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WHO IS PACIFIC NORTHWEST NATIONAL LABORATORY 

§ Department of Energy (DOE) Office of Science Laboratory 

§ Battelle - the world's largest independent scientific research and 
technology development organization - has operated PNNL for 
DOE and its predecessors since 1965 

§ Outstanding science, impactful solutions  

Our vision 
PNNL will be recognized 
worldwide and valued 
nationally and regionally for our 
leadership in science and for 
rapidly translating discoveries 
into solutions for challenges in 
energy, the environment, and 
national security. 
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PACIFIC NORTHWEST NATIONAL LABORATORY AT A GLANCE 

§ Reports to DOE’s Office of Science 

§ $1.1 billion* in R&D expenditures in FY09 
§ 4,700 staff 

§ 63% of funding is from DOE offices 

*includes $96M in funding for CRL 
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THROUGH OUR MISSIONS, WE ARE ADVANCING SCIENCE AND TECHNOLOGY TO 
MAKE THE WORLD A BETTER PLACE 

§ Strengthen U.S. scientific foundations for innovation 

§ Increase U.S. energy capacity and reduce 
dependence on imported oil 

§ Prevent and counter terrorism and proliferation of 
weapons of mass destruction 

§ Reduce environmental effects of human activity and 
create sustainable systems 
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WHAT IS IN-SPIRE 

http://in-spire.pnl.gov 

§ IN-SPIRE is an information visualization  
software system designed for the analysis of  
unstructured text data sources 

§ Key benefits and features 
–  Text documents are automatically organized  

into topic clusters and visualized 
–  Requires little or no a priori knowledge of  

the data sources 
–  No up front training or key-wording  
–  Language independent  
–  Operates on commodity hardware/software 

§ A Thinking Aid 
–  The user directs exploration and applies their interpretation 
–  Helps the user see the expected and discover the unexpected 

http://in-spire.pnnl.gov 
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TOPIC CLUSTERING 

Extract Text from Documents Organize According 
 to Key Topics 

Present each document as a “docustar” 
where proximity suggests similar themes 

•  Create a mathematical  
   signal (vector) for 
   each document 

•  Cluster the document 
   vectors in n-space 

•  Project the n-space  
  clusters into a two  
  dimensional visualization 
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IN-SPIRE VISUALIZATIONS 
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WHAT IS APARAPI 

§ Aparapi (A PARallel API) is a high-performance heterogeneous compute and data parallelization 
framework for Java that automatically converts Java bytecode to OpenCL at runtime for execution on 
multi-core CPU, GPU and APU devices 

–  Open-sourced by AMD Inc. in 2011 
–  http://code.google.com/p/aparapi/ 
–  Pacific Northwest National Laboratory is a contributor 

§ For most general-purpose use cases, developers can use Aparapi to convert algorithms that already 
describe parallel computations using for-loops into parallel computations that can be executed via OpenCL 

–  Similar in concept to creating “parallel-for” loops 
§ For-loops have to be converted to Kernels 
§ Kernels use well-known Java thread semantics 

–  Provides automatic failover to native Java Thread Pool when OpenCL is unavailable 
–  GPUs require “share nothing” data parallelism and compute 

§  “Advanced” users can leverage GPU “local” memory for special types of shared memory needs 
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WHAT PROBLEM ARE WE TRYING TO SOLVE WITH GPUS 

§ We’re trying to solve the problem of accelerating computation of large-scale term associations on arbitrary 
sets of documents 

–  Dramatically decrease “time-to-solution” for analytics and visualization problems 

–  Enable knowledge discovery through text analysis methods 

–  Provide users with contextual insight into millions of documents in near-real time 
–  Address the unique requirement that computations be performed locally on individual user workstations 

§ Near real-time not possible with local CPU-only solutions 

–  Support future server-side computation scaling requirements 
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WHAT PROBLEM ARE WE TRYING TO SOLVE WITH GPUS 

§ Scaling of a fundamental computation used by many types of text analysis and set computation methods 
–  Term association computations 

§ Correlation/co-occurrence analysis 

–  Drives the following features in IN-SPIRE 
§ Vector space rankings 

§ Principle component analysis 
–  Latent semantic indexing 

§  Text galaxy visualizations 
§ Correlation tool 

–  Document and terms 

–  Document groups 
§  Theme generation 

§  Faceted browsing 
§ Content searching and discovery 

–  Finding important term associations 
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§ Term-document matrices 

–  What is a term-document matrix 
§ Rows = Terms 

§ Columns = Documents 

–  Matrix entry could be an existence bit, frequency count, 
etc. 
§ Existence: Does term t appear in document d? 

§ Frequency: How often does term t appear in document d? 

–  For efficiency, bits are packed into longs 
§ Efficiently stores 64 bits per matrix entry 

–  One row of the matrix is effectively a bit vector 
§ One Term existence bit set for all documents 

HOW ARE WE SOLVING THIS PROBLEM 
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HOW ARE WE SOLVING THIS PROBLEM 

§ Measurement of term associations is based on their 
co-occurrence within documents 

–  Two terms are associated if they occur together 
frequently 

§ Intersection of bit vectors gives co-occurrence counts 
–  Set intersection = Dot product of binary vectors 

–  Extended to packed binary vectors using bitwise 
AND (&) and “population count” or popCount 
operation 
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HOW ARE WE SOLVING THIS PROBLEM 

§ Matrix multiplication naturally follows from dot products 

–  Goal: Correlation Matrix C = A x BT  
§ Computes the matrix product of all-pairs intersections 

§ Requires computing intersections of 2N2 elements 

–  Computational complexity for Amxp x Bpxn is O(mnp) 

§ In regular Matrix Multiplication, we must execute the following steps: 
–  Multiple matrices Atxd x Btxd 

§ Constraint: The number of documents (columns) in A must match the number of terms (rows) in B 

–  In special cases, if Matrix B has incorrect dimensions, but will work if transposed, Matrix B is 
transposed 

§ Once we have Matrix A and Matrix B configured correctly, we perform a Dot Product on all Rows and 
Columns 
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HOW ARE WE SOLVING THIS PROBLEM 

§ How is our Matrix Multiplication different? 

–  Packed elements 
–  Modified matrix multiplication 

–  Modified dot product 
§ We have the fortunate constraint that the number of documents has to be the same for both matrices 

–  Required for algorithms using the result matrix 
–  Atxd x Btxd where both matrices contain the same number of documents 

§ Therefore we can always make two assumptions: 
–  One of the matrices will always need to be transposed 

–  Transposition will always result in two matrices that abide by the rules of matrix multiplication 
§ We will always perform A x BT 
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HOW ARE WE SOLVING THIS PROBLEM 

§ Once we have A x BT we proceed to the next step of matrix multiplication which is the transposition of 
Matrix B 

§ But wait, isn’t A x (BT)T just A x B? 

–  Yes! 

–  We do not need to perform the transpositions, avoiding very costly computations 
§ Next is the modified dot product 

–  Normal dot product 
§  (At1d1 x Bt1d1) + (At1d2 x Bt2d1)… 

–  Modified dot product 
§ We introduce two changes to this formula 

§  (At1d1 & Bt1d1) + (At1d2 & Bt1d2)… 
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HOW ARE WE SOLVING THIS PROBLEM 

§ The two changes are the following: 
§ We perform operations on only row elements of At1d(1…n) and row elements of Bt1d(1…n) 

§  Instead of multiplication we perform a bitwise AND (&) operator 

–  All packed longs are unpacked before AND operator is applied 

§ What these changes allow: 
§ We can perform a “population count” or “popCount” of bit intersections for each row across both matrices 

§ We can treat all operations as “row major” ordering across both matrices 

–  This allows us to perform another important optimization later 

§ What we end up with is a Term x Term dimension Correlation matrix of intersection counts 

Cij = Ati,dk & Btj,dk
dk=1

n

∑
Where t and d refer to the term and document vectors, respectively, and & is a bit level operator 
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HOW ARE WE SCALING THE COMPUTATION 

§ Naïve implementation of matrix multiplication works great until you need to scale to large data sizes 

–  Limited by memory available on GPU card 
–  Minimum memory requirement is 2 x computation matrices + 1 x result matrix 

§ How do you scale to unlimited size term-document matrices? 
–  At the most basic level we are performing vector-vector dot products on individual rows for entire 

matrices 

–  This allows us to take a relatively simple approach to scaling 
§ Perform dot products on multiple subsets of both matrices until entirety of both matrices have been covered 

§ Only limitations are the maximum size of each sub-matrix and the sub-result matrix that can fit in the GPU card’s 
memory 
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HOW ARE WE SCALING THE COMPUTATION 

§ There are numerous benefits to this approach 

–  We can tailor the sub-matrix sizes to each GPU being used 
–  We can distribute computation across multiple GPUs or CPU + GPU combinations 

–  Final result matrix can be assembled on the CPU 
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HOW WAS APARAPI USED 

§ We initially tried two different approaches 
–  Implement existing Lucene OpenBitSet “intersection count” algorithms using Aparapi 

§ Executing Lucene OpenBitSet.intersectionCount in a double for-loop was used as the naïve base case 

–  Implement traditional OpenCL-specific Matrix Multiplication algorithms modified for BitSets using Aparapi 
§  It turns out that implementing Lucene OpenBitSet algorithms in Aparapi was very easy 

–  Kernel consisted of “copy and paste” with minor modifications to existing algorithms to support custom array 
access 
§ Converted CPU-specific code to be GPU-optimized 

–  Majority of research and development centered around optimizing the traversal of matrices in host code 
–  When GPUs are unavailable, JTP fallback is still optimized for CPU 

§ The OpenCL-specific Matrix Multiplication code, modified to meet BitSet-specific requirements was difficult 
–  Surprisingly, performance was overall slightly slower than OpenBitSet Kernel implementation in GPU mode 
–  Unfortunately due to localBarrier usage in Kernel, algorithms did not perform acceptably when executed in JTP 

fallback 
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HOW WAS APARAPI USED 

§ Lucene OpenBitSet IntersectionCount (naïve) 
 
for (int i = 0; i < obsList.size(); i++) {  
  final Pair<OpenBitSet, OpenBitSet> obsA = obsList.get(i);  
 
  for (int j = 0; j < obsList.size(); j++) {  
    final Pair<OpenBitSet, OpenBitSet> obsB = obsList.get(j);  
 
    final int truePositive = (int) OpenBitSet.intersectionCount(obsA.getLeft(), 

	obsB.getRight());  
    obsResultMatrix[i][j] = truePositive;  
  }  
} 
 
 
public static long pop_intersect(long A[], long B[], int wordOffset, int numWords) {…}  
 
 
public static int pop(long x) {…} 
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HOW WAS APARAPI USED 

§ Aparapi OpenBitSet IntersectionCount Kernel 
 
@Override  
public void run() {  
  final int i = getGlobalId(0);  
 
  if (i < matrixA_NumTerms) {  
    final int j = getGlobalId(1);  
     
    if (j < matrixB_NumTerms) {  
      resultMatrix[i * matrixB_NumTerms + j] = pop_intersect(matrixA, i * numWords, matrixB, 

	j * numWords, numWords);  
    }  
  }  
} 
 
private int pop_intersect(long matrixA[], int aStart, long matrixB[], int bStart, int 
numWords) {…}  
 
private int pop(long x) {…} 
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RESULTS 

§ A number of CPU vs. GPU comparisons were performed to gauge the time required to calculate various 
combinations of Term Document matrices 

–  Fixed number of Terms, Varying number of Documents 

–  Varying number of Terms, Fixed number of Documents 

§ Hardware Specifications 

CPU GPU 

Dell 75001 ATI Radeon HD 79702 

Windows 7 64-bit Windows 7 64-bit 

2 x 2.4Ghz Intel Xeon Quad Core 
(Gulftown/Westmere) 
16 Effective Cores with Hyper-threading 

32 compute units x 925Mhz 
(Tahiti) 
2048 Stream Processors 

PCI-E 2.0 PCI-E 3.0 

12GB DDR3-1066 3GB GDDR5-1375 

1.  http://www.dell.com/downloads/global/products/precn/en/q2wk6_dell_precision_t7500_spec_sheet.pdf 
2.  http://www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3 
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RESULTS 

§  Fixed Terms, Varying Documents 
–  Results represent calculation time 

excluding host setup or OpenCL 
generation time 

§  Terms (Number of Rows) 
–  5000 

§  Documents (Number of Columns) 
–  32000…512000 

§  Number of Operations 

–  8.0E+11…1.3E+13 
§  Lucene OpenBitSet 

–  Naïve implementation utilizing double 
for-loop (DFL) 

§  Aparapi 
–  Java Thread Pool (JTP) 

–  OpenCL CPU Mode (CPU) 
–  OpenCL GPU Mode (GPU) 

§  All implementations use OpenBitSet-
based Kernel 
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RESULTS 

§  Varying Terms, Fixed Documents 
–  Results represent calculation time 

excluding host setup or OpenCL 
generation time 

§  Terms (Number of Rows) 
–  500…8000 

§  Documents (Number of Columns) 
–  128000 

§  Number of Operations 

–  3.2E+10…8.2E+12 
§  Lucene OpenBitSet 

–  Naïve implementation utilizing double 
for-loop (DFL) 

§  Aparapi 
–  Java Thread Pool (JTP) 

–  OpenCL CPU Mode (CPU) 
–  OpenCL GPU Mode (GPU) 

§  All implementations use OpenBitSet-
based Kernel 
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SUMMARY 

§ Current IN-SPIRE Correlation Matrix CPU-specific computation was having difficulty meeting desired performance goals 
–  Time-to-solution 
–  Large matrix dimensions 

§ Conversion of existing CPU-specific code to GPU code can be extremely difficult 
–  Research revealed that Correlation Matrix computation is GPU-friendly 
–  Aparapi made GPU conversion of CPU code very easy 

§  At the smallest matrix dimensions, performance between JTP, CPU and GPU was very similar 
§  As matrix dimensions increased 

–  JTP and CPU performance decreased at a similar rate, quickly becoming unacceptable 
§  OpenCL CPU mode performance was nearly identical to native Java Thread Pool mode 

–  GPU performance decreased at a significantly lower rate, remaining acceptable 
§ Clear path forward to allow nearly unlimited size matrix performance scaling 
§ Desired IN-SPIRE performance goals for both JTP and GPU modes will be met 
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QUESTIONS? 

§ Contact Information 
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ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY 
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