
PhyCLIP v1.1 Manual

Table of contents
Home.md

I.-Quickstart.md

II.-Installation.md

III.-Usage-guide.md

IV.-Output-files.md

V.-Optimising-input-parameters.md

VI.-Prior-clusters.md

VII.-Troubleshoot.md

PhyCLIP is an integer linear programming (ILP) approach that optimally delineates a tree into statistically-principled clusters. Minimally, apart
from a rooted phylogeny, 3 additional inputs are required from the user:

1. Minimum number of sequences (_S_) that can be quantified as a cluster.

2. Multiple of deviations (gamma) from the grand median of the mean pairwise sequence patristic distance that defines the within-cluster
divergence limit.

3. False discovery rate (FDR) to infer that the diversity observed for every combinatorial pair of output clusters is significantly distinct from one
another.

A manuscript describing PhyCLIP is currently available on bioRxiv:
Phylogenetic Clustering by Linear Integer Programming (PhyCLIP) Alvin Xiaochuan Han, Edyth Parker, Frits Scholer, Sebastian Maurer-Stroh,
Colin Russell bioRxiv 446716; doi: https://doi.org/10.1101/446716

We highly encourage that you go through this documentation before starting your analysis. However, if you would like to promptly run PhyCLIP
using the recommended procedure, go to Quickstart.

Contents:
I. Quickstart
II. Installation
III. Usage guide
IV. Output files
V. Optimising input parameters
VI. Prior clusters
VII. Troubleshoot

Home.md
PhyCLIP (Phylogenetic Clustering by Linear Integer Programming)

https://doi.org/10.1101/446716
http://github.com/alvinxhan/PhyCLIP/wiki/I.-Quickstart
http://github.com/alvinxhan/PhyCLIP/wiki/I.-Quickstart
http://github.com/alvinxhan/PhyCLIP/wiki/II.-Installation
http://github.com/alvinxhan/PhyCLIP/wiki/III.-Usage-guide
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files
http://github.com/alvinxhan/PhyCLIP/wiki/V.-Optimising-input-parameters
http://github.com/alvinxhan/PhyCLIP/wiki/VI.-Prior-clusters
http://github.com/alvinxhan/PhyCLIP/wiki/VII.-Troubleshoot

N.B. We highly encourage that you go through the ENTIRE MANUAL before starting your analysis.

1. Installation

2. Install dependencies using Anaconda.

Python 2 only (Users using Python 3 for base Conda environment can build a separate Python 2 environment - see Installation)

$	conda	install	-c	etetoolkit	ete3
$	conda	install	-c	conda-forge	pathos
$	conda	install	numpy	scipy	statsmodels

3. Install Gurobi (linear programming solver) using Anaconda as well.

$	conda	config	--add	channels	http://conda.anaconda.org/gurobi
$	conda	install	gurobi

4. Obtain Gurobi license.
Method I: If your machine is connected to the internet via a recognized academic domain (e.g. '.edu' addresss)

Register a FREE account via http://www.gurobi.com/registration/academic-license-reg

Login and access http://user.gurobi.com/download/licenses/free-academic

Follow instructions on page to retrieve your license or go to Installation for more details.

Method II: If your machine is NOT connected via an academic domain but you can verify that you are an academic user.

To be added.

5. Download and install PhyCLIP

$	cd	/path/to/PhyCLIP-master/
$	python	setup	install	

6. Input files

7. Phylogenetic tree in NEWICK format.

Tip 1: Root your phylogenetic tree with an appropriate outgroup. You can do this graphically BEFORE running PhyCLIP by using
Figtree OR append the flag --tree_outgroup	<taxon> if you know which outgroup to root by when running PhyCLIP. If you are unsure
of the appropriate outgroup, you may also root the tree by its mid-point node using the --midpoint flag.

Tip 2: If your phylogenetic tree is bifurcating, check the largest branch length equivalent of a zero-branch-length internal node. If it is >
1e-6, append the flag --equivalent_zero_length	<branch_length> , replacing <branch_length> with your equivalent length in Step 3
when you run PhyCLIP.

8. Prepare the following PhyCLIP input text file to run various ranges of input parameters (see Optimising-input-parameters for details).

/path/to/input_newick_tree.nwk
3-10(1),0.05-0.20(0.05),1-3(0.5)

9. Run PhyCLIP

10. For intermediate-resolution clustering (i.e. broadly defined clusters that are still well-separated but encompasses the majority of data in the
tree):

$	phyclip.py	--input_file	</path/to/input_file.txt>	--collapse_zero_branch_length	1	--pdf_tree	--optimise	intermediate	

11. For high-resolution clustering (i.e. phylogenetic tree delineated into a large number of small, high confidence clusters with low average

I.-Quickstart.md

Quickstart guide (for users of an academic institution only)

http://www.anaconda.com/download/
http://github.com/alvinxhan/PhyCLIP/wiki/II.-Installation
http://www.gurobi.com/registration/academic-license-reg
http://user.gurobi.com/download/licenses/free-academic
https://github.com/alvinxhan/PhyCLIP/wiki/II.-Installation
http://tree.bio.ed.ac.uk/software/figtree/
http://github.com/alvinxhan/PhyCLIP/wiki/V.-Optimising-input-parameters

internal divergence, tolerating a higher number of unclustered sequences):

$	phyclip.py	--input_file	</path/to/input_file.txt>	--collapse_zero_branch_length	1	--pdf_tree	--optimise	high

N.B. The command in either case above will collapse internal nodes with zero branch lengths. See Usage-guide to understand why this is
recommended.

4. Analyse results

5. Open pdftree_optimal_parameter_{S}{FDR}{gamma}__{tree_filename}.pdf for quick check of the clustering output with the optimal set
of input parameter.

6. Alternatively, if you are using Figtree, you can also check the output annotated NEXUS tree file
tree_optimal_parameter_{S}{FDR}{gamma}__{tree_filename}.tre

7. A text file listing your sequences and their respective cluster-ID can be found in
cluster_optimal_parameter_{S}{FDR}{gamma}__{tree_filename}.txt

8. If the clustering result with the optimal set of input parameter is unsatisfactory, you can examine the summary-
stats_{input_text_filename}.txt file to determine which parameter set ran generated a more ideal clustering result for you (see Output files
and Optimising-input-parameters for more details).

http://github.com/alvinxhan/PhyCLIP/wiki/III.-Usage-guide
http://tree.bio.ed.ac.uk/software/figtree/
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files
http://github.com/alvinxhan/PhyCLIP/wiki/V.-Optimising-input-parameters

PhyCLIP is written in Python 2.7 and depends on several python libraries and at least one ILP solver.

To simplify the installation process, we highly reccomend that you use Anaconda, a free and open-source distribution of Python and package
management system. Visit http://www.anaconda.com/download/ to download and install the Python 2.7 version distribution for your preferred
OS.

There is no support for Python 3 currently. However, if you are using a Python 3 Conda environment, you can still install/run PhyCLIP by first
building a Python 2 Conda environment (see below).

PhyCLIP depends on several Python libraries:

numpy, scipy, statsmodels (mathematical/statistical operations

pathos (multiprocessing)

ete3 (parsing phylogenetic trees)

To install the dependencies, go to Terminal (Mac/Linux) or Command/Anaconda Prompt (Windows):

$	conda	install	-c	etetoolkit	ete3
$	conda	install	-c	conda-forge	pathos
$	conda	install	numpy	scipy	statsmodels

Alternatively, if you can also use pip:

$	pip	install	ete3
$	pip	install	numpy	scipy	statsmodels	pathos

PhyCLIP currently supports two ILP solvers. You can choose either ONE to install depending on your access to these solvers:

1. Gurobi optimizer (http://www.gurobi.com/) is a commercial linear and quadratic programming solver with FREE licenses available for
academic users.

2. GLPK (GNU Linear Programming Kit, http://www.gnu.org/software/glpk/) is a free and open-source package intended for solving large-
scale linear programming, mixed integer programming, and other related problems.

If you are a university user (i.e. you have internet access from a recognized academic domain, e.g. '.edu' addresss), we highly reccomend
running PhyCLIP with the Gurobi solver. GLPK performs poorly in terms of both speed and solvability (GLPK version 4.65 solved only 2 of the
87 standard test-set mixed-integer programming models whereas Gurobi is the fastest solver for all 87 benchmark problems, see
http://plato.asu.edu/ftp/milpc.html).

Furthermore, as with any other linear programming problems, it is possible to obtain multiple optimal solutions. Currently, GLPK can only return
ONE solution that is guaranteed to be the global optimal if and only if the feasible region is convex and bounded. However, this may not always
be the case. Gurobi, on the other hand, generates a solution pool which may include > 1 optimal solution.

IMPORTANT: Take note of the version of Gurobi you are using (printed on summary-stats_*.txt file, see Output files). Gurobi is updated
periodically to enhance solver performance. Correspondingly, we do find minor changes to PhyCLIP's clustering results in some cases as a
result of Gurobi updates.

The easiest way to install Gurobi is via the Anaconda platform:

1. Make sure you have Anaconda for Python 2.7 installed (see above).

2. Install the Gurobi package via conda:

$	conda	config	--add	channels	http://conda.anaconda.org/gurobi
$	conda	install	gurobi

II.-Installation.md

Prerequisite 1: Python libraries

Prerequisite 2: ILP solver

Gurobi

http://www.anaconda.com/download/
http://www.gurobi.com/
http://www.gnu.org/software/glpk/
http://plato.asu.edu/ftp/milpc.html)
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files

3. You need to install a Gurobi licence next. Visit http://www.gurobi.com/registration/academic-license-reg to register for a free Gurobi account.
Follow the instructions in the verification email from Gurobi to set your password and login to your Gurobi account via
http://www.gurobi.com/login.

4. You can now access http://user.gurobi.com/download/licenses/free-academic to request for a free academic license. Once requested, you
will be brought to the License Detail webpage.

5. To install the license, go to Terminal/Command Prompt: $	grbgetkey	XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX where XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX is your unique license key shown in the License Detail webpage. Note that an active internet connection from a
recognized academic domain (e.g. '.edu' addresss) is required for this step.

You can easily install GLPK via Anaconda as well:

$	conda	install	-c	conda-forge	glpk

Alternatively, you can also install GLPK from source, go to http://ftp.gnu.org/gnu/glpk/ and download the latest distribution of glpk as a tarball.
You can find installation information in the documentation provided.

Finally, install phyclip.py by:

$	cd	PhyCLIP-master/	
$	python	setup.py	install

You may need sudo privileges for system-wide installation. Otherwise, it is also possible to use phyclip.py locally by adding the phyclip_modules
folder to your $PYTHONPATH.

If your base Conda environment runs on Python 3, you can build a separate Python 2 environment to install/run PhyCLIP.

In your terminal/command:

$	conda	create	-n	python2env	python=2

Activate the environment:

$	source	activate	python2env

Under the Python 2 environment, install Anaconda for Python 2:

(python2env)$	conda	install	anaconda	

Continue to install the pre-requisites, solver and PhyCLIP as per the instructions above under the same Python 2 environment. Remember to
activate the Python 2 environment everytime you use PhyCLIP.

When you are done using the Python 2 environment, you can return to your base environment by:

(python2env)$	source	deactivate

GLPK

Install PhyCLIP

Building a Python 2 Conda environment

http://www.gurobi.com/registration/academic-license-reg
http://www.gurobi.com/login
http://user.gurobi.com/download/licenses/free-academic
http://ftp.gnu.org/gnu/glpk/

PhyCLIP requires the user to provide a phylogenetic tree and 3 parameters:

1. Minimum number of sequences (_S_) that can be quantified as a cluster.

2. False discovery rate (FDR) to infer that the diversity observed for every combinatorial pair of output clusters is significantly distinct from one
another.

3. Multiple of deviations (gamma) from the grand median of the mean pairwise sequence patristic distance that 3. defines the within-cluster
divergence limit.

As PhyCLIP incorporates topological information of the tree for clustering, prior to running PhyCLIP, we advise that you root your input
phylogenetic tree with the appropriate outgroup, or if you are unsure, by its mid-point.

You can use tree visualisation programs such as FigTree for tree rooting BEFORE running PhyCLIP. Note that the input phylogenetic tree must
be in the NEWICK format. You can use Figtree as well for file type conversion.

Alternatively, you can also root the tree using the ete3 libraries incorporated in PhyCLIP by including the --tree_outgroup	<taxon> flag if you
know the name of your outgroup, or use --midpoint by its mid-point node.

Prepare the input text file indicating the path of your phylogenetic tree and the list of parameter sets to run in the following format:

/path/to/input_newick_tree.nwk
S,FDR,gamma
...

E.g.	(input_example.txt	in	examples/	folder):	
examples/example.nwk
3,0.2,2
5,0.2,1

You can (and should) choose to run PhyCLIP over a range of input parameters. This is useful if you would like to obtain the cluster configuration
by the optimal input parameters (see Optimising-input-parameters for details.). For example, if you choose to test _S_ = 3-10 (increasing by 1),
FDR = 0.05-0.20 (increasing by 0.05) and gamma = 1-3 (increasing by 0.5), generate the following input text file:

/path/to/input_newick_tree.nwk
3-10(1),0.05-0.20(0.05),1-3(0.5)

$	phyclip.py	--input_file	</path/to/input_file.txt>

As mentioned above, the topology of the tree is incorporated in the clustering construct. As such, internal nodes with zero branch lengths, usually
arising as representatives of polytomies in bifurcating trees, may lead to erroneous clustering and over-delineation. For example:

https://github.com/alvinxhan/PhyCLIP/blob/master/doc/comparison_collapse.png

PhyCLIP allows the user to collapse all internal nodes with zero branch lengths prior to clustering. By default, any internal node with branch
length <= 1e-6 is rounded to zero. You can do so by flagging:

$	phyclip	--input_file	</path/to/input_file.txt>	--collapse_zero_branch_length	{0,1}

III.-Usage-guide.md

How to use PhyCLIP?
Step 0: Rooting your phylogenetic tree.

Step 1: Prepare input file.

Step 2: Running PhyCLIP
Minimally-required command

Collapsing internal nodes with zero branch length

http://tree.bio.ed.ac.uk/software/figtree/
https://github.com/alvinxhan/PhyCLIP/wiki/V.-Optimising-input-parameters
https://github.com/alvinxhan/PhyCLIP/blob/master/doc/comparison_collapse.png

You may modify the maximum patristic distance to be rounded to zero by using the --equivalent_zero_length	<float> flag.

There may be cases where PhyCLIP is sensitive to clustering clades that minimally satisfies the minimum cluster size threshold (_S_). Note that
these supposedly over-delineated clusters are NOT errorneous results but optimal clusters that satisfy the same statistical requisites as the
others.

Nonetheless, PhyCLIP provides the user the option to subsume such sub-clusters into their parent clade to better facilitate higher level
interpretation, subject to if the statistical framework of the original output is maintained.

There are two such options available:

1. Minimum cluster size threshold sensitivity-induced clusters

$	phyclip	--input_file	</path/to/input_file.txt>	--subsume_sensitivity_induced_clusters	{0,1(default)}

PhyCLIP will subsume any sub-clusters <25-th percentile (default) of the output cluster size distribution if the statistical framework of the
original output is maintained. You may change the percentile using --sensitivity_percentile	{INT} flag.

2. ALL sub-clusters

$	phyclip	--input_file	</path/to/input_file.txt>	--subsume_subclusters	{0(default),1}

PhyCLIP subsumes all sub-clusters into their parent clade if the statistical framework of the original output is maintained.

N.B. If you flag both options above, PhyCLIP will first subsume the sensitivity-induced clusters, reassess the distribution of the clusters, then
proceed with subsuming all sub-clusters based on the revised clusters.

As data parsing and statistical calculations may take some time, PhyCLIP generates a {tree_filename}_treeinfo.txt file by default when
analysing a new phylogenetic tree. This file allows you to quicken the analysis of the SAME tree in future runs.

$	phyclip	--input_file	</path/to/input_file.txt>	--treeinfo	</path/to/{tree_filename}_treeinfo.txt>

Depending on the size of your phylogenetic tree, the filesize of _treeinfo.txt may be quite large. You can choose NOT to generate the
_treeinfo.txt file by:

$	phyclip	--input_file	</path/to/input_file.txt>	--no_treeinfo

Apart from the standard output files, you can additionally obtain an annotated tree in PDF format by:

$	phyclip.py	--input_file	</path/to/input_file.txt>	--pdf_tree	

Note that this is NOT available if you are running PhyCLIP on a machine without an X server (If you really want an annotated PDF tree, there is a
workaround - see https://github.com/etetoolkit/ete/issues/101). For more information on the outputs generated by PhyCLIP, go to Output files.

PhyCLIP currently supports two ways to calculate robust estimator of scale (i.e. deviations) of a distribution: (i) median absolute deviation (MAD)
and (ii) Qn measure (see Rousseeuw & Croux, 1993). By default, PhyCLIP uses Qn which is as robust as MAD (i.e. 50% breakdown point) but
is calculated solely using the differences between the values in the distribution without needing a location estimate (i.e. no assumptions of
centrality). It has also been proven to be statistically more efficient in both Gaussian and non-Gaussian distributions compared to MAD.

On the other hand, PhyCLIP performs hypothesis testing on the pairwise patristic distance distributions between every pairwise combination of
clusters to infer their separateness. The current implementation of PhyCLIP either uses the putative Kolmogorov-Smirnov (KS) test or the
Kuiper's test. Although both tests are nonparameteric, PhyCLIP uses Kuiper’s test by default as its statistic incorporates both the greatest
positive and negative deviations between the two distributions whereas the KS test statistic is defined only by their maximum difference. As a
result, the Kuiper’s test becomes equally sensitive to differences to the tails as well as the median of the distributions but the KS test works best

Subsuming sub-clusters

Treeinfo file

Annotated tree file in PDF format

Statistical methods

https://github.com/etetoolkit/ete/issues/101)
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files
http://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476408

when the distributions differ mostly at the median.

We reccomend that you do NOT change the default statistical methods. However, PhyCLIP does allow the user to change them to her preferred
choice by:

Estimator of scale/Deviation:

$	phyclip	--input_file	</path/to/input_file.txt>	--gam_method	{MAD,Qn(default)}

Hypothesis testing:

$	phyclip	--input_file	</path/to/input_file.txt>	--hypo_test	{Kuiper(default),KolSmi}

By default, PhyCLIP uses all available CPUs in your machine to speed up the pre-ILP data parsing and statistical evaluation of the input
phylogeny. You can change the number of CPUs used by:

$	phyclip	--input_file	</path/to/input_file.txt>	--threads	{INT}

Threads

For each input parameter set (_S_, FDR, gamma), PhyCLIP outputs the following files:

1. cluster_{gam_method}_{hypo_test}_{sol_index}_{_S_}_{FDR}_{gamma}_{tree_filename}.txt - Tab-delimited file detailing the cluster-
ID of every clustered taxon for the input (_S_, FDR, gamma) parameter set denoted in the filename.

2. tree_{gam_method}_{hypo_test}_{sol_index}_{_S_}_{FDR}_{gamma}_{tree_filename}.tre - NEXUS tree with FigTree annotations of
clusters for the input (_S_, FDR, gamma) parameter set denoted in the filename.

Additionally, PhyCLIP also outputs following files for each run:

summary-stats_{input_text_filename}.txt - Tab-delimited file summarizing the clustering statistics (e.g. % clustered, grand mean pairwise
patristic distance of clusters and its dispersion, etc.) of ALL parameter sets.

IF --optimise flag is called (see Optimising input parameters):

cluster_optimal_parameter_{_S_}_{FDR}_{gamma}__{tree_filename}.txt - same as cluster file above but for the optimal input
parameter set.

tree_optimal_parameter_{_S_}_{FDR}_{gamma}__{tree_filename}.tre - same as annotated NEXUS tree file above but for the
optimal input parameter set.

pdftree_optimal_parameter_{_S_}_{FDR}_{gamma}__{tree_filename}.pdf if --pdf_tree flag is called (see below)

You can retrieve an annotated tree file (pdftree_{gam_method}_{hypo_test}_{sol_index}_{_S_}_{FDR}_{gamma}_{tree_filename}.pdf) in
PDF format by appending the flag:

$	phyclip.py	--input_file	</path/to/input_file.txt>	--pdf_tree	

Note that this is NOT available if you are running PhyCLIP on a machine without an X server (If you really want an annotated PDF tree, there is a
workaround - see https://github.com/etetoolkit/ete/issues/101).

Each line of a cluster_*.txt contains the following tab-delimited information over 4 columns (in order):

1. Cluster-ID

2. Sequence name

3. Original (desecendant) Cluster-ID subsumed if --subsume_sensitivity_induced_clusters	1 is flagged (see Usage guide for more
information)

4. Original (descendant) Cluster-ID subsumed if --subsume_subclusters	1 is flagged (see Usage guide for more information)

These tree files are in NEXUS format and annotated with cluster-ID and subtree/node-ID information. The file is written to be opened in FigTree.

The summary-stats_*.txt file is tab-delimited and contains the summary statistics of the clustering output for every parameter set ran in a single
session. In order, the information found in each column is as follows:

1. Phylogenetic tree filename

2. Minimum cluster size (_S_)

3. FDR

4. gamma

IV.-Output-files.md

Annotated tree file in PDF format

cluster_*.txt file

tree_*.txt file

summary-stats_*.txt file

http://tree.bio.ed.ac.uk/software/figtree/
http://github.com/alvinxhan/PhyCLIP/wiki/V.-Optimising-input-parameters
https://github.com/etetoolkit/ete/issues/101)
http://github.com/alvinxhan/PhyCLIP/wiki/III.-Usage-guide
http://github.com/alvinxhan/PhyCLIP/wiki/III.-Usage-guide
http://tree.bio.ed.ac.uk/software/figtree/

5. Hypothesis test method used (Kuiper or Kolmogorov-Smirnov[KS])

6. Estimator of scale (i.e. Deviation) used (Median absolute deviation[MAD] or Qn)

7. FDR-corrected p-values conducted pre- or post- filtering for minimum cluster size (_S_)

8. Within-cluster divergence limit (WCL)

9. Solution index (if there are multiple solutions, starts from 0)

10. % of prior sequences clustered by PhyCLIP (ONLY if you implemented a prior [see Prior clusters])

11. Number of clustered sequences

12. Total number of sequences in tree

13. % of sequences clustered by PhyCLIP

14. Total number of clusters

15. Mean output cluster size

16. Standard deviation of output cluster size distribution

17. Median output cluster size

18. Median absolute deviation of cluster size distribution

19. Smallest output cluster size

20. Largest output cluster size

21. Grand mean of mean pairwise sequence patristic distance across all output clusters

22. Standard deviation of mean pairwise sequence patristic distance distribution

23. Grand mean of median pairwise sequence patristic distance across all output clusters

24. Standard deviation of median pairwise sequence patristic distance distribution

25. Lowest mean pairwise sequence patristic distance

26. Highest mean pairwise sequence patristic distance

27. Mean inter-cluster patristic distance

28. Standard deviation of inter-cluster patristic distance distribution

29. Median inter-cluster patristic distance

30. Median absolute deviation of inter-cluster patristic distance distribution

31. Lowest inter-cluster patristic distance

32. Highest inter-cluster patristic distance

33. Solver version

This is technically NOT an output file. As pre-ILP data parsing and statistical calculations may take some time, PhyCLIP generates a
{tree_filename}_treeinfo.txt file by default when analysing a new phylogenetic tree. This file allows you to quicken the analysis of the SAME tree
in future runs.

$	phyclip	--input_file	</path/to/input_file.txt>	--treeinfo	</path/to/{tree_filename}_treeinfo.txt>

Depending on the size of your phylogenetic tree, the filesize of _treeinfo.txt may be quite large. You can choose NOT to generate the _treeinfo.txt
file by:

Treeinfo file

http://github.com/alvinxhan/PhyCLIP/wiki/VI.-Prior-clusters

$	phyclip	--input_file	</path/to/input_file.txt>	--no_treeinfo

PhyCLIP’s user-defined parameters (_S_, gamma, FDR) can be calibrated across a range of input values to optimise the statistical properties of
the clustering results so as to select an optimal parameter set and its associated clustering result.

Parameter optimisation criteria should be prioritised by the research question, as the clustering resolution and cluster definition are
dependent on the question, and therefore the degree of information required to capture variant ecological, epidemiological and/or evolutionary
processes of interest.

For every clustering result of an input parameter set, PhyCLIP calculates the:

1. Grand mean of the pairwise patristic distance distribution (muPWD) and its standard deviation

2. Mean of the inter-cluster distance (muICD) and its standard deviation

3. Percentage of sequences clustered (_%_)

4. Total number of clusters (_TC_)/Mean cluster size (muCS)

Each of the above statistic can be used to respectively optimised for the following:

1. Clustering configuration with the lowest average internal divergence

2. Clustering configuration with well-separated clusters

3. Minimise number of unclustered sequences

4. Tolerable level of stratification of the tree.

We reccomend running PhyCLIP using a combination of various input parameter range.

For example, if you choose to test _S_ = 3-10 (increasing by 1), FDR = 0.05-0.20 (increasing by 0.05) and gamma = 1-3 (increasing by 0.5),
generate the following input text file:

/path/to/input_newick_tree.nwk
3-10(1),0.05-0.20(0.05),1-3(0.5)

Next, type the following command in your Terminal/Command Prompt.

For high-resolution clustering (i.e. phylogenetic tree delineated into a large number of small, high confidence clusters with low average internal
divergence, tolerating a higher number of unclustered sequences; in order of priority: min muPWD, max muICD, max _%_):

$	phyclip.py	--input_file	</path/to/input_file.txt>	--optimise	high

For a more intermediate resolution (i.e. broadly defined clusters that are still well-separated but encompasses the majority of data in the tree; in
order of priority: max _%_, min muPWD, max muICD):

$	phyclip.py	--input_file	</path/to/input_file.txt>	--optimise	intermediate

Reccomended tips:

1. We highly recommend users to collapse internal nodes with zero branch length as the topology of the tree is incorporated in the
clustering construct (see Usage guide). You can do so by appending --collapse_zero_branch_length	1 flag to the command above.

2. We also recommend users to root their input phylogeny appropriately. You can either do so BEFORE running PhyCLIP by using some
tree visualisation softwares such as Figtree OR through the ete3 libraries incorporated in PhyCLIP by using the --tree_outgroup	<taxon>
flag if you know the outgroup name.

V.-Optimising-input-parameters.md
Why optimise input parameters?

How to determine the optimal input parameter set?

Recommended procedure

http://github.com/alvinxhan/PhyCLIP/wiki/III.-Usage-guide
http://tree.bio.ed.ac.uk/software/figtree/

After completing all analyses, PhyCLIP will additionally generate the following output files:

cluster_optimal_parameter_{_S_}_{FDR}_{gamma}__{tree_filename}.txt - Tab-delimited file detailing the cluster-ID of every clustered
taxon for the optimal input parameter set denoted in the filename.

tree_optimal_parameter_{_S_}_{FDR}_{gamma}__{tree_filename}.tre - NEXUS tree with FigTree annotations of clusters for the optimal
input parameter set denoted in the filename.

pdftree_optimal_parameter_{_S_}_{FDR}_{gamma}__{tree_filename}.pdf if --pdf_tree flag is called (see Output files)

Alternatively, if you prefer to optimise with a different set of clustering statistics, you can do so by examining the summary-
stats_{input_text_filename}.txt (see Output files) which summarizes these statistics for the range of parameter sets analysed.

http://tree.bio.ed.ac.uk/software/figtree/
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files

N.B. Prior implementation is ONLY supported with the Gurobi ILP solver (see Installation)

If prior information that certain sequences should be clustered together is known, PhyCLIP allows the user to input such prior information into the
ILP model. Based on a hierarchical multi-objective optimisation approach, PhyCLIP will first optimise the primary objective (i.e. cluster as many
sequences as possible) before doing so for the secondary objective, that is to cluster as many prior sequences under the same prior cluster as
possible, without degrading the solution quality of the primary objective.

To implement the prior, additionally prepare the following tab-delimited prior input file:

PRIOR-CLUSTER-ID	{tab}	Sequence	name	(must	be	the	same	as	in	tree)

e.g.	
1{tab}seq_A
1{tab}seq_B
2{tab}seq_C
2{tab}seq_D
2{tab}seq_E
...

Each prior cluster should come with a unique prior cluster ID (It doesn't necessarily need to be integers so long as they are unique).

If you are using the clustering results from a previous PhyCLIP run, you do NOT need to prepare the aformentioned file but just use the output
cluster file from that run (cluster_{gam_method}_{hypo_test}_{sol_index}_{_S_}_{FDR}_{gamma}_{tree_filename}.txt, see Output files) as
the prior input file.

In your Terminal/Command Prompt:

$	phyclip.py	--input_file	</path/to/input_file.txt>	--prior	</path/to/prior_input_file.txt>

By default, equal weights are given to all input prior clusters (e.g. maintaining that the 2 sequences of prior cluster 1 should be clustered together
in the output is given the same importance as doing so for prior cluster 2 comprising of 3 sequences).

If you have justifiable, differential confidence between the input prior clusters, you may also provide weights for the individual prior clusters. To do
so, separately prepare the following input:

PRIOR-CLUSTER-ID	{tab}	Weight	(int	or	float)

e.g.	
1{tab}0.2
2{tab}0.6
...

In your Terminal/Command Prompt:

$	phyclip.py	--input_file	</path/to/input_file.txt>	--prior	</path/to/prior_input_file.txt>	--prior_weights	</path/to/prior_weights_
input_file.txt>

Note that if the weights are given as floats, PhyCLIP expects the summation of weights across all prior clusters to be 1. Otherwise, PhyCLIP will
calculate the normalized weights.

1. Note that the final output clusters are secondarily optimised to retain as many sequences of the same prior cluster under the same clade but
NOT the separateness between these prior clusters. Incorporating the latter may bias the statistical distinction between the clusters, which
should be based solely on their differential diversity.

2. If you do choose to run PhyCLIP with a prior, we highly encourage that you perform a separate analysis without the prior, compare the
results obtained and decide which clustering configuration best answers your research question.

VI.-Prior-clusters.md
Running PhyCLIP with prior clustering information

Important

http://github.com/alvinxhan/PhyCLIP/wiki/II.-Installation
http://github.com/alvinxhan/PhyCLIP/wiki/IV.-Output-files

Some errors that we have encountered and how you could go about solving it.

First, check current configuration:

$	ulimit	-a
core	file	size										(blocks,	-c)	0
data	seg	size											(kbytes,	-d)	unlimited
file	size															(blocks,	-f)	unlimited
max	locked	memory							(kbytes,	-l)	unlimited
max	memory	size									(kbytes,	-m)	unlimited
open	files																						(-n)	256
pipe	size												(512	bytes,	-p)	1
stack	size														(kbytes,	-s)	8192
cpu	time															(seconds,	-t)	unlimited
max	user	processes														(-u)	709
virtual	memory										(kbytes,	-v)	unlimited

Increase open files values (in this example to 10,000):

$	ulimit	-Sn	10000

Check that values have been increased before attempting to re-run PhyCLIP.

$	ulimit	-a	
core	file	size										(blocks,	-c)	0
data	seg	size											(kbytes,	-d)	unlimited
file	size															(blocks,	-f)	unlimited
max	locked	memory							(kbytes,	-l)	unlimited
max	memory	size									(kbytes,	-m)	unlimited
open	files																						(-n)	10000
pipe	size												(512	bytes,	-p)	1
stack	size														(kbytes,	-s)	8192
cpu	time															(seconds,	-t)	unlimited
max	user	processes														(-u)	709
virtual	memory										(kbytes,	-v)	unlimited

VII.-Troubleshoot.md

OSError: [Errno 24] Too many open files (MacOS)

	Home.md
	PhyCLIP (Phylogenetic Clustering by Linear Integer Programming)
	I.-Quickstart.md
	Quickstart guide (for users of an academic institution only)

	II.-Installation.md
	Prerequisite 1: Python libraries
	Prerequisite 2: ILP solver
	Gurobi
	GLPK

	Install PhyCLIP
	Building a Python 2 Conda environment

	III.-Usage-guide.md
	How to use PhyCLIP?
	Step 0: Rooting your phylogenetic tree.
	Step 1: Prepare input file.
	Step 2: Running PhyCLIP
	Minimally-required command
	Collapsing internal nodes with zero branch length
	Subsuming sub-clusters
	Treeinfo file
	Annotated tree file in PDF format
	Statistical methods
	Threads

	IV.-Output-files.md
	Annotated tree file in PDF format
	cluster_*.txt file
	tree_*.txt file
	summary-stats_*.txt file
	Treeinfo file

	V.-Optimising-input-parameters.md
	Why optimise input parameters?
	How to determine the optimal input parameter set?
	Recommended procedure

	VI.-Prior-clusters.md
	Running PhyCLIP with prior clustering information
	Important

	VII.-Troubleshoot.md
	OSError: [Errno 24] Too many open files (MacOS)

