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1 Introduction

PhyloBayes-MPI is a Bayesian Markov chain Monte Carlo (MCMC) sampler for phyloge-

netic inference exploiting a message-passing-interface system for multi-core computing. The

program will perform phylogenetic reconstruction using either nucleotide, protein, or codon

sequence alignments. Compared to other phylogenetic MCMC samplers, the main distin-

guishing feature of PhyloBayes is the use of non-parametric methods for modeling among-site

variation in nucleotide or amino-acid propensities.

1.1 Modeling site-specific effects using non-parametric methods

Among-site variation in the rate of substitution is often modeled using a gamma distribution.

Doing so, however, only models variation in the rate of evolution, and does not account for

the fact that the different nucleotides or amino-acids might have uneven propensities across

positions.

As a way of modeling state propensity variation along sequences, in PhyloBayes, the

rate and also a profile—controlling nucleotide or amino acid equilibrium frequencies associ-

ated with the substitution process—are modeled as site-specific random variables. As has

been shown in several previous works, accounting for such generalized among-site variation

results in a better statistical fit and greater phylogenetic accuracy. Of particular interest

to phylogenetic reconstruction, such models show a greater robustness to systematic errors

such as long-branch attraction problems.

There are two ways site-specific propensities can be modeled. First, one can use a

parametric model. In such models, the parametric form of the law describing the distribution

of the site-specific feature under investigation is assumed known, up to a few parameters

that will be estimated from the data. The best example is the use of a gamma distribution

for modeling the distribution of relative rates of substitution across sites (Yang, 1994).

Alternatively, one can use non-parametric models: the overall shape of the distribution

across sites is not specified a priori but is directly inferred from the data. It is thus more gen-

eral than the parametric method. There are different non-parametric methods. A practical

approach, often adopted in Bayesian inference, is the use of Dirichlet process mixtures (Fer-

guson, 1973). Formally, these are infinite mixtures, i.e. mixtures with a countably infinite

number of components.

PhyloBayes uses Dirichlet processes for modeling sites-specific profiles (Lartillot and

Philippe, 2004). Each site is thus given a frequency vector profile over the 20 amino-acids
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or the 4 bases. These are combined with a globally defined set of exchange rates, so as to

yield site-specific substitution processes. The global exchange rates can be fixed to uniform

values (the CAT-Poisson, or more simply CAT, settings), to empirical estimates (e.g. JTT,

WAG or LG) or inferred from the data (CAT-GTR settings).

The CAT-like models proposed thus far are phenomenological: they account for among

site variation in amino-acid propensities but without any reference to the underlying molec-

ular evolutionary mechanisms. Recently, a mechanistic reformulation of these models has

been proposed (Rodrigue et al., 2010). The idea is to work at the codon level and express

substitution rates between codons as the product of mutation rates (such as specified by an

underlying nucleotide-level mutation process) and fixation probabilities. Mutation rates are

assumed to be homogeneous across sites. Fixation probabilities, on the other hand, are site-

specific and are essentially determined by selection operating at the amino-acid level. The

model assumes that selection acts independently at each site (no epistasis) and is constant

across the phylogeny (no fluctuating selection). As a result, the model can be parameterized

in terms of site-specific vectors of fitness parameters (for the 20 amino-acids). The distribu-

tion of the 20-dimensional fitness profiles across sites is emulated by a Dirichlet process.

1.2 Empirical mixture models

The non-parametric models introduced above are flexible. They automatically estimate the

distribution of site-specific effects underlying each dataset. But on the other hand, they may

require a relatively large amount of data for reliable estimation.

An alternative that would be suitable for smaller alignments is offered by the so-called

empirical mixture models. Unlike non-parametric mixtures, empirical models have a fixed,

pre-determined set of components, which have been estimated on a large database of multiple

sequence alignments. Classical empirical matrices, such as JTT, WAG and LG (Le and

Gascuel, 2008) are a specific case of empirical model, with only one component. A few years

ago, empirical mixtures of profiles were proposed (Quang et al., 2008; Wang et al., 2008),

which are implemented in the current version of PhyloBayes. The user can also specify its

own custom set of exchange rates or mixture of profiles.

1.3 Phylogenetic reconstruction

Samples approximately from the posterior distribution are obtained by Markov chain Monte

Carlo (MCMC) and are then used to estimate marginal distributions, or expectations, over
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the parameters of interest. Concerning the topology of the phylogenetic tree, PhyloBayes

works like usual Bayesian phylogenetic reconstruction programs and outputs a majority-rule

posterior consensus tree. Conversely, one may be interested in the site-specific biochemical

specificities that have been captured by the infinite mixture model, in which case mean

posterior site-specific profiles will be estimated from the MCMC output.

1.4 Choosing a model

It is still difficult to get a general idea of the relative merits of the models, as it depends

on the dataset and on the criterion used to measure the fit. But a few trends are observed,

which can be used for establishing general guidelines.

1.4.1 Amino acid replacement models

Except for small datasets (less than 400 aligned positions), CAT-GTR is virtually always

the model with highest fit among all models implemented in PhyloBayes. The CAT-Poisson

model, which was the model initially developed in Lartillot and Philippe (2004), is less fit

than CAT-GTR but generally more fit than single-matrix models on large and datasets,

particularly when mutational saturation (multiple substitutions) is prevalent.

Concerning the posterior consensus tree, both CAT-GTR and CAT-Poisson are signif-

icantly more robust against long-branch attraction (LBA) artifacts, compared to all other

models. However, in some cases, there are differences between the topologies obtained under

CAT or CAT-GTR. The flat exchange rates of CAT (which were introduced mostly for the

sake of computational efficiency) are not biologically realistic, suggesting that CAT-GTR

would generally be a better option.

Empirical mixture models (C60 or WLSR5) may be appropriate for single gene datasets.

1.4.2 Nucleotide substitution models

The CAT-GTR model is a very good generic model also for DNA or RNA data, again

probably better than CAT (which does not correctly handle differences in transition and

transversion rates) but also, in most cases, better than classical nucleotide substitution

models.
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1.4.3 Codon substitution models

The mutation-selection model described in Rodrigue et al. (2010) is implemented in the

present version, and can be used for estimating distributions of selection coefficients and for

phylogenetic inference. Other applications of this model, and other codon models imple-

mented in this version, will be discussed at greater length in future works.

1.4.4 Rate across sites

For the amino acid and nucleotide models, the present version only implements the dis-

cretized gamma distribution of rates across sites.

1.4.5 Dataset size

In practice, the Dirichlet process mixture works best for alignments in the range of 1 000

to 20 000 aligned positions. Beyond 20 000 positions, convergence and mixing of the Monte

Carlo progressively become challenging. As for the number of taxa, the MCMC sampler

seems able to deal alignments with up to 100 taxa reasonably well and has already been

used on datasets with up to 250 taxa.

A possible approach for analyzing very large multi-gene datasets (large in terms of the

number of aligned positions) is to perform jackknife resampling procedures (although resam-

pling procedures are not so easily justified from a Bayesian philosophical standpoint.). An

example of gene-jackknife using PhyloBayes is described in Delsuc et al. (2008).

1.5 Detailed prior and model specification

The exact mathematical structure of the model and the algorithms are described in a separate

document (pbmpi suppmat) available on the website (www.phylobayes.org).
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2 Input data format

2.1 Sequences

The main format recognized by PhyloBayes is a generalization of the PHYLIP format:

<number_of_taxa> <number_of_sites>

taxon1 sequence1...

taxon2 sequence2...

...

Taxon names may contain more than 10 characters. Sequences can be interrupted by

space and tab, but not by return characters. They can be interleaved, in which case the

taxon names may or may not be repeated in each block.

PhyloBayes automatically recognizes DNA, RNA, or protein alphabets. The following

characters will all be considered equivalent to missing data: “-”, “?”, “$”, “.”, “*”, “X”, “x”,

as well as the degenerate bases of nucleic acid sequences (“B”, “D”, “H”, “K”, “M”, “N”, “R”,

“S”, “V”, “W”, “Y”), and the “B” and “Z” characters for protein sequences. Upper or lower

case sequences are both recognized, but the case matters for taxon names.

For running analyses under mutation-selection models (Rodrigue et al., 2010), the align-

ment should be a protein coding nucleotide alignment.

PhyloBayes can also be applied to datasets with arbitrary alphabets. The file should

then be formatted as follows:

#SPECIALALPHABET

<number_of_taxa> <number_of_sites> <ALPHABET>

taxon1 sequence1...

taxon2 sequence2...

...

where the alphabet is specified by concatenating all characters, in one single word, e.g.:

#SPECIALALPHABET

2 4 ABCDE

taxon1 ACABEDE

taxon2 ACEBBDE

2.2 Trees

An initial tree can be provided or, alternatively, the program can be constrained to sample

the posterior distribution of parameters under a specified tree topology, which will remained
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fixed throughout the analysis. Trees should be provided in NEWICK format. Branch lengths

can be specified but will be ignored.

Taxon names should correspond to the names specified in the data matrix (case sensitive).

If some names are present in the tree but not in the matrix, the corresponding taxa will be

pruned out of the tree. That is, the spanning subtree containing all the taxa mentioned in

the data matrix will be considered as the input tree. Conversely, if some taxa are present in

the data matrix but not in the input tree, the program will exit with an error message.
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3 General presentation of the programs

First, a quick note on system requirements: PhyloBayes MPI is provided both as executable

files (for linux x86-64) and as a C++ source code. Depending on the operating system

running on your cluster, you may need to recompile the code. To this end, a simple Makefile

is provided in the sources directory, and compiling with the make command should then

work in most simple situations, assuming that a version of MPI compatible with C++

compilation (with a mpicxx/mpic++ executable) is already installed on your cluster. Note

that, in some machines, OpenMPI needs to be specifically uploaded by the user before

compiling and/or running a MPI program. You may need to check all these details with

your system administrator. The present code can run in principle on MacOSX or Windows

operating systems, however, it is primarily intended for (and has been exclusively tested on)

high performance computing facilities operating under linux or Unix.

The following programs can be found in the package (for details about any of these

programs, type the name without arguments):

• pb_mpi : the MCMC sampler.

• readpb_mpi : post-analysis program, for computing a variety of posterior averages.

• bpcomp : evaluates the discrepancy of bipartition frequencies between two or more

independent runs and computes a consensus by pooling the trees of all the runs being

compared.

• tracecomp : evaluates the discrepancy between two or more independent runs based

on the summary variables provided in the trace files. bpcomp and tracecomp were

directly obtained from the non-mpi version of phylobayes (thus, if some recompiling is

needed, these 2 programs should be recompiled from the non-mpi phylobayes suite).

In this section, a rapid tour of the programs is proposed. A more detailed explanation of all

available options for each program is given in the next section.

3.1 Running a chain (pb_mpi)

A run of the pb_mpi program will produce a series of points drawn from the posterior distri-

bution over the parameters of the model. Each point defines a detailed model configuration

9



(tree topology, branch lengths, nucleotide or amino-acid profiles of the mixture, etc.). The

series of points defines a chain.

To run the program:

mpirun -np <n> pb_mpi -d <dataset> <chainname>

Here, <n> is the number of processes running in parallel. You could also use mpiexec instead

of mpirun. You cannot run pb_mpi with less than 2 processes (the parallelization scheme

involves a master and n− 1 slaves.)

Most clusters use Sun Grid Engine. In that case, you might need to write a script that

would probably look like the following:

#!/bin/bash

#

#PBS -l walltime=120:00:00

#PBS -l nodes=1:ppn=8

#PBS -o out

#PBS -e err

#PBS -j oe

#PBS -W umask=022

#PBS -r n

mpirun -n 8 pb_mpi -d datafile -cat -gtr chainname

and then send the script to the queue using qsub.

As for choosing the right parallelization scheme, the most straightforward approach is to

set n equal to the number of cores of a given node. On the other hand, for large datasets, and

if your cluster has efficient communication between nodes (e.g., Infiniband), then parallelizing

over more than one node could be efficient. Thus, for instance, if you have 8 cores per

node, then you could run with n = 16 (in which case nodes=2:ppn=8) or even n = 32

(nodes=4:ppn=8). You can try several degrees of parallelization and look at the trace file:

the first and second columns give the total time spent by the chain thus far (in seconds), and

the time per saved point, thus allowing you to compare the efficiency of various parallelization

schemes. Finally, the third column gives the percentage of time spent in topological updates

(as opposed to updates of the mixture or of other continuous parameters). As a general rule,

this percentage decreases as the degree of parallelization increases (this is because topological

updates are the most efficiently parallelized part of the program). If this percentage is more

than 50%, this generally means that a further increase in the degree of parallelization should

normally result in close to linear gains (twice as many cores, twice as fast the program will
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run). In contrast, if the percentage of time spent in topological updates is 40% or less, then

parallelization gains start to be less than linear, so that a further increase in the degree of

parallelization, although still resulting in a faster run, is globally a waste of computational

resources.

The -d option is for specifying the dataset. There are many other options for specifying

the model (see below). The default options are the CAT-GTR model with discrete gamma

(4 categories). Before starting, the chain will output a summary of the settings.

A series of files will be produced with a variety of extensions. The most important are:

• <name>.treelist: list of sampled trees;

• <name>.trace: the trace file, containing a few relevant summary statistics (log-likelihood,

total length of the tree, number of components in the mixture, etc).

• <name>.chain: this file contains the detailed parameter configurations visited during

the run and is used by readpb_mpi for computing posterior averages.

The chains will run as long as allowed. They can be interrupted at any time and then

restarted, in which case they will resume from the last check-point (last point saved before

the interruption). To soft-stop a chain, just open the <name>.run file and replace the 1 by

a 0. Under linux, this can be done with the simple following command:

echo 0 > <chainname>.run

The chain will finish the current cycle before exiting. To restart an already existing chain:

mpirun -np <n> pb_mpi <chainname>

Be careful not to restart an already running chain. You can stop a chain and restart it under

a different degree of parallelization.

3.2 Checking convergence and mixing (bpcomp and tracecomp)

It is difficult to know how long a chain should run beforehand. Different datasets, or different

models, may not require the same number of cycles before reaching convergence and may

display very different mixing behaviors. In general, for larger datasets, each cycle will take

more time, but also, more cycles will be needed before reaching convergence. Note also that

the absolute number of cycles is not really a relevant measure of the quality of the resulting

sample: update mechanisms for the mixture, the topology or the hyperparameters are not
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really comparable, and their mixing efficiency depends very much on the model, the data

and the implementation. In the case of phylobayes, the MCMC sampler saves one point

after each cycle. A cycle itself is made of a set of complex and integrated series of updates of

the topology, the branch length or the substitution model (including the mixture), which are

not easily compared with the number of generations realized by other phylogenetic samplers.

Generally, a run under phylobayes provides good results for a total number of points of the

order of 10 000 to 30 000, although again, this really depends on the datasets.

The best is therefore to rely on more objective measures, such as effective sample size and

reproducibility of the results across independent runs started from different initial conditions.

In the case of the relatively complex infinite mixture models CAT and CAT-GTR, conver-

gence and mixing should be carefully assessed both for the phylogenetic and for the mixture

aspects of the model. Thus, one should make sure that posterior consensus trees are re-

producible across independent runs, but also, that the trace plots of the summary statistics

recorded in the trace file capturing various sub-components of the model (tree length, alpha

parameter, number of occupied components of the infinite mixture, entropy of the mixture,

entropy of exchangeabilities) appear to be at stationarity and to be reproducible across runs.

Convergence can first be visually assessed by plotting the summary statistics recorded

in the trace file as a function of number of iterations. This can be done using simple linux

utilities, such as gnuplot. Alternatively, the trace file of phylobayes is compatible with the

Tracer program of the Beast software. Thus, you can use Tracer to check convergence and

estimate effective sample size (tracecomp, introduced below, does similar things, albeit with

a more primitive interface).

It is also good practice to run at least two chains in parallel and compare the samples

obtained under these several independent runs. The can be done using the tracecomp

program (for checking convergence of the continuous parameters of the model) and the

bpcomp program (for assessing convergence in tree space). Both use a similar syntax:

bpcomp -x 1000 10 <chain1> <chain2>

Here, using a burn-in of 1000, and sub-sampling every 10 trees, the bpcomp program will

output the largest (maxdiff) and mean (meandiff) discrepancy observed across all biparti-

tions. It will also produce a file (bpcomp.con.tre) with the consensus obtained by pooling

all the trees of the chains given as arguments.

Some guidelines:

• maxdiff < 0.1: good run.
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• maxdiff < 0.3: acceptable: gives a good qualitative picture of the posterior consensus.

• 0.3 < maxdiff < 1: the sample is not yet sufficiently large, and the chains have not

converged, but this is on the right track.

• if maxdiff = 1 even after 10,000 points, this indicates that at least one of the runs is

stuck in a local maximum.

Similarly,

tracecomp -x 1000 <chain1> <chain2>

will produce an output summarizing the discrepancies and the effective sizes estimated for

each column of the trace file. The discrepancy d is defined as d = 2|µ1 − µ2|/(σ1 + σ2),

where µi is the mean and σi the standard deviation associated with a particular column and

i runs over the chains. The effective size is evaluated using the method of Geyer (1992). The

guidelines are:

• maxdiff < 0.1 and minimum effective size > 300: good run;

• maxdiff < 0.3 and minimum effective size > 50: acceptable run.

3.3 Obtaining posterior consensus trees and parameter estimates (readppb_mpi)

The consensus of all trees sampled at equilibrium by the MCMC sampler (which is a MCMC

estimate of the posterior consensus tree), is usually taken as the point estimate of the phylo-

genetic tree. Such a (majority-rule) consensus trees is automatically produced by the bpcomp

program (see above). Note that bpcomp can be run on a single chain (in which case it will

simply produce the consensus of all trees after burn-in), and not necessarily on multiple

chains (in which case, as explained above, it will make the consensus of all trees pooled

across all chains, and compute a discrepancy measure across chains). Using bpcomp on

multiple chains usually results in more stable MCMC estimates of the posterior consensus

tree.

The readpb_mpi program is meant for estimating some key parameters of the model, for

performing posterior predictive analyses and for computing posterior mean likelihoods and

cross-validation scores.

By default, readpb_mpi only computes a simple estimate (mean and 95 % credibility

interval) for the total length of the tree (total number of substitutions per site across the
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entire phylogeny) and for the α parameter of the discrete gamma distribution of rates across

sites. All other tasks performed by readpb_mpi are accessible via specific options (see

detailed options of readpb_mpi in the next section).
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4 Posterior predictive checks

Checking for model adequacy is a particularly important step in Bayesian inference. An

adequate model should perform well in predicting the patterns that are typically observed

in real data. In the present context, the model should correctly predict those patterns

which are suspected to be of particular relevance for phylogenetic reconstruction. Thus

for instance, if we suspect that site-specific restrictions in acceptable nucleotides or amino-

acids, or compositional variation among species, are important factors potentially resulting

in systematic errors in tree reconstruction if not properly modelled, then it is particularly

important to check that our models correctly predict the typical patterns of variation of

composition across sites and across taxa.

In Bayesian inference, this type of model checking can be done using posterior predictive

simulations. Posterior predictive checks can be seen as the Bayesian analogue of the para-

metric bootstrap: once the model has been conditioned on empirical data, the parameter

configuration thus estimated is used to re-simulate data (many times). Then, the value of

some summary statistic of interest (meant to capture the key patterns which the model

should correctly capture and reproduce) is computed on the simulated replicates, thus yield-

ing a null distribution for the statistic under the model. The value of the statistic computed

on the original data is then compared to this null distribution. Typically, a p-value is com-

puted, defined as the fraction of simulated replicates for which the value for the test statistic

is at least as extreme as the observed value. As a good complement to the posterior predic-

tive p-value, a z-score can also be considered: the deviation between the observed value and

the mean of the null distribution, relative to the standard deviation of this null distribution.

This z-score is useful in those cases where the MCMC estimate of the p-value is identically

0. Apart from model checking, posterior predictive simulations can also be considered as a

principled approach to do simulations that are calibrated against empirical data.

Posterior predictive simulations and checks can be done based on the output of a MCMC

sampler – for each of a series of points sampled at stationarity, re-simulate new data based

on the corresponding parameter configuration. In the present context, however, posterior

predictive checks raise specific issues: how to deal with missing data and with site-specific

random variables.

Missing data – Many data matrices, in particular in phylogenomics, are characterized

by a sometimes fairly large fraction of missing entries. In addition, the distribution of those

missing entries is most often highly non-uniform across the data matrix. Missing entries
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can create systematic biases in the posterior predictive null distribution, if not properly

accounted for. In particular, if missing data are simply ignored at the simulation step (such

that all simulation replicates have 0% missing data), then some of the statistics (e.g. the

mean diversity across sites) will be systematically higher across simulations than on the

original empirical data, merely because of a differential amount of missing information. In

PhyloBayes, the method for controlling for the potential impact of missing data is to first

simulate a replicate and then mask all entries that were missing in the original data matrix.

This way, the fraction and non-uniform pattern of missing entries is preserved in the null

distribution of the test.

Site-specific random variables – In the presence of random effects across observations

(here across sites), the posterior predictive formalism raises some subtelties: random effects

across sites can be either explicited summed over (as is classically done with the discretized

gamma distribution of rates across sites), or explicitly sampled during the MCMC (as is

done by PhyloBayes in the case of mixture models of site-specific amino-acid or nucleotide

equilibrium frequency profiles). In this context, if we use a random parameter configuration

at equiibrium of the MCMC, then which site-specific rate and which site-specific profile

should we use to simulate under the posterior-predictive distribution for that site? The

question is not totally trivial. At first sight, the most natural procedure would be to use

the site-specific profile such as specified by the current parameter configuration for that site.

As for the site-specific rate, one would choose a rate category uniformly at random for each

site. One would then simulate the column pattern for that site under those site-specific rate

and profile (this is what is done by most phylogenetic software programs).

However, technically, this would mean that we are drawing the site-specific rate from the

conditional prior rate distribution (the gamma distribution with the current value of the

alpha parameter), whereas the site-specific profile is effectively drawn from the conditional

posterior profile distribution. This can be seen from the fact that the information contained

by the particular column pattern being present at that site in the original empirical data

is not used to choose the rate, but has been used to define the profile that is eventually

chosen to conduct the simulation. Yet, both are site-specific random effects, so why should

we behave differently?

One possible approach is to draw both of them, rate and profile, from their respective

conditional prior distributions. In that case, one would re-draw the component of the profile

mixture to which the focal site is allocated, based on the relative weights of the mixture. The

site-specific rate is from the conditional prior if it is drawn uniformly at random for each site.
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An alternative is to draw both of them, rate and profile, from their respective conditional

posterior distributions. To do so, one would use the current profile at the focal site, such

as specified by the current parameter configuration. As for the site-specific rate, one should

draw it, not uniformly at random, but proportionally to the rate-specific likelihoods at that

site.

There are arguments in favor of both of them. The conditional prior is closer in spirit

to what would be done in a frequentist context (using the parametric bootstrap). On the

other hand, if there are correlations between patterns of missing data and site-specific rates

or profiles, then these correlations will be lost in the simulated data. Yet, it could be useful

to control the posterior predictive null distribution for such correlations. Most phyloge-

netic software draw site-specific rates from the conditional prior. The default option in

PhyloBayes, in contrast, is to simulate under the conditional posterior, for both rates and

profiles.

Of note, there has been some instability in the implementation of the posterior predic-

tive check procedures in the early versions (prior to June 2016) of the program (for more

information, see Benchmark section below).
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5 Detailed options

5.1 pb mpi

5.1.1 General options

-d <datafile>

option for specifying the multiple sequence alignment to be analyzed (see: Input Data Format

section).

-dc

constant sites are removed. Note that the likelihood will not be properly conditioned on this

removal, as it normally should be. Using this option is therefore problematic.

-t <treefile>

forces the chain to start from the specified tree.

-T <treefile>

forces the chain to run under a fixed topology (as specified in the given file). In other words,

the chain only samples from the posterior distribution over all other parameters (branch

lengths, alpha parameter, etc.), conditional on the specified topology. This should be a

bifurcating tree (see Input Data Format section).

-S

only saves the trees explored during MCMC in the treelist file (and the summary statistics

in the trace file). Saving only the trees, and not the detailed parameter configurations

visited during the MCMC, has the advantage of producing smaller files. This is enough

for computing the consensus tree but insufficient for estimating the continuous parameters

of the model (e.g. site-specific equilibrium frequency profiles) or for conducting posterior

predictive tests or cross-validation analyses. For this, you should save the detailed model

configuration for each point visited during the run (which is done by default by the program).

Note that this is a different behavior, compared to the old serial version of PhyloBayes (in

which the -s option was explicitly required to activate the ”save all” mode). In the present

version, the -s option does not do anything.
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-f

forces the program to overwrite an already existing chain with same name.

-x <every> [<until>]

specifies the saving frequency and (optional) the number of points after which the chain

should stop. If this number is not specified, the chain runs “forever”. By definition, -x

1 corresponds to the default saving frequency. In some cases, samples may be strongly

correlated, in which case, if disk space or access is limiting, it would make sense to save

points less frequently, say 10 times less often: to do this, you can use the -x 10 option.

5.1.2 Evolutionary models

5.1.2.1 Rates across sites

-dgam <n>

specifies n categories for the discrete gamma distribution. Setting n = 1 amounts to a model

without across-site variation in substitution rate.

5.1.2.2 Relative exchangeabilities (exchange rates)

-poisson

exchange rates are all equal to 1. The model is then a mixture of Poisson (F81) processes.

-lg, -wag, -jtt, -mtrev, -mtzoa, -mtart

specifies empirical exchangeabilities.

-gtr

specifies a general time reversible matrix: exchangeabilities are free parameters, with prior

distribution a product of independent exponential distributions of mean 1.

-rr <filename>

exchangeabilities are fixed to the values given in the specified file. The file should be for-

matted as follows:
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[<ALPHABET>]

<rr1_2> <rr1_3> ... <rr1_20>

<rr2_3> <rr2_4> ... <rr2_20>

...

<rr18_19> <rr18_20>

<rr19_20>

You have to specify the order in which amino acids should be considered on the first line

([<ALPHABET>]), with letters separated by spaces or tabs. This header should then be

followed by the exchangeabilities in the order specified (spaces, tabs or returns are equivalent:

only the order matters).

5.1.2.3 Profile mixture

-dp (or -cat)

activates the Dirichlet process.

-ncat <n>

specifies a mixture of n components; the number of components is fixed whereas the

weights and profiles are treated as random variables. Fixing the number of components of

the mixture most often results in a poor mixing of the MCMC. The Dirichlet process usually

has a much better mixing behavior.

-catfix <predef>

specifies a mixture of a set of pre-defined profiles (the weights are re-estimated). <predef>

can be either one of the following keywords: C20, C30, C40, C50, C60, which correspond

to empirical profile mixture models (Quang et al., 2008); or WLSR5, which correspond to

the model of Wang et al. (2008). Note that this latter model actually defines 4 empirical

profiles, which are then combined with a fifth component made of the empirical frequencies

of the dataset.

-catfix <filename>

specifies a mixture of a set of user-pre-defined profiles, where <filename> is the name of a

file containing a set of profiles specified as follows:
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[<ALPHABET>]

<ncat>

<weight> <freq1> <freq2> ... <freq20>

<weight> <freq1> <freq2> ... <freq20>

...

where <ncat> is the number of profiles, and each line following this number should be a set of

21 real numbers, defining a weight, and then a profile of equilibrium frequencies (separated

by spaces or tabs). You should specify the order in which amino acids should be considered

on the first line ([<ALPHABET>]), with letters separated by spaces or tabs. Note that the

weights are there only for historical reasons – they are re-estimated anyway.

5.1.2.4 Combining profiles and exchange rates Any set of exchange rates can be

combined with any of the three settings for the mixture. But the same set of exchange rates

will be used by all components of the mixture.

For instance, -cat -gtr makes an infinite mixture model whose components differ by

their equilibrium frequencies but otherwise share the same set of relative exchange rates

(themselves considered as free parameters). As another example, -catfix WLSR5 -jtt defines

the Wang et al. (2008) model: a model with 5 components, each of which is a matrix

made from the relative exchange rates of the JTT matrix, combined with one of the 4

vectors of equilibrium frequencies defined by Wang et al. (2008), plus one vector of empirical

frequencies.

The default model is -cat -gtr.

5.1.2.5 Mutation-selection models

-mutsel

activates the mutation-selection model as described in Rodrigue et al. (2010) (codon align-

ments only).

-mtvert

specifies the vertebrate mitochondrial code (the universal genetic code is the default).

5.2 bpcomp

-x <burn-in> [<every> <until>]

21



Defines the burn-in, the sub-sampling frequency, and the size of the samples of trees to be

taken from the chains under comparison. By default, <burn-in> = 0, <every> = 1 and

<until> is equal to the size of the chain. Thus, for instance:

-x 1000

defines a burn-in of 1000,

-x 1000 10

a burn-in of 1000, taking one every 10 trees, up to the end of each chain, and

-x 1000 10 11000

a burn-in of 1000, taking one every 10 trees, up to the 11 000th point of the chains (or less,

if the chains are shorter). If the chain is long enough, this implies a sample size of 1000.

-o <basename>

outputs the results of the comparison in files with the specified basename combined with

several extensions:

• <basename>.bpcomp: summary of the comparison;

• <basename>.bplist: tabulated list of bipartitions (splits) sorted by decreasing dis-

crepancy between the chains;

• <basename>.con.tre: consensus tree based on the merged bipartition list.

-c <cutoff>

tunes the cutoff for the majority rule consensus (posterior probability support under which

nodes are collapsed in the final consensus tree). By default, the cutoff is equal to 0.5.

5.3 readpb mpi

-x <burn-in> [<every> <until>]
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Defines the burn-in, the sub-sampling frequency, and the size of the samples of trees to be

taken from the chains under comparison. By default, <burn-in> = 0, <every> = 1 and

<until> is equal to the size of the chain (see bpcomp).

Note that under the mutation-selection model described in Rodrigue et al. (2010), these

sub-sampling options are the only ones currently available with the readpb mpi command.

In this context, the command will produce files that allow one to plot the distribution of

scaled selection coefficients, both globally and in a site-specific manner. Under nucleotide

and amino acid models, several other options are available, as described below.

-rr

computes the mean posterior relative exchangeabilities (only if those are free parameters of

the model).

-ss

computes the mean posterior site-specific state equilibrium frequencies (only under infinite

mixture models).

-r

computes the mean posterior rates across sites

-sitelogl

computes the site-specific marginal log likelihoods: these likelihoods are summed over all

site-specific random variables (rates and profiles).

-ppred

for each point of the chain (after burn-in), produces a data replicate simulated from the

posterior predictive distribution.

-div

performs a posterior predictive diversity test: the test statistic is the mean diversity per

site (mean number of distinct amino-acid per sites); the observed value of this statistic is

computed on the true data, and compared with its null (posterior predictive) distribution

(see Lartillot et al., 2007).
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-sitecomp

performs a posterior predictive test of compositional heterogeneity across sites (PPA-VAR).

The test statistic is the variance in site-specific empirical frequencies across the alignment.

That is, for each state (i.e. each of the 4 nucleotides, or the 20 amino-acids, depending on

the nature of the alignment), the variance across sites in the frequency at which this state

is observed is first computed. Then, this variance is averaged over all possible states (all

possible nucleotides or amino-acids). The observed value of this statistic is computed on the

true data, and compared with its null (posterior predictive) distribution.

-siteconvprob

This posterior predictive diversity test uses as a statistic the mean squared empirical fre-

quency, over all states and across all sites (PPA-CONV). For a given site, this can be

interpreted as the mean probability of drawing twice the same state from the equilibrium

frequency profile at that site. Hence, averaged over all sites, this statistic is meant to estimate

the long-term probability of converging toward the same state in two independent species

at a randomly chosen aligned position. The observed value of this statistic is computed on

the true data, and compared with its null (posterior predictive) distribution.

-comp

performs a posterior predictive test of compositional homogeneity across taxa: the test statis-

tic is the maximum square deviation between global and taxon-specific empirical frequencies;

the observed value of this statistic is computed on the true data, and compared with its null

(posterior predictive) distribution (see Blanquart and Lartillot, 2006)

-allppred

performs all posterior predictive tests mentioned above (-div, -sitecomp, -siteconvprob,

-comp) at once.

-ppredrate [prior / posterior]

in the case where among site rate variation is modelled, this option will specify whether

the site-specific rate should be drawn from the conditional prior or the conditional posterior

distribution (see above, section 4, Posterior predictive checks).
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-ppredprofile [prior / posterior]

in the case of profile mixture models (such as cat or cat-gtr), this option will specify whether

the site-specific profile should be drawn from the conditional prior or the conditional posterior

distribution (see above, section 4, Posterior predictive checks).

-ppredroot [prior / posterior]

this option will specify whether the state at the root should be drawn from the conditional

prior or the conditional posterior distribution (see below, Benchmark section).

-cv [test_dataset]

computes a posterior mean cross-validation score. If D1 is the dataset used for running the

chain (the training set), D2 is the dataset specified after -cv (the test set) and M is the

model under which the chain was run, then what the program outputs is a Monte Carlo

estimate of

ln p(D2 | D1,M) =

∫
p(D2 | θ,M) p(θ | D1)dθ

where θ is the set of (global) parameters of the model. The cross-validation likelihood is a

measure of how well the model ’predicts’ site patterns of D2 after it has ’learnt’ its parameters

on D1. This measure can be computed for alternative models Mi, i = 1..K, and models

with higher score should in principle be preferred.

Cross validation needs to be replicated (cross-validation scores typically have a large

variability, depending on the exact columns that have been included in D1 and D2). If your

original data set is D, then you should produce random pairs D1 and D2, by randomly

sampling columns of D (without replacement), running pb_mpi separately on each replicate

of D1, and then running readpb_mpi with the -cv option (followed by the name of the

corresponding D2 test set) on each resulting chain (and all this for each model Mi).

The cross-validation score can then be averaged over the replicates for a given model.

Then, supposing that a model M1 has a higher average score than M2, the number of

replicates for which the score of M1 is indeed higher than the score of M2 can be considered

as a measure of the ’significance’ of this preference for M1 over M2.

Typically, 10-fold cross-validation (such that D2 represents 10% and D1 90% of the

original dataset) has been used (e.g. Philippe et al., 2011), and ten replicates have been run

(although ideally, 100 replicates would certainly be more adequate). However, alternative

25



schemes are possible. In particular, for faster computation in the case of very large datasets,

cross-validation schemes in which the size of D1 and D2 combined together is smaller than

the size of D could be useful (as long as D1 is large enough for the parameters to be correctly

estimated).
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6 Benchmark

This section presents the results of a benchmark of the program across the history of its

successive versions.

6.1 Inference of the tree tree topology

A series of 8 versions, from November 2012 to November 2019 are tested, on two datasets (an

alignment from TreeBase, reference M1487, and a dataset made of mitochondrial coding se-

quences for 42 mammalian species, 3507 aligned positions) and under the CAT-GTR model.

Small datasets are considered here, for computational reasons, but also because small align-

ments tend to give intermediate bipartition posterior probabilities, which are more sensitive

to potential bugs in the underlying MCMC algorithmics. Chains were run for 11000 cycles.

Bipartition posterior probability estimates were obtained using bpcomp, using a burn-in of

1000 cycles.

As can be seen from figures 1 and 2, tree inference appears to be very stable across the

history of the code: all versions return very similar posterior distributions over bipartitions.

Of note, earlier versions show slightly more dispersed plots against subsequent versions,

which reflects their less efficient mixing in tree space.

6.2 Posterior predictive checks

In contrast to tree topology inference, posterior predictive checks have been somewhat prob-

lematic until June 2016. Since then, the code has remained essentially unchanged. To

illustrate this point, here, a series of 6 versions, from December 2015 to November 2019 are

tested, by applying them to three datasets, under the CAT-GTR model. The results are

shown in table 1. Two points are noteworthy.

First, there was a bug in the simulation algorithm in the earliest versions, before April

9, 2016. This bug was leading to simulated data that were looking too similar to the true

data. As a result, the earliest versions of the program were giving an underestimate of the

extent to which the model is rejected by the data (tables, December 09, 2015). Of note, this

bug was specific to the MPI version and was not present in the original non-MPI version.

Starting from April 2016 (beginning of version 1.7), the routine for simulation is correct,

except that there was still a conceptual problem concerning how the root state was sampled.

In the earlier versions, the root state was drawn from the conditional posterior (thus in-

formed by the original data), instead of being drawn from the equilibrium frequencies of the
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Figure 1. Bipartition frequencies across pb mpi versions: TreeBase M1487 dataset
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Figure 2. Bipartition frequencies across pb mpi versions: mammalian mitochondrial
dataset
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process. This approach turns out to be quite problematic. First, it makes the posterior pre-

dictive sampling routine not root-invariant. Another more fundamental consequence is that

the simulation process is then not at equilibrium. In particular, in the context of the compo-

sitional tests, this means that the program was actually testing only for time-homogeneity,

but not for stationarity, of the process.

Sampling the root state from the equilibrium distribution of the process was implemented

in April 22, 2016 and then set up as the default behavior of the program in the version of

June 06, 2016. Thus, the posterior predictive test is correct since June 06, 2016 and has

not changed since then. Of note, the previous approach (sampling from the conditional

posterior at the root) can still be activated in the current version of the program (by using

the -ppredroot posterior option). However, it is there only for the record, and its use is

not recommended.

In practice, the change from conditional posterior sampling to conditional prior sam-

pling (i.e. sampling from equilibrium frequencies) of the root state is dataset dependent.

For data that are compositionally homogeneous across taxa (simulated data, first table), the

bug has virtually no impact. In cases showing moderate compositional heterogeneity (sec-

ond table, mitochondrial data), the z-scores are moderately impacted. This makes sense: if

the data have relatively minor deviations from the compositional homogeneity assumption,

then, root states sampled from the conditional posterior are close to equilibrium under the

inferred substitution process. Finally, for data showing strong deviation from compositional

homogeneity (arthropod mitochondrial data, third table), the z-scores can be substantially

different between the two versions of the test, although the qualitative outcome is not funda-

mentally different, showing strong rejection in all cases. As for the diversity test, it appears

to be relatively insensitive to the choice between the two alternative approaches for sampling

the states at the root.

We would like to apologize for the confusion and the lack of reproducibility of the pos-

terior predictive checks that these problems might have caused.
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code version comp (max) comp (mean) div
rep a rep b rep a rep b rep a rep b

09dec15 -0.14 -0.14 - - 0.57 0.54
19apr16 0.05 0.04 - - 0.83 0.80
22apr16 0.05 0.06 2.15 2.24 0.88 0.90
06jun16 0.02 0.06 2.13 2.22 0.85 0.87
14jun16 0.04 0.06 2.20 2.26 0.80 0.82
04aug16 -0.01 0.04 2.16 2.15 0.87 0.86
22nov19 0.03 -0.00 2.19 2.16 0.88 0.87

code version comp (max) comp (mean) div
rep a rep b rep a rep b rep a rep b

09dec15 11.45 11.36 - - 1.98 1.90
19apr16 13.89 14.51 - - 2.65 2.69
22apr16 14.70 14.36 18.41 20.11 2.82 2.57
06jun16 14.54 14.24 21.45 21.46 1.94 1.96
14jun16 14.21 14.65 21.36 20.90 1.96 2.10
04aug16 15.17 14.68 22.16 21.08 1.92 1.89
22nov19 14.27 13.91 21.60 19.83 1.72 1.86

code version comp (max) comp (mean) div
rep a rep b rep a rep b rep a rep b

09dec15 11.03 10.93 - - 0.96 0.86
19apr16 23.08 24.66 - - 1.25 1.43
22apr16 23.29 24.93 23.09 24.44 1.36 1.36
06jun16 42.50 43.53 49.62 51.00 1.23 1.30
14jun16 42.62 43.47 50.99 50.71 1.37 1.24
04aug16 42.57 43.01 49.90 49.82 1.29 1.25
22nov19 41.50 42.92 50.89 50.75 1.38 1.26

Table 1. posterior predictive z-scores; top: data simulated under a time-homogeneous
and stationary model (cat-gtr, based on arthropod mitochondrial dataset, 20 taxa, 1243
aligned amino-acid positions); middle: mammalian mitochondrial dataset (42 taxa, 3507
aligned amino-acid positions), bottom: arthropod dataset (20 taxa, 1243 aligned amino-acid
positions). Two replicates per version are shown.
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