
COPASI	wrapper	SpaceScanner	
	

User	Manual	
version	May	2017	

	
	
Table	of	Contents	
	
1.	SpaceScanner	features	...	2	
1.1	SpaceScanner	terminology	...	2	
1.2	SpaceScanner	features	...	2	
1.3	SpaceScanner	required	inputs	..	2	
1.4	Installation	...	3	

2.	Creating	a	model	file	for	SpaceScanner	...	4	
3.	Running	SpaceScanner	..	4	
3.1	from	the	web	interface	...	4	
3.1.1	“Select	a	model”	window	..	5	
3.1.2	“Settings”	window	..	6	
3.1.3	“Parameter	sets”	...	9	
3.1.4	“Status”	button	...	10	
3.1.5	“Export	CSV”	button	...	11	

3.2.	from	command	line	..	11	
3.2.1	"copasi"	section	..	11	
3.2.2	"optimization"	section	..	11	
3.2.3	"parameters"	section	...	12	
3.2.4	"web"	section	..	13	
3.2.5	"output"	section	...	13	
3.2.6	Not	in	separate	sections	...	13	
3.2.7	Example	configuration	file	..	14	

3.3	Stopping	SpaceScanner	...	14	
3.4	Accessing	the	results	..	14	

References	...	15	
	
	
	 	

	

1.	SpaceScanner	features	
	

1.1	SpaceScanner	terminology	
	
There	 are	multiple	 similar	 terms	with	quite	different	meanings	used	 in	 the	UI	 and	
documentation:	

• A	run	is	a	single	optimization	process.	Each	active	run	corresponds	to	a	single	
Copasi	process	instance.	

• A	job	is	a	collection	of	one	or	more	optimization	runs	that	all	share	the	same	
set	of	parameters	and	are	executed	in	parallel.	

• A	task	is	a	collection	of	one	or	more	jobs	described	by	a	single	configuration	
file.	A	task	corresponds	to	single	command-line	execution	of	SpaceScanner.	

1.2	SpaceScanner	features	

• run	 multiple	 parallel	 optimization	 tasks	 on	 a	 biological	 model,	 and	
automatically	terminate	when	the	tasks	have	reached	a	consensus	value;	

• display	optimization	history	graphically	for	these	parallel	runs;	
• scan	 the	 space	of	 the	possible	parameters	 sets	 to	optimize,	 and	determine	

the	 minimal	 subset	 of	 parameters	 that	 gives	 “good	 enough”	 results	 for	 a	
specific	objective	 function	and	 the	minimal	number	of	parameters	 required	
for	a	specific	target	value.	

1.3	SpaceScanner	required	inputs	

• a	Copasi	model	file	(.sbml)	

The	file	must	include:	

• the	objective	function	to	optimize;	
• list	of	changeable	parameters	of	the	model	with	their	minimal	and	maximal	

values;	
• the	optimization	methods	to	use	and	the	configurations	of	these	methods.	

SpaceScanner	produces	these	global	outputs:	

• a	.csv	file	with	the	best	(or	all)	optimization	results	
• a	.log	file	tracing	the	SpaceScanner	execution	history;	

as	well	as	these	outputs	for	each	set	of	optimization	parameters:	

• a	.txt	file	for	each	of	the	several	parallel	optimization	runs;	the	file	includes	
the	history	of	the	Copasi	optimization	process	and	the	end	parameter	values;	

• a	Copasi	model	file	for	each	if	the	optimization	runs;	in	this	file,	the	
optimization	parameters	are	listed	to	their	best	values.	

SpaceScanner	internally	uses	Copasi	(Hoops	et	al.,	2006;	Mendes	et	al.,	2009)	to	
execute	the	optimizations.	

SpaceScanner	at	the	moment	supports	greedy	and	exhaustive	search	strategies	
when	looking	for	the	minimal	satisfying	number	of	parameters.	"Smarter"	search	
strategies	(e.g.	global	stochastic	search,	parameter	sensitivity-informed	search,	MFA-
value	informed	search)	are	planned	as	future	additions.	

SpaceScanner	is	easy	to	use	and	configure.	There	are	two	ways	how	to	work	with	
SpaceScanner:	

• a	command-line	interface	that	expects	a	configuration	file	in	JSON	format	as	
the	only	argument;	

• a	web	interface	that	allows	the	user	to	interactively	configure,	start,	and	stop	
Copasi	optimizations,	as	well	as	see	their	results	graphically.	

1.4	Installation	
	
There's	no	installation	necessary.	Download	and	extract	the	SpaceScanner	source	
code.	Alternatively,	get	it	through	Git:	git	clone	
https://github.com/atiselsts/spacescanner.git.	
Prerequisites:	

• Python	(version	2.7);	
• psutil	Python	module.	

Install	psutil	with	PIP,	Python	package	manager,	e.g.:	
sudo	pip	install	psutil	
To	install	pip,	it	may	be	possible	to	use	easy_install:	
sudo	easy_install	pip	
Alternatively,	run	this	on	Ubuntu	Linux	to	install	psutil:	
sudo	apt-get	install	python-psutil	
SpaceScanner	has	been	successfully	tested	on	64-bit	Linux	and	Windows,	including	
Cygwin.	

	
In	case	of	installation	problems,	refer	to	instructions	at	
https://github.com/atiselsts/spacescanner	

	

2.	Creating	a	model	file	for	SpaceScanner	
	
COPASI	 (Hoops	et	al.,	2006;	Mendes	et	al.,	2009)	 (http://copasi.org/)	 	 can	work	
with	 own	 format	 (.cps	 file)	 or	with	 SBML	 (Hucka	 et	 al.,	 2003)	 (.xml)	 files.	 The	
optimization	task	has	to	be	set	in	the	model	file	using	COPASI:	SpaceScanner	has	
to	receive	a	.cps	file	fully	configured	for	optimization	(at	least	the	expression	of	
objective	function	and	adjustable	parameters	are	set).	
	
All	 adjustable	 parameters	 SpaceScanner	 will	 work	 with	 have	 to	 be	 defined.	
SpaceScanner	 will	 create	 the	 necessary	 combinations	 from	 parameters	 list	
automatically.	
		

	

3.	Running	SpaceScanner	
	

3.1	from	the	web	interface	
	

Double	click	on	spacescanner/spacescanner_launcher.py	file.	This	both	starts	the	
SpaceScanner	executable	(if	not	started	yet)	and	opens	the	web	interface	in	a	web	
browser.	
Alternatively,	start	spacescanner/source/spacescanner.py	from	a	command	line,	
passing	the	string	"web"	as	the	parameter,	and	open	the	web	interface	manually	
(default	URL:	http://localhost:19000).	
	
SpaceScanner	in	running	mode	looks	like	in	the	screenshot	below.	
	

	
	

3.1.1	“Select	a	model”	window	

A	model	can	be	selected	by	choosing	the	prepared	model	file	(see	section	2)	in	
.cps	format.	
	

3.1.2	“Settings”	window	
	

3.1.2.1	“Performance”	
	

Parallel	 runs	 per	 job:	 definition	 of	 the	 number	 of	 parallel	 COPASI	 executions	
that	will	be	run	per	job	
Max.	concurrent	runs:	the	maximal	number	of	simultaneous	COPASI	processes	
Max CPU time limit, sec: maximal	CPU	time	for	optimization	in	case	neither	
consensus,	nor	stagnation,	nor	other	termination	conditions	have	been	reached.

	
Consensus delay, sec: minimal	time	to	continue	after	the	consensus	criteria	
has	been	reached.
Consensus proportional delay, %:	 minimal	 time	 to	 continue	 after	 the	
consensus	criteria	has	been	reached,	as	a	proportion	of	the	runtime	so-far.	
Consensus corridor, %: “width”	of	consensus	corridor	to	determine	whether	
the	 consensus	 criteria	 has	 been	 reached.	 Consensus	 is	 reached	 if	 Objective	
Function	 values	 of	 all	 runners	 are	 within	 range	 [bOF-bOF*(Consensus	
corrodor,%);	bOF]	where	bOF	is	Objective	Function	value	of	best	runner.	
Stagnation delay, sec: maximal	 duration	 to	 continue	when	 no	 runners	 are	
finding	new	Objective	Function	values.
Stagnation proportional delay, %: maximal	duration	to	continue	when	no	
runners	 are	 finding	 new	 Objective	 Function	 values,	 as	 a	 proportion	 of	 the	
runtime	so-far.	

3.1.2.2	“Methods”	
	

	
	
Methods:	 definition	 of	 applied	 optimization	methods	 from	 the	methods	 list	 of	
COPASI.	They	will	be	applied	in	the	listing	sequence.	
Fallback	methods:	List	of	optimization	methods	to	use	if	a	method	from	the	first	
list	fails	to	produce	any	solutions.	
Randomize	method	 selection:	 pick	optimization	methods	 from	 the	 list	will	 be	
chosen	in	random	order.	
Use	Optimization	method	parameters	 from	the	model	 file:	 take	optimization	
method	parameters	from	the	model	input	file.	
Restart	 from	 the	 best	 value:	 restart	 each	 subsequent	method	will	 be	 started	
from	the	best	point	in	the	search	space	so	far?	
	

3.1.2.3	“Total	optimization”	
	

	
	
Enable	total	optimization	(TOP)	%:		enables	stopping	the	optimization	when	a	
entered	fraction	of	total	optimization	potential	(TOP)	(Stalidzans	et	al.,	2016)	
has	been	reached.	
Target	fraction	of	TOP,	%:	maximal	difference	between	the	optimal	value	and	a	
satisfactory	value.	
Manually	entered	TOP	value	(optional):	all-parameter	optimization	value	used	
if	this	is	not	set,	the	best	of	the	two	used	if	set.	
	

3.1.2.4	“Other”	
	

	
	
Output	log	level:	console	output	level	(higher	means	more	detailed	output).		
Stop	server:	terminates	Space	Scanner	server.	
	

3.1.3	“Parameter	sets”	
	

	
In	the	window	“Parameter	sets”	the	fraction	of	adjustable	parameter	
combination	space	to	be	addressed	in	the	optimization	can	be	defined.	
In	the	first	row	the	number	of	adjustable	parameters	found	in	the	model	and	the	
number	of	optimization	jobs	at	current	parameter	choice	is	indicated.	In	the	
example	figure	above	it	tells	that	15	adjustable	parameters	are	found	and	doing	
exhaustive	search	for	1-5	parameters	in	combinations	the	number	of	jobs	
(adjustable	parameter	combinations)	is	4943.	
	
Several	types	of	search	types	are	available	from	dropdown	menu.		

3.1.4	“Status”	button	

	
	
Status	button	returns	information	about	the	finished	and	running	jobs:	
Job	x	gives	the	number	of	job	
OF	value	gives	information	about	the	best	objective	function	value	among	all	
runners	within	particular	job	
Max	CPU	time	tells	the	duration	of	the	longest	single	runner	as	the	duration	of	
all	runs	is	close	to	equal	but	not	identical.	
Total	CPU	time	gives	the	total	time	spent	by	all	runners	in	the	job.	Usually	“Max	
CPU	time”	multiplied	by	the	number	of	runners	per	job	is	close	to	the	“Total	CPU	
time”	value.	
Status	can	have	several	values:	

- value	running	means	the	job	is	still	executed	
- value	consensus	reached	means	that	job	is	ended	because	

consensus	has	been	reached	
- value	CPU	time	limit	reached	means	that	the	allowed	CPU	time	

(set	in	window	Settings->Performance)	has	been	reached	before	
consensus	has	been	reached.	

Final	method	indicates	the	method	that	was	used	when	the	job	was	terminated	
because	when	consensus	was	reached	or	CPU	time	was	exceeded.	
After	the	last	dash	in	the	status	report	the	set	of	adjustable	parameters	is	
indicated.	
	

3.1.5	“Export	CSV”	button	
	
A	.csv	file	is	exported	showing	all	the	information	available	under	Status	button	
(see	section	3.1.4)	as	well	as	the	final	values	of	adjustable	parameters.	

3.2.	from	command	line	
	
Simply	execute	the	spacescanner/source/spacescanner.py	script,	passing	the	
configuration	file	name	as	a	parameter.	
	
Configuration	file	
	
The	name	of	the	file	must	be	passed	as	command	line	parameter	if	run	from	the	
command	line.	If	web	interface	is	used,	the	file	is	automatically	generated.	

The	configuration	file	contains	a	number	of	fields	grouped	in	a	number	of	sections.	

3.2.1	"copasi"	section	
This	section	defines	the	model	file	and	optimization	methods	to	use.	

Fields:	

• modelFile	-	COPASI	model	file	name;	@SELF@	refers	to	SpaceScanner	source	
directory	

• methods	-	list	of	optimization	methods	to	use;	the	methods	are	selected	
sequentially,	each	subsequent	one	is	selected	when	the	previous	ones	fail;	
can	contain	a	method	more	than	once	

• fallbackMethods	-	list	of	optimization	methods	to	use	when	a	method	fails	to	
evaluate	the	objective	function	in	given	time;	useful	for	e.g.	highly	
constrained	models	on	which	many	methods	may	not	find	any	solutions	at	all	

• randomizeMethodSelection	-	whether	to	pick	methods	from	the	configuration	
randomly	or	in	order	(default:	false)	

• methodParametersFromFile	-	whether	to	use	optimization	method	
parameters	from	COPASI	model	file	(default:	false)	

3.2.2	"optimization"	section	
Defines	maximal	duration	of	optimization	runs,	termination	criteria	etc.	

Fields:	

• timeLimitSec	-	maximal	CPU	time	for	optimization	in	case	the	consensus	
criteria	and	other	end	conditions	have	not	been	reached	(default:	600	sec)	

• consensusCorridor	-	the	consensus	criteria	is	satisfied	if	values	of	all	runs	are	
within	this	consensus	corridor	range	(default:	1%)	

• consensusAbsoluteError	-	to	determine	whether	the	consensus	criteria	has	
been	reached	(default:	1e-6)	

• consensusDelaySec	-	the	minimal	time	to	continue	after	the	consensus	
criteria	has	been	reached	(default:	300	sec)	

• consensusProportionalDelay	-	the	minimal	time	to	continue	after	the	
consensus	criteria	has	been	reached	as	proportion	of	the	runtime	so-far	
(default:	15%)	

• stagnationDelaySec	-	the	maximal	time	to	continue	when	no	values	of	any	
parallel	run	are	changing	(default:	300	sec)	

• stagnationProportionalDelay	-	the	maximal	time	to	continue	when	no	
values	of	any	parallel	run	are	changing,	as	proportion	of	the	runtime	so-far	
(default:	15%)	

• targetFractionOfTOP	-	compared	to	the	full-set	objective	function	value	or	
the	user-defined	TOP	value(default:	0.0	(i.e.,	disabled),	range:	[0.0	..	1.0])	

• bestOfValue	-	the	user-defined	best	(TOP)	objective	function's	value	
• restartFromBestValue	-	restart	each	subsequent	method	from	the	best	point	

in	the	search	space	so	far	(default:	true)	
• maxConcurrentRuns	-	how	many	COPASI	processes	to	run	by	parallel	(default:	

max(4,	the	number	of	CPU	cores);	range:	[1	..	number	of	CPU	cores])	
• runsPerJob	-	how	many	paraller	COPASI	processes	per	each	job	(i.e.	a	single	

set	of	parameters)	

3.2.3	"parameters"	section	
Defines	the	way	how	subsets	of	paramters	are	selected.	Note	that	the	optimization	
parameters	as	such	are	defined	in	the	.sbml	model	file,	not	here!	
The	section	is	an	array	of	records	of	arbitrary	length.	If	repeating	or	overlapping	
records	are	specified,	an	optimization	job	for	a	given	subset	of	paramters	is	still	run	
only	once.	

Records	may	have	the	following	type:	

• full-set	-	a	single	optimization	job	containing	all	parameters	in	the	model	as	
specified	in	the	.sbml	file	

• exhaustive	-	all	possible	combinations	of	N	to	M	parameters.	Field	"range"	
defines	the	values	of	N	and	M.	For	example,	"range"	:	[1,	3]	selects	N	to	be	
equal	to	1,	M	to	3.	"range"	:	[2]	selects	N	=	M	=	2.	

• greedy	-	for	N	parameters,	take	the	best	set	of	N-1	parameters	and	run	all	
possible	optimizations	that	add	one	parameter	not	yet	in	the	set.	Unless	N=1,	
there	must	also	be	a	record	describing	which	strategy	to	use	to	for	N-
1	parameter	sets.	

• greedy-reverse	-	similar	to	"greedy",	but	takes	away	a	single	parameter	from	
the	best	N+1	parameter	set	instead	of	adding	it.	

• explicit	-	the	names	of	parameters	to	use	are	explicitly	named	in	the	
"parameters"	field	of	the	record.	

By	default,	these	records	are	present:	

• full-set;	
• exhaustive	with	range	[1..3];	
• greedy	with	range	[4..8].	

3.2.4	"web"	section	
Web	interface	settings.	

Fields:	

• enable	-	whether	to	run	the	web	interface	(default:	true).	Warning:	access	
control	is	not	supported	by	SpaceScanner!	Enable	this	only	in	trusted	
environments.	

• port	-	http	port	number	(default:	19000)	

3.2.5	"output"	section	
Logging	settings.	

Fields:	

• filename	-	the	file	name	to	use	for	optimization	results	(default:	"results--
.csv")	

• loglevel	-	debug	log	level;	from	0	to	4,	higher	means	more	messages	
(default:	2)	

• numberOfBestCombinations	-	how	many	of	the	best	parameter	combinations	
to	include	in	results	for	each	number	of	parameters;	0	means	unlimited	
(default:	unlimited)	

3.2.6	Not	in	separate	sections	

• restartOnFile	-	.csv	file	name	on	which	to	restart	optimization	runs,	trying	to	
complete	timeouted	jobs	(default:	null)	

• taskName	-	the	global	name	of	this	optimization	task	

3.2.7	Example	configuration	file	

	

3.3	Stopping	SpaceScanner	

• "Stop"	button	-	terminate	a	specific,	currently	running	job	(stops	all	runners	
of	that	job).	

• "Stop	all"	button	-	completely	stops	the	analysis	of	the	current	model	-	
terminates	all	running	jobs	and	clears	the	queue	of	scheduled	jobs.	

To	terminate	the	SpaceScanner	server,	either	use	the	command	line	(Ctrl+C)	or	go	
to	Settings	->	Other.	Here,	a	button	for	that	is	provided:	

• "Stop	server"	-	terminates	the	SpaceScanner	application	itself.	

3.4	Accessing	the	results	

SpaceScanner	 stores	 the	 results	 of	 finished	 jobs	
in	spacescanner/results	directory.	Warning:	for	 tasks	 with	 a	 large	 number	 of	 jobs	
these	directories	can	take	quite	a	lot	of	space	on	the	disk!	

Each	optimization	task	(i.e.,	a	collection	of	jobs)	is	stored	in	a	separate	directory.	This	
directory	 contains	 the	 configuration	 of	 that	 task,	 the	.log	file	 of	 the	 execution,	
and	.csv	file	where	the	results	of	finished	jobs	are	stored.	
Each	job	gets	 its	own	subdirectory.	These	subdirectories	contain	Copasi	model	files	
(stored	 as	.cps),	 and	 Copasi	 process	 execution	 histories	 (stored	 as	.log	files).	
The	.cps	files	 contain	 the	 input	 model;	 for	 all	 finished	 runs	 they	 also	 include	 the	
parameter	values	on	which	that	run	achieved	its	best	objective	function	value.	

Using	web	interface	the	results	are	downloaded	in	a	.csv	file	(see	section	3.1.5)	

	

	References	
	
	
Hoops,	S.,	Sahle,	S.,	Gauges,	R.,	Lee,	C.,	Pahle,	J.,	Simus,	N.,	Singhal,	M.,	Xu,	L.,	

Mendes,	P.,	Kummer,	U.,	2006.	COPASI--a	COmplex	PAthway	SImulator.	
Bioinformatics	22,	3067–74.	doi:10.1093/bioinformatics/btl485	

Hucka,	M.,	Finney,	A.,	Sauro,	H.M.,	Bolouri,	H.,	Doyle,	J.C.,	Kitano,	H.,	Arkin,	 	a.	P.,	
Bornstein,	B.J.,	Bray,	D.,	Cornish-Bowden,		a.,	Cuellar,		a.	a.,	Dronov,	S.,	Gilles,	
E.D.,	Ginkel,	M.,	Gor,	V.,	Goryanin,	I.I.,	Hedley,	W.J.,	Hodgman,	T.C.,	Hofmeyr,	
J.-H.,	 Hunter,	 P.J.,	 Juty,	 N.S.,	 Kasberger,	 J.L.,	 Kremling,	 	 a.,	 Kummer,	 U.,	 Le	
Novere,	 N.,	 Loew,	 L.M.,	 Lucio,	 D.,	 Mendes,	 P.,	 Minch,	 E.,	 Mjolsness,	 E.D.,	
Nakayama,	 Y.,	Nelson,	M.R.,	Nielsen,	 P.F.,	 Sakurada,	 T.,	 Schaff,	 J.C.,	 Shapiro,	
B.E.,	 Shimizu,	 T.S.,	 Spence,	 H.D.,	 Stelling,	 J.,	 Takahashi,	 K.,	 Tomita,	 M.,	
Wagner,	J.,	Wang,	J.,	2003.	The	systems	biology	markup	language	(SBML):	a	
medium	 for	 representation	 and	 exchange	 of	 biochemical	 network	models.	
Bioinformatics	19,	524–531.	doi:10.1093/bioinformatics/btg015	

Mendes,	P.,	Hoops,	S.,	Sahle,	S.,	Gauges,	R.,	Dada,	J.O.,	Kummer,	U.,	2009.	
Computational	Modeling	of	Biochemical	Networks	Using	COPASI,	in:	Maly,	I.	
V	(Ed.),	Methods	in	Molecular	Biology,	Systems	Biology,	Methods	in	
Molecular	Biology.	Humana	Press,	Totowa,	NJ,	pp.	17–59.	doi:10.1007/978-
1-59745-525-1	

Stalidzans,	E.,	Mozga,	I.,	Sulins,	J.,	Zikmanis,	P.,	2016.	Search	for	a	minimal	set	of	
parameters	by	assessing	the	total	optimisation	potential	for	a	dynamic	
model	of	a	biochemical	network.	IEEE/ACM	Trans.	Comput.	Biol.	
Bioinforma.	1–1.	doi:10.1109/TCBB.2016.2550451	

	

	
		

