically linked executable.

3 Command line options

3.1 Commands

Commands are issued as the first parameter on the command line and set the task to be run by
the program.

makedb

Create a DIAMOND formatted reference database from a FASTA input file.

blastp

Align protein query sequences against a protein reference database.

blastx

Align translated DNA query sequences against a protein reference database.

view

Generate formatted output from DAA files.

3

https://www.microsoft.com/en-us/download/details.aspx?id=48145


diamond v0.9.26 September 16, 2019

version

Print version information.

dbinfo

Print information about a database file.

help

Print help message.

3.2 Makedb options

--in <file>

Path to the input protein reference database file in FASTA format (may be gzip compressed).
If this parameter is omitted, the input will be read from stdin.

--db/-d <file>

Path to the output DIAMOND database file.

--taxonmap <file>

Path to mapping file that maps NCBI protein accession numbers to taxon ids (gzip com-
pressed). This parameter is optional and needs to be supplied in order to provide taxon-
omy features. The file can be downloaded from NCBI: ftp://ftp.ncbi.nlm.nih.gov/pub/
taxonomy/accession2taxid/prot.accession2taxid.gz.

--taxonnodes <file>

Path to the nodes.dmp file from the NCBI taxonomy. This parameter is optional and needs to
be supplied in order to provide taxonomy features. The file is contained within this archive
downloadable at NCBI: ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdmp.zip.

3.3 General options

--threads/-p #

Number of CPU threads. By default, the program will auto-detect and use all available virtual
cores on the machine.

3.4 Input options

--db/-d <file>

Path to the DIAMOND database file.

--query/-q <file>

Path to the query input file in FASTA or FASTQ format (may be gzip compressed). If this
parameter is omitted, the input will be read from stdin.

--taxonlist <list>

Comma-separated list of NCBI taxonomic IDs to filter the database by. Any taxonomic rank
can be used, and only reference sequences matching one of the specified taxon ids will
be searched against. Using this option requires setting the --taxonmap and --taxonnodes

parameters for makedb.

4

ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdmp.zip


diamond v0.9.26 September 16, 2019

--query-gencode #

Genetic code used for translation of query in BLASTX mode. A list of possible values can
be found at the NCBI website. By default, the Standard Code is used. Note: changing the
genetic code is currently not fully supported for the DAA format.

--strand {both, plus, minus}
Set strand of query to align for translated searches. By default both strands are searched.

--min-orf/-l #

Ignore translated sequences that do not contain an open reading frame of at least this length.
By default this feature is disabled for sequences of length below 30, set to 20 for sequences
of length below 100, and set to 40 otherwise. Setting this option to 1 will disable this feature.

3.5 Alignment options

--sensitive

This mode is a lot more sensitive that the default and generally recommended for aligning
longer sequences. The default mode is mainly designed for short read alignment, i.e. finding
significant matches of >50 bits on 30-40aa fragments.

--more-sensitive

This mode provides some additional sensitivity compared to the sensitive mode.

--frameshift/-F #

Penalty for frameshifts in DNA-vs-protein alignments. Values around 15 are reasonable for
this parameter. Enabling this feature will have the aligner tolerate missing bases in DNA
sequences and is most recommended for long, error-prone sequences like MinION reads.
In the pairwise output format, frameshifts will be indicated by \ and / for a shift by +1 and -1
nucleotide in the direction of translation respectively.
Note that this feature is disabled by default.

--gapopen #

Gap open penalty.

--gapextend #

Gap extension penalty.

--matrix <matrix name>

Scoring matrix. The following matrices are supported, with the default being BLOSUM62.

Matrix Supported values for (gap open)/(gap extend) Default gap penalties
BLOSUM45 (10-13)/3; (12-16)/2; (16-19)/1 14/2
BLOSUM50 (9-13)/3; (12-16)/2; (15-19)/1 13/2
BLOSUM62 (6-11)/2; (9-13)/1 11/1
BLOSUM80 (6-9)/2; 13/2; 25/2; (9-11)/1 10/1
BLOSUM90 (6-9)/2; (9-11)/1 10/1
PAM250 (11-15)/3; (13-17)/2; (17-21)/1 14/2
PAM70 (6-8)/2; (9-11)/1 10/1
PAM30 (5-7)/2; (8-10)/1 9/1

5

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi


diamond v0.9.26 September 16, 2019

--comp-based-stats (0,1)

Compositional bias correction of alignment scores. 0 means no score correction, 1 means
compositional bias correction as described in [2] (default). Compositionally biased se-
quences often cause false positive matches, which are effectively filtered by this algorithm
in a way similar to the composition based statistics used by BLAST [3].

--algo (0,1)

Algorithm for seed search. 0 means double-indexed and 1 means query-indexed. The
double-indexed algorithm is the program’s main algorithm, but it is inefficient for very small
query files, where the query-indexed algorithm should be used instead.
By default, the program will automatically choose one of the algorithms based on the size of
the query and database files. The algorithm used will be displayed at program startup.
Note that while the two algorithms are configured to provide roughly the same sensitivity for
the respective modes, results will not be exactly identical to each other.

3.6 Output options

--out/-o <file>

Path to the output file. If this parameter is omitted, the results will be written to the standard
output and all other program output will be suppressed.

--outfmt/-f #

Format of the output file. The following values are accepted:

0 BLAST pairwise format.

5 BLAST XML format.

6 BLAST tabular format (default). This format can be customized, the 6 may be followed by
a space-separated list of the following keywords, each specifying a field of the output.

qseqid Query Seq - id
qlen Query sequence length
sseqid Subject Seq - id
sallseqid All subject Seq - id(s), separated by a ’;’
slen Subject sequence length
qstart Start of alignment in query
qend End of alignment in query
sstart Start of alignment in subject
send End of alignment in subject
qseq Aligned part of query sequence
sseq Aligned part of subject sequence
full sseq Full subject sequence
evalue Expect value
bitscore Bit score
score Raw score
length Alignment length
pident Percentage of identical matches

6



diamond v0.9.26 September 16, 2019

nident Number of identical matches
mismatch Number of mismatches
positive Number of positive - scoring matches
gapopen Number of gap openings
gaps Total number of gaps
ppos Percentage of positive - scoring matches
qframe Query frame
btop Blast traceback operations(BTOP)
staxids Unique Subject Taxonomy ID(s), separated by a ’;’ (in numerical order). This

field requires setting the --taxonmap parameter for makedb.
stitle Subject Title
salltitles All Subject Title(s), separated by a ’<>’
qcovhsp Query Coverage Per HSP
qtitle Query title

By default, there are 12 preconfigured fields: qseqid sseqid pident length mismatch

gapopen qstart qend sstart send evalue bitscore.

100 DIAMOND alignment archive (DAA). The DAA format is a proprietary binary format that
can subsequently be used to generate other output formats using the view command.
It is also supported by MEGAN and allows a quick import of results.

101 SAM format.

102 Taxonomic classification. This format will not print alignments but only a taxonomic
classification for each query using the LCA algorithm. The output lines consist of 3
tab-delimited fields:

1. Query ID
2. NCBI taxonomy ID (0 if unclassified)
3. E-value of the best alignment with a known taxonomic ID found for the query (0 if

unclassified)

The score range for the LCA algorithm is set by the --top parameter. The default value
is 10 which means that all alignments whose score is at most 10% lower than the best
score are considered for the LCA computation.
Using this format requires setting the --taxonmap and --taxonnodes parameters for
makedb.

103 PAF format. The custom fields in the format are AS (bit score), ZR (raw score) and ZE
(e-value).

--salltitles

Include full length subject titles into the DAA format. By default, DAA files contain only the
shortened sequence id (up to the first blank character).

--sallseqid

Include all subject ids into the DAA file. By default only the first id of each subject is included.
As the subject ids are much shorter than the full titles this option will save space compared
to the --salltitles option.

7

https://github.com/lh3/miniasm/blob/master/PAF.md


diamond v0.9.26 September 16, 2019

--compress (0,1)

Enable compression of the output file. 0 (default) means no compression, 1 means gzip
compression.

--max-target-seqs/-k #

The maximum number of target sequences per query to report alignments for (default=25).
Setting this to 0 will report all alignments that were found.

--top #

Report alignments within the given percentage range of the top alignment score for a query
(overrides --max-target-seqs option). For example, setting this to 10 will report all align-
ments whose score is at most 10% lower than the best alignment score for a query.

--range-culling

Restrict hit culling to overlapping query ranges. This feature is designed for long query DNA
sequences that may span several genes. In these cases, the default of reporting the 25 best
overall hits could cause hits to a lower scoring gene to be overshadowed. But just increasing
the number of alignments reported will bloat the output size and reduce performance.
Using this feature along with -k 25 (default), a hit will only be deleted if at least 50% of its
query range is spanned by at least 25 higher or equal scoring hits.
Using this feature along with --top 10, a hit will only be deleted if its score is more than
10% lower than that of a higher scoring hit over at least 50% of its query range.
The percentage is configurable using --range-cover. Note that this feature is currently only
available in frameshift alignment mode.

--evalue/-e #

Maximum expected value to report an alignment (default=0.001).

--min-score #

Minimum bit score to report an alignment. Setting this option will override the --evalue

parameter.

--id #

Report only alignments above the given percentage of sequence identity.

--query-cover #

Report only alignments above the given percentage of query cover.

--subject-cover #

Report only alignments above the given percentage of subject cover.

--max-hsps #

The maximum number of HSPs per subject sequence to report for each query. Note that
in general any number of HSPs may exist for a single query/subject pair. The program’s
default policy is to report any HSP if its query and subject ranges are not enveloped by a
higher scoring HSP and if it meets the e-value treshold.
This option may be used to limit the number of HSPs reported. Setting this option to 1 will
cause only the single best HSP for each query/subject pair to be reported.

--unal (0,1)

Report unaligned queries (0=no, 1=yes). By default, unaligned queries are reported for the
BLAST pairwise, BLAST XML and SAM format.

8



diamond v0.9.26 September 16, 2019

--no-self-hits

Suppress reporting of identical self-hits between sequences.

3.7 Memory & performance options

--block-size/-b #

Block size in billions of sequence letters to be processed at a time. This is the main pa-
rameter for controlling the program’s memory usage. Bigger numbers will increase the use
of memory and temporary disk space, but also improve performance. The program can be
expected to use roughly six times this number of memory (in GB). So for the default value of
-b2.0, the memory usage will be about 12 GB.

--tmpdir/-t <directory>

Directory to be used for temporary storage. This is set to the output directory by default.
The amount of disk space that will be used depends on the program’s settings and your
data. As a general rule you should ensure that 100 GB of disk space are available here.
If you run the program in a cluster environment, and disk space is only available over a
slow network based file system, you may want to set the --tmpdir option to /dev/shm. This
will keep temporary information in memory and thus increase the program’s memory usage
substantially.

--index-chunks/-c #

The number of chunks for processing the seed index (default=4). This option can be addi-
tionally used to tune the performance. It is recommended to set this to 1 on a high memory
server, which will increase performance and memory usage, but not the usage of temporary
disk space.

3.8 View options

--daa/-a <file>

Path to input file in DAA format.

--out/-o <file>

Path to output file. If this parameter is omitted, the results will be written to the standard
output and all other program output will be suppressed.

These aligner parameters apply to the view command as well and work in the same way: --outfmt,
--compress, --max-target-seqs, --top. Note that taxonomy features are currently not available
for the DAA format.

3.9 Advanced options

--freq-sd #

During the seed search, seeds with very high frequency in the queries or the database are
ignored. This option sets the number of standard deviations above the average frequency
for ignoring a seed. The default values are 50 in default mode, 10 in sensitive mode, and
200 in more-sensitive mode.

9



diamond v0.9.26 September 16, 2019

--band #

Dynamic programming band for seed extension. Initial seed hits are scanned across a band
of this length in both directions.

--xml-blord-format

Use gnl|BL ORD ID style format for hit IDs in XML output.

--range-cover #

The percentage of a hit’s query range that needs to be spanned by higher scoring hits for a
hit to be deleted in range culling mode (default=50.0).

4 Support & FAQ

Support is provided by email or the GitHub issues page. For support requests it is usually helpful if
you provide details about your data (size and type of sequences) and your execution environment
(CPU cores, RAM, operating system).
Community feedback and feature requests are also appreciated.

1. How to run the program on multiple input files?

It is not recommended to run more than one instance of DIAMOND simultaneously on the
same machine, because it is more efficient if you allocate more ressources to a single task
by increasing the block size parameter -b and using lower numbers for -c. For this reason,
input files should be processed consecutively. Pipes can also be used process multiple input
files. For example, this command will build a database from all fasta.gz files in the current
directory:

zcat *.fasta.gz | diamond makedb -d diamond db

2. The program runs for a very long time and the output file remains empty.

This is normal. Larger databases are split into chunks and the output is kept in temporary
files at first and only merged in the end.

3. There are no temporary files.

The temporary files are not visible using standard shell commands because unlink is in-
voked on them after creation, which ensures that the files will be removed in case of un-
graceful termination of the program.

4. More than one alignment is reported for a single query and subject sequence.

Due to the definition of HSPs, which are pairs of segments that form a linear alignment, any
number of these may be contained in a single query/subject pair. The program reports addi-
tional aligned domains by default as they may contain valuable information. This behaviour
can be changed by using the --max-hsps option.

5. The program does not appear to be sensitive enough / it does not find an alignment I
expect it to find or that another aligner reported.

There are a number of reasons that can cause hits to not be found or reported. In particular,
even identical self-alignments of protein sequences may not be reported for some of the
reasons listed below.

10

mailto:buchfink@gmail.com
http://github.com/bbuchfink/diamond/issues/


diamond v0.9.26 September 16, 2019

(a) The hit may not be deemed significant, i.e. its e-value is above the configured cutoff.
This is possible even for short 100% identity matches. Also note that e-value computa-
tions are not compatible for different aligners most of the time.

(b) Low complexity masking and compositional bias correction may cause hits to be fil-
tered. This is usually desirable as these methods are highly effective in eliminating
false positives. Note that differences in false positive filtering can cause substantial
deviations in the output for different aligners used on the same data.

(c) Due to its seed configuration, the program is not able to align sequences shorter than
12 or 10 amino acids, for the fast mode and sensitive modes respectively.

(d) Seeds that occur too frequently in the input are ignored, which may cause problems if
your data is extremely repetitive. This behaviour can be adjusted using the --freq-sd

option.

(e) The program may not be sensitive enough for your application. You should try the more
sensitive modes (options --sensitive and --more-sensitive). Still, perfect results
cannot be guaranteed by heuristical algorithms, but only by a rigorous Smith-Waterman
computation.

6. The program terminates with an unclear or no error message.

The task may have been killed by the system for running out of memory. Use dmesg to check
for a respective kernel message. See 3.7 for instructions on memory usage. If you run the
program on a cluster, you may need to allocate more memory to the task.

7. Are results consistent for multiple calls of the program?

The program has a basic consistency guarantee that the same version run on the same
input with the same parameters will produce identical results, regardless of the hardware,
operating system, compiler, or number of CPU threads. If this was not the case, I would
consider it a bug.

Beyond that, no guarantees of consistency can be made. DIAMOND like all fast align-
ers uses numerous heuristics that can alter results in unexpected ways. For example, it has
been noted that the top hit of a BLAST search can change depending on the -max target seqs

option. Because gapped extension is expensive, BLAST ranks all the subject sequences that
were hit for a query based on ungapped extensions at seed hits and considers only a subset
of the subjects for gapped extension. The pool of subjects considered is bigger for higher
values of -max target seqs, so in rare cases the true best hit may or may not make it to the
gapped extension stage depending on this parameter.

Effects like this seem counterintuitive to many users, but they are a natural byproduct of
heuristics used by all fast aligners. The only tools that can guarantee optimal results in any
sense of the word are rigorous search tools like SSEARCH.

5 Optimizing performance

You should take the time to configure the program to your needs instead of just running it with
default settings, as this will substantially optimize the use of system resources. Some points to
consider:

11



diamond v0.9.26 September 16, 2019

• Set the -e parameter (maximum expected value) as low as possible.

• Set the -k parameter (number of target sequences to report alignments for) as low as pos-
sible. This will improve performance and reduce the use of temporary disk space and the
size of the output files.

• Consider using the --top parameter instead of -k. For example, setting --top 5 will report
all alignments whose score is at most 5% lower than the top alignment score for a query.

• Configure the tabular output format to only report the output fields that are actually required
(see 3.6.).

• Use the BLAST tabular format for machine-based processing of the output. Use the XML
and SAM format only if required by your downstream tools or if you prefer it as a human-
readable format.

• Use the option --compress 1 to automatically generate gzip-compressed output files.

About

DIAMOND is developed by Benjamin Buchfink and distributed as Open Source under the GNU
Affero General Public License.
Bug reports, support and other inquiries may be sent to Benjamin Buchfink.

References

[1] Benjamin Buchfink, Chao Xie, and Daniel H. Huson. Fast and sensitive protein alignment
using diamond. Nature methods, 12(1):59–60, Jan 2015.

[2] Maria Hauser, Martin Steinegger, and Johannes Söding. Mmseqs software suite for fast and
deep clustering and searching of large protein sequence sets. Bioinformatics (Oxford, Eng-
land), 32(9):1323–1330, May 2016.

[3] Yi-Kuo Yu and Stephen F. Altschul. The construction of amino acid substitution matrices for
the comparison of proteins with non-standard compositions. Bioinformatics (Oxford, England),
21(7):902–911, Apr 2005.

12

mailto:buchfink@gmail.com

	Quick start guide
	Installation & requirements
	Binary download
	Linux
	Linux/macOS (via Bioconda)
	Linux (via Docker)
	FreeBSD
	Windows

	Compiling from source

	Command line options
	Commands
	Makedb options
	General options
	Input options
	Alignment options
	Output options
	Memory & performance options
	View options
	Advanced options

	Support & FAQ
	Optimizing performance

