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Introduction

High-throughput genotyping of tens of thousands of SNPs using microarrays is common practice in both
laboratory and population genetics. Genotypes at a dense panel of biallelic markers with a low rate of
missing data are a valuable resource for breeding, marker-assisted selection, genetic mapping and analyses
of population structure. The Illumina Infinium system is one popular and cost-effective (∼ 100/sample)
platform. Custom Illumina arrays are available for many organisms of research, agricultural or ecological
interest including mouse (Collaborative Cross Consortium 2012), dog, chicken, cow, pig, horse, sheep, salmon
(Johnston et al. 2013) and cotton Hulse-Kemp et al. (2015).

The argyle package provides basic functionality for loading biallelic SNP datasets directly from (1) the
output of Illumina BeadStudio; or (2) PLINK binary filesets. For genotypes from Illumina arrays, hybridization
intensity data is stored in parallel with genotype calls for use in quality control and downstream analyses.
Several functions for quality control at the level of both hybridization intensity (where available) and genotype
calls are provided. Data can be exported from argyle to PLINK binary format; or to formats compatible with
the R/qtl package for genetic mapping in experimental crosses (Broman et al. 2003), or the DOQTL package
(Gatti et al. 2014) for mapping in multi-founder outbred populations.

1

http://g3journal.org/content/early/2015/04/22/g3.115.018416
http://www.rqtl.org/
http://do.jax.org/


The design of argyle is inspired by the PLINK software (Purcell et al. 2007). A PLINK fileset has three parts:
a genotype matrix, a marker map and a “pedigree” (sample and family metadata) file. Likewise the central
data structure in this package (the genotypes object) stores a genotype matrix in parallel with a marker
map and sample metadata.

Note: argyle was designed with mouse genetics in mind, but should be applicable to any diploid
organism with an X-Y sex chromosome system (with males XY and females XX.)

Caveats and other software

We created argyle to fill a specific niche: quality control and basic exploratory analysis of genotype data
obtained from the Mouse Universal Genotyping Array series (MUGA, MegaMUGA and GigaMUGA). These
are custom Illumina Infinium arrays processed by Neogen Inc (Lincoln, NE). The design and content of the
MUGA arrays are described elsewhere (Morgan & Welsh (2015)).

This package explicitly favors simplicity and readability of code over raw efficiency. It is appropriate for the
“medium-sized” data – say, tens of thousands of markers and hundreds of individuals – regularly encountered
in experimental genetics. Users with larger datasets routinely collected in human genetics – say, millions of
markers and thousands of individuals – which do not fit comfortably in memory as plain-vanilla R objects
probably want to explore more sophisticated R packages (such as the GenABEL suite).

A zoo of R packages already exists for normalization of raw intensity data from Illumina platforms: see
beadarray (Dunning et al. 2007), and crlmm(Ritchie et al. 2009), among others. Users interested in
exploiting the copy-number signal from Illumina arrays should consult these packages and related references.
Gross copy-number aberrations affecting hundreds or thousands of markers, such as (partial) aneuploidy, can
be identified in argyle; see Intensity-based analyses for more.

Although argyle implements some basic frequency calculations for use in genotyping quality control, it
makes no effort to duplicate or replace the functionality of existing R packages for statistical and population
genetics. More serious calculations – marker LD, Hardy-Weinbery equilibrium tests, association tests – can be
accessed through the pacakge’s PLINK wrappers. (These calls don’t require holding the genotypes themselves
in memory in the R session, so they can be applied to quite large datasets.)

The genotypes object

The central datastructure in the argyle package is the genotypes object. It is simply a matrix of genotypes
(markers in rows, samples in columns) with a marker map and sample metadata stored as attributes. Row
names (marker names) and column names are strictly required in order to keep the various pieces of the
object unambiguously in sync. Because a genotypes is a matrix (ie. is.matrix(x) == TRUE), any function
which accepts a matrix will also accept a genotypes. Standard attributes of the genotypes object are as
follows.

• attr(,"map") – the marker map, in PLINK format. Required columns are
– chr – chromosome identifier (anything containing “X” assumed to be chrX; anything with a “Y”,

chrY); NA for missing
– marker – globally-unique marker identifier without whitespace
– cM – genetic position in centimorgans; 0 for missing
– pos – physical position in basepairs; 0 for missing
– A1 – allele 1, arbitrarily defined (but we will label it the REF allele)
– A2 – allele 2, arbitrarily defined (but we will label it ALT)

• attr(,"ped") – sample information, in PLINK format. Required columns are
– fid – the “family” or group (or batch, or strain, . . . ) label
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– iid – globally-unnique individual identifier without whitespace
– mom – individual ID of this sample’s mother; 0 for missing
– dad – individual ID of this sample’s mother; 0 for missing
– sex – sex; 1 = male, 2 = female, 0 = missing
– pheno – phenotype; 0 or -9 = missing, 1 = “control”, 2 = “case”; or any floating-point value for a

quantitative trait

• attr(,"alleles") – allele encoding (see Allele encoding schemes later in this vignette), one of
"native", "01", "relative" or "parent".

• attr(,"filter.sites") – character vector of length equal to number of rows of genotype matrix, with
non-blank values flagging suspicious markers

• attr(,"filter.samples") – character vector of length equal to number of columns of genotype matrix,
with non-blank values flagging suspicious samples

When hybridization intensity data are included, the object has several additional attributes.

• attr(,"intensity") – a named list of length 2, whose elements $x and $y are matrices of x and y
hybridization intensities. These matrices have the same shape, and the same row and column names, as
the main genotypes matrix.

• attr(,"normalized") – logical scalar indicating of any normalization has been applied to the intensity
matrices

If the thresholded quantile-normalization procedure (tQN; see section Particulars for Illumina arrays later
in this section) has been performed, the result will be stored in two additional attributes. * attr(,"baf") –
matrix of B-allele frequency (BAF) values * attr(,"lrr") – matrix of log2-intensity ratio (LRR) values

Several R generics are implemented for working genotypes objects. To demonstrate them, we will use an
example dataset containing genotypes from 116 mouse samples at 14319 markers across three autosomes
(chr17, chr18, chr19) plus the Y chromosome.

library(plyr)
library(argyle)
data(ex)

The summary() method returns a brief overview of the contents of a genotypes: count of samples and
markers; how alleles are encoded; whether underlying hybridization-intensity is also included; and any quality
filters which have been set.

summary(ex)

## --- ex ---
## A genotypes object with 14319 sites x 116 samples
## Allele encoding: native
## Intensity data: yes (raw)
## Sample metadata: yes ( 67 male / 49 female / 0 unknown )
## Filters set: 0 sites / 0 samples

The print() method returns the same information as summary(), plus a count of markers by chromosome.
It is included only to prevent accidentally flooding an interactive terminal with the contents of a big object.

print(ex) # or just type 'ex'

3



## --- x ---
## A genotypes object with 14319 sites x 116 samples
## Allele encoding: native
## Intensity data: yes (raw)
## Sample metadata: yes ( 67 male / 49 female / 0 unknown )
## Filters set: 0 sites / 0 samples
##
## Counts of markers by chromosome:
## chr17 chr18 chr19 chrY
## 5548 4925 3763 83

Use head() to peek at the first k markers in a genotypes, and to see underlying marker and sample

head(ex, n = 6, nsamples = 6)

## Genotypes matrix:
## AA037 AA037 AA041 AA041 AA376 AB009
## UNCHS043509 T T T T T T
## UNCHS043511 T T T T T T
## UNCJPD006513 A A A A A A
## UNCHS043510 G G G G G G
## UNCHS043512 G G G G G G
## JAX00429559 T T T T T T
##
## Marker map:
## chr marker cM pos A1 A2
## chr17 UNCHS043509 0.006630976 3075928 T C
## chr17 UNCHS043511 0.006630976 3075928 T C
## chr17 UNCJPD006513 0.007102397 3081326 A G
## chr17 UNCHS043510 0.007365267 3084336 T G
## chr17 UNCHS043512 0.007365267 3084336 T G
## chr17 JAX00429559 0.007628051 3087345 T C
##
## Sample info:
## fid iid mom dad sex pheno
## inbred AA_0374_F_10004312002_R01C01 0 0 2 -9
## inbred AA_0374_F_10004312002_R11C01 0 0 2 -9
## inbred AA_0417_M_10004312002_R02C01 0 0 1 -9
## inbred AA_0417_M_10004312002_R03C01 0 0 1 -9
## inbred AA_37621_M_10004312002_R04C01 0 0 1 -9
## F1 AB_0095_F_10004312006_R04C02 0 0 2 -9

Several accessor methods provide convenient shortcuts to obtain marker map, sample metadata, etc. without
need for the awkward attr(x, "attribute") syntax. These methods offer read-only access to object
attributes.

Technical note: Accessor functions are read-only for two reasons. The first is to raise the barrier
to accidental overwriting of data. The second is attr<- is an R primitive, so that setting attributes
can be performed without making a new copy of an object. However, user-defined functions for
setting object attributes would have to pass the object by value rather than by reference, making
at least one new copy in the process. This performance hit becomes significant when handling
objects containing hundreds of samples genotyped at tens of thousands of markers.
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To pull out the marker map, use

## see the marker map
map <- markers(ex)
head(map)

## chr marker cM pos A1 A2 type
## UNCHS043509 chr17 UNCHS043509 0.006630976 3075928 T C recomb_hotspot
## UNCHS043511 chr17 UNCHS043511 0.006630976 3075928 T C recomb_hotspot
## UNCJPD006513 chr17 UNCJPD006513 0.007102397 3081326 A G wild_novel
## UNCHS043510 chr17 UNCHS043510 0.007365267 3084336 T G recomb_hotspot
## UNCHS043512 chr17 UNCHS043512 0.007365267 3084336 T G recomb_hotspot
## JAX00429559 chr17 JAX00429559 0.007628051 3087345 T C MDA_other
## is.MM unique is.biallelic
## UNCHS043509 FALSE TRUE TRUE
## UNCHS043511 FALSE TRUE TRUE
## UNCJPD006513 FALSE TRUE TRUE
## UNCHS043510 FALSE TRUE TRUE
## UNCHS043512 FALSE TRUE TRUE
## JAX00429559 FALSE TRUE TRUE

The result is a dataframe whose rows are parallel to those in the genotypes matrix. The map must have
rownames which match the rownames of the parent object. Columns 1 through 6 are the required columns
for a PLINK marker file (*.bim); remaining columns can store any extra marker metadata of interest.

To pull out sample information, use

## see sample metadata
mice <- samples(ex)
head(mice)

## fid iid mom dad
## AA_0374_F_10004312002_R01C01 inbred AA_0374_F_10004312002_R01C01 0 0
## AA_0374_F_10004312002_R11C01 inbred AA_0374_F_10004312002_R11C01 0 0
## AA_0417_M_10004312002_R02C01 inbred AA_0417_M_10004312002_R02C01 0 0
## AA_0417_M_10004312002_R03C01 inbred AA_0417_M_10004312002_R03C01 0 0
## AA_37621_M_10004312002_R04C01 inbred AA_37621_M_10004312002_R04C01 0 0
## AB_0095_F_10004312006_R04C02 F1 AB_0095_F_10004312006_R04C02 0 0
## sex pheno
## AA_0374_F_10004312002_R01C01 2 -9
## AA_0374_F_10004312002_R11C01 2 -9
## AA_0417_M_10004312002_R02C01 1 -9
## AA_0417_M_10004312002_R03C01 1 -9
## AA_37621_M_10004312002_R04C01 1 -9
## AB_0095_F_10004312006_R04C02 2 -9

The result is a dataframe whose rows are parallel to the columns of the genotype matrix, with matching
names. The first 6 columns are the required columns for a PLINK “family” file (*.fam, *.tfam): group ID,
individual ID, mother ID, father ID, sex (1 = male, 2 = female), and phenotype (0/-9 = missing, 1 = control,
2 = case; or any floating-point number for a quantitative trait). For downstream compatibility with PLINK,
missing values are encoded as 0 rather than NA. Note that the rownames of the sample metadata must match
the column iid (unique individual ID), and the individual IDs cannot contain whitespace characters.
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Subsets of a genotypes object can be obtained in two ways. First, the generic [ indexing operator has been
implemented for genotypes to allow for taking “slices” of the genotypes matrix and to have that slicing
propagated to all the object’s attributes. As usual, the index argument(s) to [ can be logical vectors (TRUE
to include a row or column in the result), character vectors (row or column names to include), or integer
vectors (row or column indices to include). For example, we can extract the first 1000 markers in the example
dataset and call summary() to check the result.

first1k <- ex[ 1:1000, ]
summary(first1k)

## --- first1k ---
## A genotypes object with 1000 sites x 116 samples
## Allele encoding: native
## Intensity data: yes (raw)
## Sample metadata: yes ( 67 male / 49 female / 0 unknown )
## Filters set: 0 sites / 0 samples

We could also subset by samples (columns); here we pick a random 10 columns.

summary( ex[ ,sample.int(ncol(ex), 10) ] )

## --- ex[, sample.int(ncol(ex), 10)] ---
## A genotypes object with 14319 sites x 10 samples
## Allele encoding: native
## Intensity data: yes (raw)
## Sample metadata: yes ( 5 male / 5 female / 0 unknown )
## Filters set: 0 sites / 0 samples

A common task is to extract markers or samples by groups defined in the marker map (eg. all markers
in some genomic region) or sample metadata (eg. only female samples). The generic subset() has been
implemented for genotypes to make the syntax for such operations simpler. Similar to the subset(x, ...)
method for dataframes, the indexing expression in ... is evaluated in the scope of the marker map (the
default, by = "markers") or sample metadata (by = "samples"). For example, the following pairs of code
fragments produce the same result.

## get only markers on chrY
x <- subset(ex, chr == "chrY")
y <- ex[ (markers(ex)$chr == "chrY"), ]
identical(x,y)

## [1] TRUE

## get only the female samples
x <- subset(ex, sex == 2, by = "samples")
y <- ex[ ,(samples(ex)$sex == 2) ]
identical(x,y)

## [1] TRUE

Technical note: If using the subset() syntax, unexpected results can occur if a variable defined
in the current environment shares a name with a column in the relevant dataframe. This is due
to underlying use of R’s “non-standard evaluation” in subset(). Just be careful.
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Technical note: A side effect of overloading the [ operator for genotypes is that any operation
which repeatedly slices a matrix (including functions in the apply family) will incur the extra
cost of slicing the marker map, sample metadata, intensity matrices, etc. on every pass. If this is
a problem, use the unexported argyle:::.copy.matrix.noattr() function to make a copy of
the genotypes matrix which preseves row and column names but dumps all the other attributes.

The argyle package borrows its notion of a “filter” from the VCF format: blank (in our case "") unless
there is evidence for low quality. Unlike VCF, which allows filters for sites (in our case markers) only, argyle
defines filters for both sites and samples. A marker (site) or sample can be marked as suspicious by adding
single-character codes to its entry in attr(,"filter.sites") or attr(,"filter.samples") respectively.
Let us check how many filters are set in the example dataset.

## see quality filters (like VCF's 'FILTER' field)
summarize.filters(ex)

## sites samples
## N 0 0
## H 0 0
## I 0 0
## F 0 0

Set filters for the first 10 sites and check them.

attr(ex, "filter.sites")[1:10] <- "N"
summarize.filters(ex)

## sites samples
## N 10 0
## H 0 0
## I 0 0
## F 0 0

To drop all filtered sites and/or samples, use apply.filters(). The default behavior is to apply filters to
both sites and samples (apply.to = "both").

fl <- apply.filters(ex, "both")

## Dropping 10 markers and 0 samples...

summary(fl)

## --- fl ---
## A genotypes object with 14309 sites x 116 samples
## Allele encoding: native
## Intensity data: yes (raw)
## Sample metadata: yes ( 67 male / 49 female / 0 unknown )
## Filters set: 0 sites / 0 samples

After application of filters, all filters in the resulting genotypes are (trivially) set to blanks.
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Allele encoding

The argyle package supports both character and numeric representation of genotypes. Character genotypes
(the "native" encoding) are expected to take the values ACGTHN, where H represents a heterozygous call and
N a no-call (ie. missing data). Since all markers are expected to be biallelic SNPs, character genotypes can be
converted to a computationally more convenient numeric encoding in one of two ways.

• By reference alleles ("01"). Genotypes are encoded 0 if they match column A1 in the marker map,
1 if heterozygous (H), 2 if they match column A2, and missing (NA) otherwise. This encoding is most
useful for analyses of experimental crosses.

• By frequency ("relative"). Genotypes are encoded 0 if they match the majority homozygous call
(the major allele) at this marker within this genotypes object, 1 if heterozygous, 2 if they match
the other homozygous call (the minor allele), and NA if missing. This encoding is most useful for
population-based analyses.

All genetic analyses in argyle require that genotypes be first converted to a numeric encoding. Since both
allele encoding and reference alleles (A1 and A2) are both required fields in a genotypes object, inter-conversion
between the "01" and "native" encodings entails no loss of information. Conversion from "relative" to
"native" is not supported, mostly to avoid the ambiguity that results when minor alleles are defined against
a genotype matrix which is then subsetted (possibly destroying the definition of the “minor allele.”)

To convert between encodings, use recode():

## convert from character ('native') to numeric ('01')
ex.recode <- recode(ex, "01")

## Recoding to 0/1/2 using reference alleles.

summary(ex.recode)

## --- ex.recode ---
## A genotypes object with 14319 sites x 116 samples
## Allele encoding: 01
## Intensity data: yes (raw)
## Sample metadata: yes ( 67 male / 49 female / 0 unknown )
## Filters set: 10 sites / 0 samples

And now convert again, back to the original encoding, and prove that no information was lost.

## convert back
ex.rerecode <- recode(ex.recode, "native")

## Recoding to character using reference alleles.

identical(ex, ex.rerecode)

## [1] TRUE
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Particulars for Illumina arrays

The technical aspects of the Illumina Infinium genotyping array platform are described at length in (Steemers
et al. 2006). Briefly, oligonucleotide probes are designed to target k invariant base pairs adjacent to a
biallelic SNP. These oligos are conjugated to silica beads which are addressed into a microarray. Sample
DNA is hyridized to the array, and a single-base extension reaction is performed at the target SNP using
fluorescently-labelled nucleotides. Two-channel fluorescence intensity signals are captured by a scanner.
Raw fluorescence signals are post-processed and normalized prior to genotype-calling. Many normalization
algorithms have been proposed that take advantage of specific properties of the Illumina platform to estimate
and remove technical artefacts; see (Du et al. 2008) for discussion. Illumina’s own BeadStudio software use a
procedure described in (Peiffer 2006) that attempts to place samples into three clusters: two (presumably)
homozygous clusters, one near the x- and another near the y-axes, and a (presumably) heterozygous cluster
along an arc between them.
Hybridization-intensity signals have carry information about both genotype and copy number. Discrete
genotypes for a group of samples can be inferred by first clustering samples in the x, y plane at each marker;
then identifying the three canonical clusters (corresponding to genotypes AA, AB and BB at the target SNP);
and finally assigning a most probably cluster membership to each sample. The total hybridization intensity
along both x and y dimensions – and, at heterozygous markers, the relative magnitude of x and y signals –
is informative for copy number. “Total intensity” is defined by argyle not as x + y but as d =

√
x2 + y2,

the total distance from the origin. This is ancedotally superior to the simple sum if intensities are saturated
along either dimension.

Note The few intensity-based analyses in argyle have BeadStudio output in mind. They are
appropriate for identifying failed or contaminated samples, but not much more. The package was
designed to complement a custom array for mouse (the Mouse Universal Genotyping Array (MUGA)
series) supplied by Neogen Inc. That vendor supplies BeadStudio output to its customers. Users
with deeper interest in normalization and copy-number estimation should consult the Bioconductor
“Microarray analysis” task view for more information.

For well-performing markers, genotype is obvious in the x, y coordinate system, as demonstrated by the plot
below (which we will call a “cluster plot”). The function plot.clusters() takes a genotypes and a list of
markers (or any valid row-indexing vector for the genotypes matrix) and generates a plot with one panel per
marker.

plot.clusters(ex, "JAX00429559")
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We can check that the example dataset has intensity matrices attached as follows.

has.intensity(ex)

## [1] TRUE
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To extract the full hybridization intensity matrices from a genotypes, use intensity(). The result is a
named list of length 2 with elements $x and $y. Here we just check the dimensions of the result, to see that
they match each other and those of the parent genotypes matrix.

## get intensity matrices (x and y)
intens <- intensity(ex)
lapply(intens, dim)

## $x
## [1] 14319 116
##
## $y
## [1] 14319 116

Use of intensity data for genotyping quality control is discussed in Quality control below.

Data import

Genotypes can be bundled into to a genotypes object three ways: manually from an R matrix using the
genotypes() constructor; from Illumina BeadStudio output; or from a PLINK binary fileset.

First we demonstrate making a genotypes from scratch. The genotypes() constructor requires a genotypes
matrix with appropriate row (marker) and column (sample) names; a properly-formatted marker map; and
an explicitly-specified allele encoding. (This is important.) If the dataframe of sample metadata is absent, a
mostly-uninformative one will be automatically generated from the column names of the genotypes matrix.
In this example we will explicitly provide sample metadata. Recall that sex is encoded as the number of X
chromosomes present: 1=male, 2=female.

sm <- c("id1","id2","id3")
mk <- c("snp1","snp2","snp3","snp4")
map <- data.frame(chr = "chr1", marker = mk,

cM = c(0.5, 1.0, 1.5, 2.0),
pos = c(0.5, 1.0, 1.5, 2.0)*1e6,
A1 = c("A","G","A","C"),
A2 = c("C","T","G","G"))

rownames(map) <- mk

fam <- data.frame(iid = sm, fid = "testers", sex = c(2,2,1))
rownames(fam) <- sm

G <- matrix( c("A","C","A",
"T","G","T",
"A","G","A",
"C","G","C"),

byrow = TRUE, nrow = 4, ncol = 3,
dimnames = list(mk, sm) )

geno <- genotypes(G, map = map, ped = fam, alleles = "native")

To confirm that the object was created as expected, check the summary:
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summary(geno)

## --- geno ---
## A genotypes object with 4 sites x 3 samples
## Allele encoding: native
## Intensity data: no
## Sample metadata: yes ( 1 male / 2 female / 0 unknown )
## Filters set: 0 sites / 0 samples

And check the contents:

head(geno)

## Genotypes matrix:
## id1 id2 id3
## snp1 A C A
## snp2 T G T
## snp3 A G A
## snp4 C G C
##
## Marker map:
## chr marker cM pos A1 A2
## chr1 snp1 0.5 500000 A C
## chr1 snp2 1.0 1000000 G T
## chr1 snp3 1.5 1500000 A G
## chr1 snp4 2.0 2000000 C G
##
## Sample info:
## iid fid sex
## id1 testers 2
## id2 testers 2
## id3 testers 1

From Illumina BeadStudio

Import of genotypes and hybridization intensities from BeadStudio reports is achieved with the
read.beadstudio() function. Although the format of the human-readable output from BeadStudio can be
customized by the user, argyle assumes that it has the format supplied to customers of Neogen Inc. That
format involves two files:

• Sample_Map.zip – a sample manifest, with column headers (at least) Name and Gender.
• {prefix_}FinalReport.zip – the genotyping results. This file has a 9-line header section followed by

a line of column headings (expected to have the order below), and then the data itself. The first 6
columns should be:

– SNP Name – marker identifier, globally-unique
– Sample ID – sample identifier matching contents of column Name in Sample_Map
– X – transformed x-intensity
– Y – transformed y-intensity
– Allele1 - Forward – genotype call for allele 1 (one of ACTG-)
– Allele2 - Forward – genotype call for allele 2 (one of ACTG-)
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The - character is assumed to represent a missing genotype, and rows with - in either Allele1 or Allele2
will be marked as missing.

The data.table package, which provides memory-efficient re-implementation of the base-R dataframe, is
used to read from these files. It can comfortably handle several million rows at reasonable speed on a modern
laptop.

Decompressing the files is not necesssary if command-line zip is available – argyle will decompress on-
the-fly. For platforms without command-line zip (eg. Windows), FinalReport.zip must be unzipped but
Sample_Map should not be. (This is due to a quirk of data.table.)

In addition to the files from BeadStudio, a dataframe containing a valid marker map (as discussed in the
Introduction) is required to perform the import. Pre-computed ones for the MUGA series of arrays are
available from [URL]. Users of other arrays will have to prepare their own.

The running time of read.beadstudio() for a realistic dataset (say 80, 000 markers and 96 samples) is about
∼ 1 minute on my 2014 MacBook Air. That’s inconveniently long for this vignette but quite reasonable
in practice. The code below demonstrates the command, but is not actually run. The parmater prefix
corresponds to the * in the filename of *FinalReport.zip.

data(snps) # the marker map
geno <- read.beadstudio(prefix = "", snps, in.path = "path/to/containing/folder")

From PLINK a fileset

Reading a PLINK binary fileset with argyle is simple with read.plink(). As an example, we can load
genotypes of 28 wild mice from the Mouse Diversity Array (Yang et al. 2011), provided in this package’s
“data/” directory. Genotypes from PLINK filesets are always read directly to the "01" encoding.

infile <- system.file("extdata", "wild.chr19.bed", package = "argyle")
wild <- read.plink(infile)

## Reading family info from: </Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.fam>
## Reading marker info from: </Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.bim>
## Reading binary genotypes from: </Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.bed>

print(wild)

## --- x ---
## A genotypes object with 14306 sites x 28 samples
## Allele encoding: 01
## Intensity data: no
## Sample metadata: yes ( 13 male / 15 female / 0 unknown )
## Filters set: 0 sites / 0 samples
##
## Counts of markers by chromosome:
## chr19
## 14306

Check the contents to see that import worked:

12



head(wild, n = 6, nsamples = 6)

## Genotypes matrix:
## IN13 IN17 IN25 IN34 IN38 IN40
## JAX00468897 2 0 2 2 2 2
## JAX00086300 2 1 2 2 2 2
## JAX00086302 1 1 NA NA 1 1
## JAX00468901 2 NA 2 2 2 2
## JAX00468902 1 2 NA NA 1 1
## JAX00086303 2 NA 2 2 2 2
##
## Marker map:
## chr marker cM pos A1 A2
## chr19 JAX00468897 0.105 3125547 G A
## chr19 JAX00086300 0.121 3145514 T C
## chr19 JAX00086302 0.133 3159638 G T
## chr19 JAX00468901 0.133 3159902 G A
## chr19 JAX00468902 0.134 3160138 C A
## chr19 JAX00086303 0.134 3160277 A G
##
## Sample info:
## fid iid mom dad sex pheno
## cas IN13 0 0 1 NA
## cas IN17 0 0 1 NA
## cas IN25 0 0 1 NA
## cas IN34 0 0 1 NA
## cas IN38 0 0 2 NA
## cas IN40 0 0 2 NA

From your own database

Users who routinely genotype hundreds or thousands of samples will probably want to store genotypes an a
relational database. No (direct) database interface has been implemented in argyle yet. However, once a
matrix of genotypes is available, a genotypes can be constructed using the “from scracth” method outlined
at the top of this section.

Quality control

Careful quality control and sanity checking of microarray genotypes is an essential prerequisite to further
analysis. QC can (and should) be performed both marker-wise and sample-wise. When hybridization-intensity
data is available, QC should be performed on both intensities – they are the primary data – and the genotype
calls. The argyle package provides a suite of functions implementing best practices developed in our group
for QC of genotypes from the MUGA arrays.

For sample-wise QC, we recommend checking (at least) the following three metrics.

• Call rate. Arrays which fail due to poor input DNA quality, mixed or contaminated samples, or
technical problems at the hybridization step have an excess of heterozygous (H) and missing (N) calls
relative to expectations. Of course those expectations are key: highly inbred samples should have
relatively few H calls, while samples from outbred or natural populations should have many Hs.
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• Intensity distribution. Failed arrays have lower mean intensity and greater variance in intensity
across probes than successful arrays. Comparing the distribution of total intensity (d =

√
x2 + y2; see

Introduction) by sample within a batch, and between batches when multiple batches are available,
can reveal failed samples.

• Sex-chromosome concordance. Nominally male samples with an excess of heterozygous calls on
the X-chromosome, or female samples with nonmissing calls on the Y-chromosome, represent potential
failures or sample swaps.

We will demonstrate these procedures on the example dataset in ex, which includes intensity data. To
run sample-wise QC checks, use run.sample.qc(), which returns a copy of the input with a new attribute
attr(,"qc") containing the results.

data(ex)
ex <- run.sample.qc(ex)

## Performing QC checks on genotype calls...
## Recoding to 0/1/2 using reference alleles.
## Performing QC checks on hybridization intensities...
## 0 markers and 0 samples now flagged as low-quality.

Use qcplot() to generate the default QC plots. (If run.sample.qc() had not been run already, it would be
automatically called here.)

qcplot(ex)
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The upper panel shows the count of A, B, H and N calls by sample. The lower plot shows intensity percentiles
(contours) across all samples. Samples are sorted by their median intensity in both panels. In this example
dataset, there are no outlying intensity profiles, but the samples in the left half of the plot have many more
H calls than those in the right half despite having similar number of no-calls. This is expected: about half of
the samples in the example dataset are inbred mouse strains, and the other half are F1s between them.

We can also check for concordance between the nominal sex of the samples and their sex as predicted by
genotype. The current version of argyle uses only a crude threshold for number of non-missing Y-chromosome
calls to predict sex. The defaults are calibrated for the GigaMUGA array (from which the example dataset is
taken). More sophisticated sex-chromosome predictions based on hybridization intensity will be implemented
in the future.

sexing <- predict.sex(ex)

## Predicting sex using count of good calls on chrY...
## Recoding to 0/1/2 using reference alleles.
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xtabs(~ predicted + nominal, data = sexing)

## nominal
## predicted 1 2
## 1 67 0
## 2 0 49

There is perfect concordance between the nominal and inferred sex of these samples.

By default, run.sample.qc() does not apply any filters. In practice it will be useful to flag samples with
excess N and H calls using the arguments max.N and max.H respectively. While the number of no-calls in
our dataset should be approximately constant across samples, the number of heterozygous calls will be very
different for inbred samples and outbred samples. The argyle package supports either constant thresholds
or group-specific thresholds which are applied based on a sample’s fid (recall that this is the “family ID” in
attr(,"ped")). The snippet below demonstrates the alternative syntax.

## apply same 'N' filter to all samples (max.N is a constant)
## but different 'H' filter to F1 and inbred samples (max.H is a named list)
ex <- run.sample.qc(ex, max.N = 1200, max.H = list(inbred = 80, F1 = 10e3))

## Performing QC checks on genotype calls...
## Recoding to 0/1/2 using reference alleles.
## Performing QC checks on hybridization intensities...
## 0 markers and 5 samples now flagged as low-quality.

qcplot(ex)
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Single-character flags are used to describe the thresholds failed by a sample or a marker. The default flags
are as follows.

code description samples markers

N excess no-calls x x
H excess heterozygosity x x
I aberrant intensity pattern x
F aberrant allele frequency x

After removing failed samples we can identify low-performing markers. A low-performing marker is one
with (1) high rate of missingness; (2) low or zero minor-allele frequency in the population of interest; or (3)
higher-than-expected heterozygosity given its minor-allele frequencies. (The Illumina genotype-caller is prone
to misclassifying no-calls as heterozygous calls.) The freqplot() function generates a graphical summary of
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call frequencies at markers falling below defined thresholds. A text summary is written to the console.

## plot low-performing markers
freqplot(subset(ex, chr != "chrY"), max.N = 0.2, max.H = 0.5, min.maf = 0.1)

## Recoding to 0/1/2 using empirical frequencies.
## Markers failing by
## no-call rate: 768
## het rate: 37
## MAF: 2724
## Total 2762
## Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
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Note that we have excluded Y-linked markers from this analysis: the Y chromosome requires bespoke QC
beyond the scop eof this vignette.

Note: Criteria for excluding samples or markers from an analysis depend completely on the
samples and the experiment at hand.

Intensity-based analyses

Hybridization intensity to Illumina arrays carries information about both genotype and copy number. Whereas
the x, y intensities at a single probe are (usually) sufficient to determine genotype at the corresponding target
SNP, noise in the hybridization signal means that intensities from adjacent probes must be aggregated to
assess copy number. Inter-probe variability in x, y and their relative magnitude is accomodated by two
transformations introduced by (Peiffer 2006): the B-allele (pseudo-)frequency (BAF) and log2-intensity ratio
(LRR). Both quantities are calculated with respect to intensity values derived from a large set of reference
samples.

The B-allele frequency is not, in fact, anything to do with a true allele frequency, but rather a measure of the
distance of a sample from the BB homozygous reference cluster, scaled and truncated to fall in [0, 1]. At
homozygous markers BAF takes values near 0 or 1; at heterozygous markers it takes values near 0.5. The
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LRR is log 2(R/Rref ) where R = x + y and Rref = xref + yref , and in turn xref , yref are the centroid of
the reference cluster to which the same is nearest. It is expected to have mean zero across the array, in the
absence of aneuploidy or large structural variants.

Technical artefacts at the hybridization or scanning steps can introduce bias in BAF and LRR. The function
argyle::tQN() (re-)implements a normalization procedure described in (Staaf et al. 2008), modelled on
code from the CLASP package (Didion et al. 2014). Briefly, quantile normalization (see (Bolstad et al. 2003))
is applied to the array-wide x and y intensities per sample to account for systematic differences in signal
intensity from the two fluorophores used in the Infinium chemistry. Relative differences between the pre- and
post-normalization intensities are subject to a pre-specified threshold (by default, 1.5). Then BAF and LRR
are computed using a matrix of (AA, AB, BB) reference cluster centroids.

The tQN procedure is somewhat time-consuming; for the purposes of this vignette we show the relevant code
but do not actually execute it.

Use the function bafplot() to see the result for a single sample, with smoothed fits superposed in red.

## not run
bafplot(ex.norm, "AD_15423_F")

Analysis of experimental crosses

To demonstrate the use of argyle for designing and analysing a laboratory experiment, we consider a
hypothetical F2 cross between the inbred mouse strains A/J (coded ‘A’ in the example dataset) and
NOD/ShiLtJ (coded ‘D’). To analyze genotypes from the F2 offspring, we need to know the following:

• which markers are homozygous in the parents
• which markers are predicted to be segregating between the parents
• which markers work as predicted (homozygous in the parents, predicted to segregate, heterozygous in

the F1)

First, see that 5 A/J samples (AA) and sum(grepl("ˆDD", samples(ex)$iid)) NOD/ShiLtJ samples (DD),
and and 15 corresponding F1 hybrids are present in the sample dataset.

xtabs(~ fid, subset(samples(ex), grepl("^[AD][AD]", iid)))

## fid
## F1 inbred
## 2 13

Before going any further, genotypes must be converted to numeric encoding. For convenience, we also set the
fid field to a sample’s genotype.

ex <- recode(ex, "01")

## Recoding to 0/1/2 using reference alleles.

attr(ex, "ped")$fid <- substr(samples(ex)$iid, 1, 2)
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The genoapply() function is a generalization of R’s apply family for genotypes objects. Just as apply(x,
1, ...) applies a function over the rows of a matrix, genoapply(x, margin = 1, grp, fn, ...) applies
fn() by markers (rows in the genotypes matrix.) Unlike apply(), the genoapply() function takes an
additional grouping expression grp to apply a function by marker groups (with margin = 1) or sample groups
(with margin = 2) defined by the value of grp. We demonstrate genoapply() to compute the consensus
genotype of the parental strains in our example cross. For these analyses we will, of course, ignore the
Y-chromosome.

ex <- subset(ex, chr != "Y")
parents <- subset(ex, fid == "AA" | fid == "DD", by = "samples")
cons <- genoapply(parents, 2, .(fid), consensus)

Note that, since the grouping expression was wrapped in .(), it was evaluated in the context of the sample
data. This behavior is intended to make the syntax less clunky. The consensus() function takes a genotypes
as input and returns the consensus genotype across all samples at each marker. (See ?consensus for details.)

The object cons is a list of numeric vectors of consensus genotypes for the parent strains. Combine them
into a new genotypes as follows:

cons <- genotypes( do.call(cbind, cons),
map = markers(parents),
alleles = "01" )

Identify markers with fixed differences between the parents using fixed.diffs(), and count them.

is.diff <- fixed.diffs(cons[ ,c("AA","DD") ])
sum(is.diff)

## [1] 2903

There are up to 2903 markers informative in an F2 cross between these strains, of 14319 total markers on the
array.

Now predict the genotype of the F1s and check how many of those predictions match the observed genotype
in the (A/JxNOD/ShiLtJ)F1 sample in dataset. Note that this prediction includes markers with the same
homozygous genotype in both parents (which should be homozygous for that same genotype in the offspring),
and with opposite homozygous genotypes between the parents (which should be heterozygous in the offspring.)
Markers heterozygous in the parents will be marked as missing in the offspring. Really we only care about
the informative markers:

f1s <- predict.f1(cons)

## Predicting F1 genotypes for 1 pairs of parents...

table(f1s[is.diff] == ex[ is.diff,"AD_15423_F" ], useNA = "always")

##
## FALSE TRUE <NA>
## 3 2898 2

20



All but a few of the 2903 informative markers perform as expected in the heterozygous state.

The default genotype encoding (either arbitrary or with respect to the major allele in some population) is not
very useful for genetic analysis of an experimental cross. The argyle package provides recode.to.parent()
to encode genotypes with respect to a “parent” sample (in general, an inbred strain.) This is the encoding
scheme used by R/qtl.

by.mom <- recode.to.parent(ex[ ,grepl("AD", colnames(x)) ], cons[,"AA"])
summary(by.mom)

## --- by.mom ---
## A genotypes object with 14319 sites x 3 samples
## Allele encoding: parent
## Intensity data: yes (raw)
## Sample metadata: yes ( 2 male / 1 female / 0 unknown )
## Filters set: 0 sites / 0 samples

Once genotypes are in the "parent" encoding, we could convert them to an R/qtl::cross object to use that
package for genetic mapping.

fake.cross <- argyle:::as.rqtl(by.mom)

## Exporting genotypes at 14236 markers on 3 chromosomes.
## Converting genotypes...
## Done.

Population-based analyses (and PLINK)

To demonstrate the use of argyle on population-genetic data, we use genotypes (on chr19) from 28 wild
mice genotyped on the Mouse Diversity Array (Yang et al. 2011). These are provided as a PLINK fileset
(wild.chr19.*) in this package’s extdata/ directory. The fid column of these samples indicates their mouse
subspecies of origin.

First load the genotypes from the PLINK fileset. Genotypes from PLINK are always loaded in the "01"
encoding.

ff <- system.file("extdata", "wild.chr19.bed", package = "argyle")
wild <- read.plink(ff)

## Reading family info from: </Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.fam>
## Reading marker info from: </Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.bim>
## Reading binary genotypes from: </Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.bed>

summary(wild)

## --- wild ---
## A genotypes object with 14306 sites x 28 samples
## Allele encoding: 01
## Intensity data: no
## Sample metadata: yes ( 13 male / 15 female / 0 unknown )
## Filters set: 0 sites / 0 samples
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Check for gross population structure using PCA on the genotypes matrix using pca(). The return object is a
dataframe with samples projected onto the top K PCs, and has class pca.result.

pc <- pca(wild, K = 5)

## Preparing input matrices...
## replacing missing values with minor-allele frequency...
## Computing principal components of genotypes matrix...
## (using base::prcomp() ...)
## Done.

head(pc)

## iid fid mom dad sex pheno PC1 PC2 PC3 PC4
## IN13 IN13 cas 0 0 1 NA -15.21280 -41.62696 1.2044626 -0.56814144
## IN17 IN17 cas 0 0 1 NA -18.55779 -63.21966 -2.7021882 1.61250382
## IN25 IN25 cas 0 0 1 NA -15.00458 -43.05279 0.3790305 -1.95811247
## IN34 IN34 cas 0 0 1 NA -15.40547 -45.81034 0.6665433 0.09032204
## IN38 IN38 cas 0 0 2 NA -18.33270 -56.54318 -0.7055374 -2.08189524
## IN40 IN40 cas 0 0 2 NA -18.39850 -53.75009 0.2088183 -0.49792005
## PC5
## IN13 1.9811274
## IN17 -4.7607884
## IN25 2.2605363
## IN34 0.9267065
## IN38 -2.4206857
## IN40 -1.3684164

The plot() generic is implemented for pca.result objects.

plot(pc, screeplot = TRUE)
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The panel at left shows the usual PCA plot, of samples projected onto principal components of the genotypes
matrix. The panel at right is the “scree plot” of the relative magnitude of successive eigenvalues associated
with the principal components.

With screeplot = FALSE we can suppress the “scree plot”. In this case a ggplot object is returned, to
which we can add layers to make a more informative plot.
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library(ggplot2)

pc$fid <- factor(pc$fid, levels = c("dom","mus","cas"),
labels = c("M.m. domesticus","M.m. musculus","M.m. castaneus"))

fid.cols <- c("#377eb8","#e41a1c","#4daf4a")

plot(pc, screeplot = FALSE) +
geom_point(aes(colour = fid)) +
scale_colour_manual("subspecies", values = fid.cols)

−50

−25

0

25

−50 0 50 100

PC1 (32.7%)

P
C

2 
(1

3.
6%

) subspecies

M.m. domesticus

M.m. musculus

M.m. castaneus

The PCA reveals the expected differentiation between the three mouse subspecies: Mus musculus domesticus,
M. m. musculus and M. m. castaneus.

We could also, for example, inspect the distribution of minor-allele frequencies within each subspecies by
wrapping the function maf() in a call to genoapply().

wild <- recode(wild, "relative")

## Recoding to 0/1/2 using empirical frequencies.

mafs.by.ss <- genoapply(wild, 2, .(fid), maf)

mafs <- do.call(cbind, mafs.by.ss)
mafs <- as.data.frame(mafs)
mafs$marker <- rownames(mafs)

mafs.m <- reshape2::melt(mafs, id.var = "marker")
mafs.m$variable <- factor(mafs.m$variable, levels = c("dom","mus","cas"),

labels = c("M.m. domesticus","M.m. musculus","M.m. castaneus"))

ggplot(mafs.m) +
geom_freqpoly(aes(x = value, colour = variable), binwidth = 0.1) +
scale_colour_manual("subspecies", values = fid.cols) +
theme_classic(base_size = 9) +
xlab("\nminor-allele frequency")
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Wrappers for several PLINK commands are provided in argyle:

• pca.plink(...) – perform PCA
• mds.plink(...) – perform classical multidimensional scaling (MDS)
• filter.plink(...) – filter genotypes by missingness, minor-allele frequency, genomic position. . .
• ld.plink(...) – calculate pairwise LD via an EM algorithm
• prune.plink(...) – pruner markers by LD, to obtain a set in approximate linkage equilibrium
• assoc.plink(...) – perform association tests on binary or quantitative traits under a variety of

models

These wrappers issue a system call to the plink executable (which must be in the users ‘$PATH’ or Windows
equivalent), then check that the expected output files are present. If so, they are read into the appropriate R
object (usually dataframe or matrix); if not, argyle attempts to fail politely with a useful error message.
Command-line output from PLINK is echoed to the R terminal.

Using the PLINK wrappers on an existing PLINK fileset does not require first loading the genotype matrix
into the R session. Simply create a pointer to it using plinkfy():

#$ recall that 'ff' is the path to the PLINK fileset of wild-mouse genotypes
rm(wild)
wild <- plinkify(ff, where = tempdir())

summary(wild)

## -- Pointer to a PLINK fileset --
## Source: /Library/Frameworks/R.framework/Versions/3.1/Resources/library/argyle/extdata/wild.chr19.bed
## Ouput dir: /private/var/folders/Zd/Zd+yVvm1GKWkvKzgFaqsYE+++TU/-Tmp-/RtmpDfkon5

The resulting pointer has class plink. All the PLINK wrappers take such an object as their first argument.
The where argument specifies the location to which output should be written; the default is the temporary
directory corresponding to the current R session.

Safety warning: PLINK will, by default, place its output in the same directory as the input
fileset. This creates risk of overwriting the input if the user is not careful. Unless there is good
reason to do otherwise, leave where set to the default to avoid clobbering important data.
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