
An easy way to access files
in Gamma Mesh Format

The libMeshb library

Löıc MARÉCHAL / INRIA, Gamma Project

May 2016
Document v1.5

Contents

1 Introduction 2
1.1 What is the Gamma Mesh Format ? . 2
1.2 An evolutive keyword based format . 2
1.3 A comprehensive C library . 2
1.4 ASCII vs. Binary . 2
1.5 Mesh and Sol files . 3
1.6 File versions . 3

2 Quick-start 4
2.1 Reading a file . 4
2.2 Writing a file . 6
2.3 Doing it all together . 7

3 Commands 9
3.1 GmfOpenMesh . 9
3.2 GmfCloseMesh . 10
3.3 GmfStatKwd . 10
3.4 GmfGotoKwd . 12
3.5 GmfSetKwd . 13
3.6 GmfGetLin . 14
3.7 GmfSetLin . 14
3.8 GmfGetBlock . 15
3.9 GmfSetBlock . 15

4 Keywords 17
4.1 List of basic keywords . 17
4.2 List of solution keywords . 19
4.3 Miscellaneous keywords . 21

Cover picture: A variety of magnetic tape drives from the 1970’s including the famous DECtapes.

1

1 Introduction

1.1 What is the Gamma Mesh Format ?

The Gamma Mesh Format (GMF) and the associated library libMeshb provide programers
of simulation and meshing softwares with an easy way to store their meshes and physical
solutions.

The GMF features more than 50 kinds of data types, ranging from vertex to polyhedron
or normal vectors to matricial solution fields.

The libMeshb provides a convenient way to move data between those files, via keyword
tags, and the user’s own structures.

1.2 An evolutive keyword based format

The GMF is a keyword based file format, meaning that a mesh file consists of a list of
keywords, each followed by its data. No keyword is mandatory and a file may contain any
combination of them. Furthermore, new keywords may be added while keeping upward
and backward compatibility.

It means that older files can be accessed by newer version of the library and vice versa.

1.3 A comprehensive C library

The libMeshb provides programmers with a comprehensive set of commands and keywords
covering most common operations on many different kinds of mesh or physical solution
related data.

Reading, writing and querying files is easily done by calling a couple of commands
which are provided in an ANSI C file “libmeshb7.c” and a header file “libmeshb7.h”. All
is needed is compiling those files along with the calling software.

Fortran APIs are also available: “libmeshb7.ins” for F77 and F90.

1.4 ASCII vs. Binary

GMF files can be stored in ascii or binary format (differentiated with .mesh or .meshb
extensions).

This choice is transparent from a user’s point of view and a routine reading GMF
files will work on both kinds of storage. The library determining the right access method
depending on the file extension.

It is advised to use ascii for debugging purpose only, when a file needs to be hand-written
or checked by a human eye. Otherwise, when performance, compactness and portability
are of concerns, binary is the way to go.

2

1.4.1 Size does matter

Binary files have a slightly smaller footprint than their ascii counterparts (typically 30%
less). Not only does it save space on hard drives, but it allows for faster transfer as well.

1.4.2 About performance

Great care has been taken on performance issues when creating the libMeshb. When dealing
with binary files, reading and writing throughputs will only be limited by the speed of the
physical media where those files are located. Speed ranging from 20 MB/s to 60 MB/s
can be achieved with hard drives and 10 MB/s or 100 MB/s with fast ethernet and gigabit
ethernet networks, respectively.

The libMeshb performs very poorly in ascii mode, which is more processor bound rather
than hard-drive bound. Don’t expect more than 5 or 10 MB/s throughputs.

1.4.3 Compatibility issue: little vs. big endian

When it comes to binary storage, the compatibility problem posed by endianness always
comes to mind.

Some processors like PowerPc or SPARC are called big endian because of the way they
store bytes within a word from most significant byte to the lowest.

The other ones, like i86 (Intel core2, AMD opteron) or itanium, store bytes in the
reverse order and are called little endian.

Consequently, a binary word written by a big endian processor cannot de read by a
little endian one, and vice versa. This problem can be easily overcome by reversing bytes
order when reading misoriented data. The libMeshb handles this compatibility issue via a
control word that indicates which endian a mesh file was written in.

You may then use binary files as safely as ascii ones.

1.5 Mesh and Sol files

For the sake of understanding, different extensions must be given to files containing mesh
related keywords, .mesh or .meshb, and files containing physical solution keywords, .sol or
.solb.

1.6 File versions

Over the years, the library had to adapt to ever increasing system capabilities, henceforth,
modification to the binary file format had to be done. As of today, there are three revisions
of the meshb format:

3

Version Size of integers Size of reals Maximum size of file
1 32 bits 32 bits 2 Giga Bytes
2 32 bits 64 bits 2 Giga Bytes
3 32 bits 64 bits 8 Exa Bytes
4 64 bits 64 bits 8 Exa Bytes

Although the libMeshb still handles versions 1 and 2 for the sake of compatibility, it is
strongly advised to create version 3 files since more and more computer are 64-bit capable.

A word of caution: great care must be taken when setting the library’s arguments
type. Regardless of the file version, some arguments are mandatory 32 bits integer like
the open mode tag, mesh dimension or the file index. Even in ”full 64 bits” version
4 mesh file format, only the number of lines given or set by the GmfSetKeyword() of
GmfStatKeyword() commands and vertex indices used by elements field are using 64 bits
integers.

The 64 bits integer data type used by the library is the long int, which may be set to 32
bits by come compilers. In this case, the libMeshb will simply return with an error when
dealing with version 4 mesh files. Most compilers, GNU and Intel for instance, set the long
int size to 64 bits unless you specify the ”-m32” option.

2 Quick-start

This section will guide you through three simple examples from which you may easily cut
and paste to build your own code.

2.1 Reading a file

Let’s start with reading an existing mesh file.
Reading a mesh is a two-step scheme:

1. opening and checking the file and allocating data structures according to its content

2. reading fields of interest (vertices, elements, etc...) and storing them in the previously
allocated structures

2.1.1 Open, check and allocate a mesh

Opening a mesh file is done via the GmfOpenMesh() command. It allows to check for file
existence and whether it is of the required version and dimension.

long long MeshIndex;

int Version, Dimension;

MeshIndex = GmfOpenMesh("testcase.meshb", GmfRead, &Version, &Dimension);

Then, the presence and quantity of each item can be checked and memory allocated
accordingly via the GmfStatKwd() command.

4

int NumberOfTriangles, (*TableOfTriangles)[4];

NumberOfTriangles = GmfStatKwd(MeshIndex, GmfTriangles);

if(NumberOfTriangles > 0)

TableOfTriangles = malloc(NumberOfTriangles * 4 * sizeof(int));

2.1.2 Example: reading vertices and triangles

Reading each keyword data is done via two commands:

• GmfGotoKwd() to set the file index to the beginning of keyword data

• GmfGetLin() to read one line of data

Let’s say we would like to open a file, check if it contains vertices and quads, and read
those fields into their respective tables:

long long idx;

int ver, dim, nbt, (*tt)[4], nbv, *rt;

float (*ct)[3];

/* Try to open the file and ensure its version is 1

(single precision reals) and dimension is 3 */

idx = GmfOpenMesh("tri.meshb", GmfRead, &ver, &dim);

if(!idx || (ver != 1) || (dim != 3))

exit(1);

/* Read the number of vertices and triangles and allocate

a triangle table (tt[nbt][4]) to store each triangle

vertices and reference (hence the fourth integer).

Two tables are allocated for the vertices:

ct[nbv][3] to store the three coordinates

rt[nbv] to store the references. */

nbv = GmfStatKwd(idx, GmfVertices);

nbt = GmfStatKwd(idx, GmfTriangles);

if(!nbv || !nbt)

exit(1);

tt = malloc(nbt * 4 * sizeof(int));

5

ct = malloc(nbv * 3 * sizeof(float));

rt = malloc(nbv * sizeof(int));

/* Move the file pointer to the begining of vertices data

and start to loop over them. Then do likewise with triangles. */

GmfGotoKwd(idx, GmfVertices);

for(i=0;i<nbv;i++)

GmfGetLin(idx, GmfVertices, &ct[i][0], &ct[i][1], &ct[i][2], &rt[i]);

GmfGotoKwd(idx, GmfTriangles);

for(i=0;i<nbt;i++)

GmfGetLin(idx, GmfTriangles, &tt[i][0], &tt[i][1], &tt[i][2], &tt[i][3]);

GmfCloseMesh(idx);

2.2 Writing a file

Writing a mesh is also a two-step scheme:

1. creating a empty mesh file with the right version and dimension

2. writing every fields (vertices, elements, etc...)

2.2.1 Creating and defining a mesh

Mesh name, version and dimension must be provided at creation time. Creating a mesh fol-
lowing version 1 (single precision real numbers) in three dimensions named testcase.meshb
runs this way:

Meshindex = GmfOpenMesh("testcase.meshb", GmfWrite, 1, 3);

2.2.2 Example: writing vertices and triangles

Following the reading example, we would like to write back the data to a new file:

long long idx;

int ver, dim, nbt, (*tt)[4], nbv, *rt;

float (*ct)[3];

/* Try to create a three-dimensional, version 1

(single precision reals) file */

6

idx = GmfOpenMesh("tri.meshb", GmfWrite, 1, 3);

if(!idx)

exit(1);

/* Setup a vertex field with nbv lines

and loop over vertices to write them down.

Note that this time, direct values are passed on

GmfSetLin() instead of pointers. */

GmfSetKwd(idx, GmfVertices, nbv);

for(i=0;i<nbv;i++)

GmfSetLin(idx, GmfVertices, ct[i][0], ct[i][1], ct[i][2], rt[i]);

GmfSetKwd(idx, GmfTriangles, nbt);

for(i=0;i<nbt;i++)

GmfSetLin(idx, GmfTriangles, tt[i][0], tt[i][1], tt[i][2], tt[i][3]);

GmfCloseMesh(idx);

2.3 Doing it all together

In this last example, the file ”quad.mesh” a three-dimensional mesh made of quads will be
read, transformed into a triangulated one, which will be written as ”tri.mesh”:

long long InpMsh, OutMsh;

int i, nbv, nbq, ver, dim, *rt, (*qt)[5];

float (*ct)[3];

/* Open and check the input quadrilateral mesh */

InpMsh = GmfOpenMesh("quad.mesh", GmfRead, &ver, &dim);

if(!InpMsh || (ver != 1) || (dim != 3))

exit(1);

/* Allocate vertices and quads tables */

nbv = GmfStatKwd(InpMsh, GmfVertices);

ct = malloc(nbv * 3 * sizeof(float));

7

rt = malloc(nbv * sizeof(int));

nbq = GmfStatKwd(InpMsh, GmfQuadrilaterals);

qt = malloc(nbq * 5 * sizeof(int));

/* Read vertices and quads then close the input file */

GmfGotoKwd(InpMsh, GmfVertices);

for(i=0;i<nbv;i++)

GmfGetLin(InpMsh, GmfVertices, &ct[i][0], &ct[i][1], &ct[i][2], &rt[i]);

GmfGotoKwd(InpMsh, GmfQuadrilaterals);

for(i=0;i<nbq;i++)

GmfGetLin(InpMsh, GmfQuadrilaterals, &qt[i][0], \

&qt[i][1], &qt[i][2], &qt[i][3], &qt[i][4]);

GmfCloseMesh(InpMsh);

/* Now create the output file.

Each quad being split into two triangles. */

if(!(OutMsh = GmfOpenMesh("tri.mesh", GmfWrite, ver, dim)))

exit(1);

GmfSetKwd(OutMsh, GmfVertices, nbv);

for(i=0;i<nbv;i++)

GmfSetLin(OutMsh, GmfVertices, ct[i][0], ct[i][1], ct[i][2], rt[i]);

GmfSetKwd(OutMsh, GmfTriangles, 2*nbq);

for(i=1;i<=nbq;i++)

{

GmfSetLin(OutMsh, GmfTriangles, qt[i][0], qt[i][1], qt[i][2], qt[i][4]);

GmfSetLin(OutMsh, GmfTriangles, qt[i][0], qt[i][2], qt[i][3], qt[i][4]);

}

GmfCloseMesh(OutMsh);

8

3 Commands

3.1 GmfOpenMesh

Open a mesh file for reading or writing: in reading mode, it tries to open the file and
returns some information about its content, in writing mode it creates an empty mesh file.

3.1.1 Reading mode

long long GmfOpenMesh(char *FileName,

int OpenMode,

int *Version,

int *Dimension);

FileName: this string must contain the path and the mesh name with its extension
(meshes/my mesh.meshb).

OpenMode: must be set to GmfRead.

Version: will be set to the value read from file, which may range from 1 to 3.

1. real numbers in the whole file are written in single precision (32 bits)

2. real numbers in the whole file are written in double precision (64 bits)

3. same as 2 but file size may be greater than 2 GBytes.

Dimension: will be set to the value read from file, only dimensions 2 and 3 are supported.

Returns: Zero on failure or the opened mesh index otherwise. This index should be
properly stored since it must be provided to any further libMeshb commands working on
this file.

Example: open a mesh file and print its version and dimension.

long long MeshIndex;

int Version, Dimension;

Meshindex = GmfOpenMesh("testcase.meshb", GmfRead, &Version, &Dimension);

if(MeshIndex)

printf("Version = %d, Dimension = %d\n.", Version, Dimension);

else

puts("This file cannot be opened.");

9

3.1.2 Writing mode

long long GmfOpenMesh(char *FileName,

int OpenMode,

int Version,

int Dimension);

FileName: this string must contain the path and the mesh name with its extension
(meshes/my mesh.meshb).

OpenMode: must be set to GmfWrite.

Version: must be provided at file creation, see Reading mode for version values.

Dimension: must be provided at file creation, only dimensions 2 and 3 are supported.

Returns: zero on failure or the opened mesh index otherwise. This index should be
properly stored since it must be provided to any further libMeshb commands working on
this file.

Example: create a new three dimensional mesh file storing double precision numbers.

Meshindex = GmfOpenMesh("newfile.meshb", GmfWrite, 2, 3);

3.2 GmfCloseMesh

A mesh file must be properly closed in order to release any allocated memory and to write
tailing information.

GmfCloseMesh(long long MeshIndex);

MeshIdx: the index returned by GmfOpenMesh() must be provided for the file to be
closed.

3.3 GmfStatKwd

This command queries the mesh file for the presence of a given keyword and the number
of associated lines.

3.3.1 Getting information on a mesh keyword

int GmfStatKwd(long long MeshIndex,

int Keyword);

10

MeshIndex: index of referenced mesh.

Keyword: the keyword tag you are requesting information on (see section 4 for a full
list of available keywords).

Example: check out and print the number of triangles in a mesh file.

int NumberOfTriangles;

NumberOfTriangles = GmfStatKwd(MeshIndex, GmfTriangles);

if(NumberOfTriangles)

printf("This file contains %d triangles\n.", NumberOfTriangles);

else

puts("This file does not contain any triangle.");

3.3.2 Getting information on a solution keyword

In this case, additional information will be provided: the number of fields per solution, the
number of real numbers a solution line occupies and a table of solutions types.

long long GmfStatKwd(long long MeshIndex,

int Keyword,

int *NumberOfTypes,

int *SizeOfSolution,

int *TableOfTypes);

MeshIndex: index of referenced mesh.

Keyword: the keyword tag you are requesting information on (see section 4 for a full
list of available keywords).

NumberOfTypes: pointer to an integer, it will be set to the number of fields in the
solution.

SizeOfSolution: pointer to an integer, it will be set to the number of real numbers (float
or double depending on the file version) used by a solution line for memory allocation
purpose.

TableOfTypes: pointer to a previously allocated table which will be filled with the type
of each solution field.

11

Example: check out and print the number of solutions and their kinds associated to
vertices.

int NmbSol, NmbTypes, NmbReals, TypesTab[GmfMaxTyp];

NmbSol = GmfStatKwd(MeshIndex, NmbSol, &NmbTypes, &NmbReals, TypesTab);

if(NmbSol)

{

printf("This file contains %d solutions at each vertex\n.", NmbSol);

printf("Each solution contains %d fields:\n", NmbTypes);

for(i=0; i<NmbTypes; i++)

{

switch(TypesTab[i])

{

case GmfSca : printf("scalar,\n"); break;

case GmfVec : printf("vector of %d scalars,\n", dim); break;

case GmfSymMat : printf("upper triangular part of a symetric \

%d x %d matrix,\n", dim, dim); break;

case GmfMat : printf("full %d x %d matrix,\n", dim, dim); break;

}

}

}

else

puts("This file does not contain triangles.");

3.4 GmfGotoKwd

Prior to reading each line of a keyword with the GmfGetLin() command, the file position
must be set to the beginning of its data with GmfGotoKwd(). Note that positioning the
file mark is only needed when reading, not writing.

int GmfGotoKwd(long long MeshIndex, int Keyword);

MeshIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose data are to be read.

Returns: zero if this keyword is not present in the pointed file, one otherwise.

12

3.5 GmfSetKwd

Prior to writing each line of a keyword with the GmfSetLin() command, the keyword
header should be written along with the number of lines.

3.5.1 Writing a mesh keyword

int GmfSetKwd(long long MeshIndex,

int Keyword,

int NumberOfLines);

MeshIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose data are to be written.

NumberOfLines: number of data lines which are to be written.

Returns: zero if the data could not be written, and the number written lines otherwise.

3.5.2 Writing a solution keyword

When it comes to solution keywords, two extra arguments must be passed on: a table of
solution types and its size.

int GmfSetKwd(long long MeshIndex,

int Keyword,

int NumberOfLines,

int NumberOfTypes,

int *TableOfTypes);

MeshIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose data are to be written.

NumberOfLines: number of data lines which are to be written.

NumberOfTypes: the number of fields stored for each line of this solution. It sets the
size of the following TableOfTypes containing each field type.

TableOfTypes: pointer to a table of integers, each entry setting the type of each solution
field: 1 for a scalar, 2 for a vector, 3 for symmetric matrix and 4 for a full matrix.

Returns: zero if the data could not be written, and the number written lines otherwise.

13

3.6 GmfGetLin

GmfGetLin() is a variable arguments command, it reads one line of data from the file and
stores each items in the provided pointers to user’s data structures.

int GmfGetLin(long long MeshIndex,

int Keyword,

arguments);

MeshIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose line data is to be read.

arguments: as many pointers to the required type of data as stated by the keyword
definition (see section 4) should be provided.

Example: reading a vertex in three-dimensional case. Caution: the right size of real
numbers, float or double, should be provided according to the mesh file version.

int ref;

float xf, yf, zf;

double xd, yd, zd;

if(Version == 1)

GmfGetLine(MeshIndex, GmfVertices, &xf, &yf, &zf, &ref);

else

GmfGetLine(MeshIndex, GmfVertices, &xd, &yd, &zd, &ref);

3.7 GmfSetLin

This commands works pretty much like GmfGetLin(), but arguments are given directly
instead of pointers.

int GmfSetLin(long long MeshIndex,

int Keyword,

arguments);

MeshIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose line of data is to be written.

arguments: as many values of the required type of data as stated by the keyword defi-
nition (see section 4) should be provided.

14

3.8 GmfGetBlock

GmfGetBlock() is a variable arguments command, it reads all the lines of data from the file
and stores each items in the provided pointers to user’s data structures. The user’s data
structure has to be fully described in order for the library to fill all the lines automatically.

int GmfGetBlock(long long MeshIndex, int Keyword, Procedure, arguments...);

MeshIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose lines of data are to be read.

Procedure: pointer to an optinal user’s procedure that will be called in parallel after
each block has been read. If a procedure is given, a second pointer on user’s data must be
provided right after.

arguments: for each type of data as stated by the keyword definition (see section 4),
three arguments must be provided. First, the user’s type of data in which the file’s data
will be stored (four kinds are available: GmfFloat, GmfDouble, GmfInt and GmfLong).
Second, a pointer to the first line of this data type in the user’s structure. Third, the same
pointer but on the second line. The example below is more telling.

Example: reading all vertices in three-dimensional case.

int ref[nv];

double x[nv], y[nv], z[nv];

GmfGetBlock(MeshIndex, GmfVertices, NULL, \

GmfDouble, &x[1], &x[2], \

GmfDouble, &y[1], &y[2], \

GmfDouble, &z[1], &z[2], \

GmfInt, &ref[1], &ref[2]);

3.9 GmfSetBlock

Works exactly as GmfGetBlock. Note that you still need to set the keyword first with the
help of GmfSetKwd() prior to writing the whole data lines with GmfSetBlock().

Example: applying a preprocesing function on vertices before writing them on disk.

int ref[nv];

double x[nv], y[nv], z[nv];

15

GmfGetBlock(MeshIndex, GmfVertices, FlipRefs, ref, \

GmfDouble, &x[1], &x[2], \

GmfDouble, &y[1], &y[2], \

GmfDouble, &z[1], &z[2], \

GmfInt, &ref[1], &ref[2]);

FlipRefs(long long begin, long long end, void *data)

{

int *ref = (int *)data;

long long i;

for(i=begin;i<=end;i++)

if(ref[i] == 1)

ref[i] = 2;

else

ref[i] = 1;

}

16

4 Keywords

4.1 List of basic keywords

Those are topologic and geometric data types, commonly used in meshes such as vertices,
triangles or normal vectors. Consequently they can only be used in .mesh or .meshb files.

They are made of a header, indicating the keyword code and the number of data lines
stored in the file, followed by as many lines as stated.

Each data line format is described in the following table:

keyword
data description

Comments

1 string
each strings cannot exceed 256 characters including the trail-
ing 0

Corners
1 integer vertex index: this vertex is a geometric corner

Edges
3 integers vertex indices and a reference

Hexahedra
9 integers vertex indices and a reference

HexahedraP2
28 integers vertex indices and a reference

Normals

2 or 3 reals
normal vector: 2 or 3 components depending on the mesh
dimension

NormalAtQuadrilateralVertices

4 integers

there must be as many NormalAtQuadrilateralVertices as
there are Quadrilaterals in a mesh, each NormalAtQuadri-
lateralVertices line pointing implicitly to the respective quad.
The four integers are associated with the quad vertices, they
are indices pointing to a normal in the Normals table.

NormalAtTriangleVertices

3 integers

there must be as many NormalAtTriangleVertices as there
are Triangles in a mesh, each NormalAtTriangleVertices line
pointing implicitly to the respective triangle. The three inte-
gers are associated with the triangle vertices, they are indices
pointing to a normal in the Normals table.

NormalAtVertices

2 integers
first integer points to a vertex and the second one points to
the associated normal vector index

17

Pentahedra
7 integers vertex indices and a reference

Quadrilaterals
5 integers vertex indices and a reference

QuadrilateralsP2
10 integers vertex indices and a reference

RequiredEdges
1 integer edge index: this edge is required can not be modified

RequiredQuadrilaterals
1 integer quad index: this quad is required can not be modified

RequiredTriangles
1 integer triangle index: this triangle is required can not be modified

RequiredVertices
1 integer vertex index: this vertex is required can not be modified

Ridges
1 integer edge index: this edge is a ridge (geometric sharp angle)

Tangents

2 or 3 reals
tangent vector: 2 or 3 components depending on the mesh
dimension

TangentAtEdgeVertices

3 integers
first integer points to an edge and the last two one points to
the associated tangent vector indices

TangentAtVertices

2 integers
first integer points to a vertex and the second one points to
the associated tangent vector index

Tetrahedra
5 integers vertex indices and a reference

TetrahedraP2
11 integers vertex indices and a reference

Triangles
4 integers vertex indices and a reference

TrianglesP2
7 integers vertex indices and a reference

Vertices
2 or 3 reals + 1 integer vertex coordinates followed by a reference

18

4.2 List of solution keywords

Those keywords are computation related and are to be used in .sol or .solb files.
They are made of an extended solution header and multiple data lines.
The header is similar to its mesh counterpart, but adds a solution format table to

describe the number of fields and their types (scalar, vector or matrix) associated with
each mesh entity.

There are basically two ways to store solutions associated with a mesh:

• Direct way. SolAtElement like keywords store data fields directly associated with
each element.

• Indirect way. At first, data are directly stored for each vertex via the DSolAtVertices
keyword. Then, ISolAtelements like keywords will have each element vertices pointing
indirectly to a DSolAtVertices solution.

keyword
data description

DSolAtVertices
SolSize * reals as many reals as stated in the DSolAtVertices keyword header

ISolAtEdges

2 integers

there must be as many ISolAtEdges as there are Edges in
a mesh, each ISolAtEdges line pointing implicitly to the re-
spective edge. The two integers are associated with the edge
vertices, they are indices pointing to solutions fields in the
DSolAtVertices table.

ISolAtHexahedra

8 integers

there must be as many ISolAtHexahedra as there are Hexahe-
dra in a mesh, each ISolAtHexahedra line pointing implicitly
to the respective hex. The eight integers are associated with
the hex vertices, they are indices pointing to solutions fields
in the DSolAtVertices table.

ISolAtPentahedra

6 integers

there must be as many ISolAtPentahedra as there are Penta-
hedra in a mesh, each ISolAtPentahedra line pointing implic-
itly to the respective penta. The six integers are associated
with the penta vertices, they are indices pointing to solutions
fields in the DSolAtVertices table.

ISolAtQuadrilaterals

19

4 integers

there must be as many ISolAtQuadrilaterals as there are
Quadrilaterals in a mesh, each ISolAtQuadrilaterals line
pointing implicitly to the respective quad. The four inte-
gers are associated with the quad vertices, they are indices
pointing to solutions fields in the DSolAtVertices table.

ISolAtTetrahedra

4 integers

there must be as many ISolAtTetrahedra as there are Tetrahe-
dra in a mesh, each ISolAtTetrahedra line pointing implicitly
to the respective tet. The four integers are associated with
the tet vertices, they are indices pointing to solutions fields in
the DSolAtVertices table.

ISolAtTriangles

3 integers

there must be as many ISolAtTriangles as there are Triangles
in a mesh, each ISolAtTriangles line pointing implicitly to the
respective triangles. The three integers are associated with
the triangle vertices, they are indices pointing to solutions
fields in the DSolAtVertices table.

ISolAtVertices

1 integer

there must be as many ISolAtVertices as there are Vertices in
a mesh, each ISolAtVertices line pointing implicitly to the re-
spective vertex. The integer is an index pointing to a solutions
field in the DSolAtVertices table.

SolAtEdges
SolSize * reals as many reals as stated in the DSolAtVertices keyword header

SolAtHexahedra

SolSize * reals
as many reals as stated in the SolAtHexahedra keyword
header

SolAtPentahedra

SolSize * reals
as many reals as stated in the SolAtPentahedra keyword
header

SolAtQuadrilaterals

SolSize * reals
as many reals as stated in the SolAtQuadrilaterals keyword
header

SolAtTetrahedra

SolSize * reals
as many reals as stated in the SolAtTetrahedra keyword
header

SolAtTriangles
SolSize * reals as many reals as stated in the SolAtTriangles keyword header

SolAtVertices

20

SolSize * reals as many reals as stated in the SolAtVertices keyword header

4.3 Miscellaneous keywords

Finally, those basic keywords have no header and contain only one line of data, most often
giving global information on the mesh or the solution file.

keyword
data description

AngleOfCornerBound

1 real
threshold angle for automatic sharp features detection, in de-
grees

BoundingBox

4 or 6 reals
the box coordinates bounding the whole mesh: xmin, xmax,
ymin, ymax and zmin and zmax (in three dimensional case only)

Iterations
1 integer discretionary iteration counter

Time
1 real discretionary time counter

21

