

GPU ACCELERATION OF
INTERACTIVE LARGE SCALE DATA
ANALYTICS UTILIZING THE APARAPI
FRAMEWORK

 Ryan LaMothe
Pacific Northwest National Laboratory
Research Scientist
PNNL-SA-88181

Stuart Rose, Scott Dillard

3 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

GPU ACCELERATION OF
INTERACTIVE LARGE SCALE
DATA ANALYTICS UTILIZING
THE APARAPI FRAMEWORK

CC-4257

4 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

CONTENTS

§ Who is Pacific Northwest National Laboratory

§ What is IN-SPIRE
§ What is Aparapi

§ What problem are we trying to solve with GPUs
§ How are we solving the problem

§ How are we scaling the computation
§ How was Aparapi used

§ Results
§ Summary

§ Questions

5 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

WHO IS PACIFIC NORTHWEST NATIONAL LABORATORY

§ Department of Energy (DOE) Office of Science Laboratory

§ Battelle - the world's largest independent scientific research and
technology development organization - has operated PNNL for
DOE and its predecessors since 1965

§ Outstanding science, impactful solutions

Our vision
PNNL will be recognized
worldwide and valued
nationally and regionally for our
leadership in science and for
rapidly translating discoveries
into solutions for challenges in
energy, the environment, and
national security.

6 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

PACIFIC NORTHWEST NATIONAL LABORATORY AT A GLANCE

§ Reports to DOE’s Office of Science

§ $1.1 billion* in R&D expenditures in FY09
§ 4,700 staff

§ 63% of funding is from DOE offices

*includes $96M in funding for CRL

7 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

THROUGH OUR MISSIONS, WE ARE ADVANCING SCIENCE AND TECHNOLOGY TO
MAKE THE WORLD A BETTER PLACE

§ Strengthen U.S. scientific foundations for innovation

§ Increase U.S. energy capacity and reduce
dependence on imported oil

§ Prevent and counter terrorism and proliferation of
weapons of mass destruction

§ Reduce environmental effects of human activity and
create sustainable systems

8 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

WHAT IS IN-SPIRE

http://in-spire.pnl.gov

§ IN-SPIRE is an information visualization
software system designed for the analysis of
unstructured text data sources

§ Key benefits and features
–  Text documents are automatically organized

into topic clusters and visualized
–  Requires little or no a priori knowledge of

the data sources
–  No up front training or key-wording
–  Language independent
–  Operates on commodity hardware/software

§ A Thinking Aid
–  The user directs exploration and applies their interpretation
–  Helps the user see the expected and discover the unexpected

http://in-spire.pnnl.gov

9 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

TOPIC CLUSTERING

Extract Text from Documents Organize According
 to Key Topics

Present each document as a “docustar”
where proximity suggests similar themes

•  Create a mathematical
 signal (vector) for
 each document

•  Cluster the document
 vectors in n-space

•  Project the n-space
 clusters into a two
 dimensional visualization

10 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

IN-SPIRE VISUALIZATIONS

11 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

WHAT IS APARAPI

§ Aparapi (A PARallel API) is a high-performance heterogeneous compute and data parallelization
framework for Java that automatically converts Java bytecode to OpenCL at runtime for execution on
multi-core CPU, GPU and APU devices

–  Open-sourced by AMD Inc. in 2011
–  http://code.google.com/p/aparapi/
–  Pacific Northwest National Laboratory is a contributor

§ For most general-purpose use cases, developers can use Aparapi to convert algorithms that already
describe parallel computations using for-loops into parallel computations that can be executed via OpenCL

–  Similar in concept to creating “parallel-for” loops
§ For-loops have to be converted to Kernels
§ Kernels use well-known Java thread semantics

–  Provides automatic failover to native Java Thread Pool when OpenCL is unavailable
–  GPUs require “share nothing” data parallelism and compute

§  “Advanced” users can leverage GPU “local” memory for special types of shared memory needs

12 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

WHAT PROBLEM ARE WE TRYING TO SOLVE WITH GPUS

§ We’re trying to solve the problem of accelerating computation of large-scale term associations on arbitrary
sets of documents

–  Dramatically decrease “time-to-solution” for analytics and visualization problems

–  Enable knowledge discovery through text analysis methods

–  Provide users with contextual insight into millions of documents in near-real time
–  Address the unique requirement that computations be performed locally on individual user workstations

§ Near real-time not possible with local CPU-only solutions

–  Support future server-side computation scaling requirements

13 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

WHAT PROBLEM ARE WE TRYING TO SOLVE WITH GPUS

§ Scaling of a fundamental computation used by many types of text analysis and set computation methods
–  Term association computations

§ Correlation/co-occurrence analysis

–  Drives the following features in IN-SPIRE
§ Vector space rankings

§ Principle component analysis
–  Latent semantic indexing

§  Text galaxy visualizations
§ Correlation tool

–  Document and terms

–  Document groups
§  Theme generation

§  Faceted browsing
§ Content searching and discovery

–  Finding important term associations

14 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

0 1 1 0
0 1 1 1
1 0 0 0

Somalia
Afghan

Baghdad
Term Document Matrix

01001…001

Packed Bits

11101…101
0 63 64 127

long long

§ Term-document matrices

–  What is a term-document matrix
§ Rows = Terms

§ Columns = Documents

–  Matrix entry could be an existence bit, frequency count,
etc.
§ Existence: Does term t appear in document d?

§ Frequency: How often does term t appear in document d?

–  For efficiency, bits are packed into longs
§ Efficiently stores 64 bits per matrix entry

–  One row of the matrix is effectively a bit vector
§ One Term existence bit set for all documents

HOW ARE WE SOLVING THIS PROBLEM

15 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

Set Intersection = Dot Product
0 1 1 0
0 1 1 1 Somalia

Afghan

0 1 1 0 + = 2

Dot Product of Packed Vectors

01001…001

11101…101

10100…011

00000…001
& &

01001…001 00000…001 popCount()

HOW ARE WE SOLVING THIS PROBLEM

§ Measurement of term associations is based on their
co-occurrence within documents

–  Two terms are associated if they occur together
frequently

§ Intersection of bit vectors gives co-occurrence counts
–  Set intersection = Dot product of binary vectors

–  Extended to packed binary vectors using bitwise
AND (&) and “population count” or popCount
operation

16 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW ARE WE SOLVING THIS PROBLEM

§ Matrix multiplication naturally follows from dot products

–  Goal: Correlation Matrix C = A x BT
§ Computes the matrix product of all-pairs intersections

§ Requires computing intersections of 2N2 elements

–  Computational complexity for Amxp x Bpxn is O(mnp)

§ In regular Matrix Multiplication, we must execute the following steps:
–  Multiple matrices Atxd x Btxd

§ Constraint: The number of documents (columns) in A must match the number of terms (rows) in B

–  In special cases, if Matrix B has incorrect dimensions, but will work if transposed, Matrix B is
transposed

§ Once we have Matrix A and Matrix B configured correctly, we perform a Dot Product on all Rows and
Columns

17 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW ARE WE SOLVING THIS PROBLEM

§ How is our Matrix Multiplication different?

–  Packed elements
–  Modified matrix multiplication

–  Modified dot product
§ We have the fortunate constraint that the number of documents has to be the same for both matrices

–  Required for algorithms using the result matrix
–  Atxd x Btxd where both matrices contain the same number of documents

§ Therefore we can always make two assumptions:
–  One of the matrices will always need to be transposed

–  Transposition will always result in two matrices that abide by the rules of matrix multiplication
§ We will always perform A x BT

18 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW ARE WE SOLVING THIS PROBLEM

§ Once we have A x BT we proceed to the next step of matrix multiplication which is the transposition of
Matrix B

§ But wait, isn’t A x (BT)T just A x B?

–  Yes!

–  We do not need to perform the transpositions, avoiding very costly computations
§ Next is the modified dot product

–  Normal dot product
§  (At1d1 x Bt1d1) + (At1d2 x Bt2d1)…

–  Modified dot product
§ We introduce two changes to this formula

§  (At1d1 & Bt1d1) + (At1d2 & Bt1d2)…

19 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW ARE WE SOLVING THIS PROBLEM

§ The two changes are the following:
§ We perform operations on only row elements of At1d(1…n) and row elements of Bt1d(1…n)

§  Instead of multiplication we perform a bitwise AND (&) operator

–  All packed longs are unpacked before AND operator is applied

§ What these changes allow:
§ We can perform a “population count” or “popCount” of bit intersections for each row across both matrices

§ We can treat all operations as “row major” ordering across both matrices

–  This allows us to perform another important optimization later

§ What we end up with is a Term x Term dimension Correlation matrix of intersection counts

Cij = Ati,dk & Btj,dk
dk=1

n

∑
Where t and d refer to the term and document vectors, respectively, and & is a bit level operator

20 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

0 1 1 1

0

1

1

0

2

Documents

Terms

Result Matrix

HOW ARE WE SOLVING THIS PROBLEM

Te
rm

s

D
ocum

ents

21 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW ARE WE SCALING THE COMPUTATION

§ Naïve implementation of matrix multiplication works great until you need to scale to large data sizes

–  Limited by memory available on GPU card
–  Minimum memory requirement is 2 x computation matrices + 1 x result matrix

§ How do you scale to unlimited size term-document matrices?
–  At the most basic level we are performing vector-vector dot products on individual rows for entire

matrices

–  This allows us to take a relatively simple approach to scaling
§ Perform dot products on multiple subsets of both matrices until entirety of both matrices have been covered

§ Only limitations are the maximum size of each sub-matrix and the sub-result matrix that can fit in the GPU card’s
memory

22 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

Sub-Matrix
 GPU 1

Sub-Matrix
 GPU 1

Sub-Matrix
 GPU 2

Matrix A Matrix B Sub-Result
Matrix

Sub-Result
Matrix

Result
Matrix

Sub-Matrix
 GPU 2

X

X

HOW ARE WE SCALING THE COMPUTATION

§ There are numerous benefits to this approach

–  We can tailor the sub-matrix sizes to each GPU being used
–  We can distribute computation across multiple GPUs or CPU + GPU combinations

–  Final result matrix can be assembled on the CPU

23 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW WAS APARAPI USED

§ We initially tried two different approaches
–  Implement existing Lucene OpenBitSet “intersection count” algorithms using Aparapi

§ Executing Lucene OpenBitSet.intersectionCount in a double for-loop was used as the naïve base case

–  Implement traditional OpenCL-specific Matrix Multiplication algorithms modified for BitSets using Aparapi
§  It turns out that implementing Lucene OpenBitSet algorithms in Aparapi was very easy

–  Kernel consisted of “copy and paste” with minor modifications to existing algorithms to support custom array
access
§ Converted CPU-specific code to be GPU-optimized

–  Majority of research and development centered around optimizing the traversal of matrices in host code
–  When GPUs are unavailable, JTP fallback is still optimized for CPU

§ The OpenCL-specific Matrix Multiplication code, modified to meet BitSet-specific requirements was difficult
–  Surprisingly, performance was overall slightly slower than OpenBitSet Kernel implementation in GPU mode
–  Unfortunately due to localBarrier usage in Kernel, algorithms did not perform acceptably when executed in JTP

fallback

24 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW WAS APARAPI USED

§ Lucene OpenBitSet IntersectionCount (naïve)
 
for (int i = 0; i < obsList.size(); i++) {  
 final Pair<OpenBitSet, OpenBitSet> obsA = obsList.get(i);  
 
 for (int j = 0; j < obsList.size(); j++) {  
 final Pair<OpenBitSet, OpenBitSet> obsB = obsList.get(j);  
 
 final int truePositive = (int) OpenBitSet.intersectionCount(obsA.getLeft(),

	obsB.getRight());  
 obsResultMatrix[i][j] = truePositive;  
 }  
}

public static long pop_intersect(long A[], long B[], int wordOffset, int numWords) {…}  
 
 
public static int pop(long x) {…}

25 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

HOW WAS APARAPI USED

§ Aparapi OpenBitSet IntersectionCount Kernel
 
@Override  
public void run() {  
 final int i = getGlobalId(0);  
 
 if (i < matrixA_NumTerms) {  
 final int j = getGlobalId(1);  
  
 if (j < matrixB_NumTerms) {  
 resultMatrix[i * matrixB_NumTerms + j] = pop_intersect(matrixA, i * numWords, matrixB,

	j * numWords, numWords);  
 }  
 }  
}

private int pop_intersect(long matrixA[], int aStart, long matrixB[], int bStart, int
numWords) {…}  
 
private int pop(long x) {…}

26 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

RESULTS

§ A number of CPU vs. GPU comparisons were performed to gauge the time required to calculate various
combinations of Term Document matrices

–  Fixed number of Terms, Varying number of Documents

–  Varying number of Terms, Fixed number of Documents

§ Hardware Specifications

CPU GPU

Dell 75001 ATI Radeon HD 79702

Windows 7 64-bit Windows 7 64-bit

2 x 2.4Ghz Intel Xeon Quad Core
(Gulftown/Westmere)
16 Effective Cores with Hyper-threading

32 compute units x 925Mhz
(Tahiti)
2048 Stream Processors

PCI-E 2.0 PCI-E 3.0

12GB DDR3-1066 3GB GDDR5-1375

1.  http://www.dell.com/downloads/global/products/precn/en/q2wk6_dell_precision_t7500_spec_sheet.pdf
2.  http://www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3

27 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

RESULTS

§  Fixed Terms, Varying Documents
–  Results represent calculation time

excluding host setup or OpenCL
generation time

§  Terms (Number of Rows)
–  5000

§  Documents (Number of Columns)
–  32000…512000

§  Number of Operations

–  8.0E+11…1.3E+13
§  Lucene OpenBitSet

–  Naïve implementation utilizing double
for-loop (DFL)

§  Aparapi
–  Java Thread Pool (JTP)

–  OpenCL CPU Mode (CPU)
–  OpenCL GPU Mode (GPU)

§  All implementations use OpenBitSet-
based Kernel

28 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

RESULTS

§  Varying Terms, Fixed Documents
–  Results represent calculation time

excluding host setup or OpenCL
generation time

§  Terms (Number of Rows)
–  500…8000

§  Documents (Number of Columns)
–  128000

§  Number of Operations

–  3.2E+10…8.2E+12
§  Lucene OpenBitSet

–  Naïve implementation utilizing double
for-loop (DFL)

§  Aparapi
–  Java Thread Pool (JTP)

–  OpenCL CPU Mode (CPU)
–  OpenCL GPU Mode (GPU)

§  All implementations use OpenBitSet-
based Kernel

29 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

SUMMARY

§ Current IN-SPIRE Correlation Matrix CPU-specific computation was having difficulty meeting desired performance goals
–  Time-to-solution
–  Large matrix dimensions

§ Conversion of existing CPU-specific code to GPU code can be extremely difficult
–  Research revealed that Correlation Matrix computation is GPU-friendly
–  Aparapi made GPU conversion of CPU code very easy

§  At the smallest matrix dimensions, performance between JTP, CPU and GPU was very similar
§  As matrix dimensions increased

–  JTP and CPU performance decreased at a similar rate, quickly becoming unacceptable
§  OpenCL CPU mode performance was nearly identical to native Java Thread Pool mode

–  GPU performance decreased at a significantly lower rate, remaining acceptable
§ Clear path forward to allow nearly unlimited size matrix performance scaling
§ Desired IN-SPIRE performance goals for both JTP and GPU modes will be met

30 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

QUESTIONS?

§ Contact Information

31 | GPU Acceleration of Interactive Large Scale Data Analytics Utilizing the Aparapi Framework | PNNL-SA-88181 | June, 2012

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions
and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited
to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no
obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to
make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO
RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in
this presentation are for informational purposes only and may be trademarks of their respective owners.

The contents of this presentation were provided by individual(s) and/or company listed on the title page. The information and
opinions presented in this presentation may not represent AMD’s positions, strategies or opinions. Unless explicitly stated, AMD
is not responsible for the content herein and no endorsements are implied.

