
openLuup
@akbooer, February 2016

Contents

openLuup 1
Contents 1
Overview 2
Release 7 (2016-02-25) 3
Installation 4
1. Lua installation 4
2. Host directory tree 5
3. ALTUI installation 5
4. Arduino Gateway plugin 5
5. VeraBridge plugin 6
6. Installing other Device files 7
7. Adding code for /usr/bin/GetNetworkState.sh and /etc/cmh/ui 7
Configuration 8
Suggested commissioning process steps 9
More about the port 3480 web server 12
File Access 12
index.html Files 12
CGI processing 13
More about VeraBridge and Remote Scenes 14
Remote Scenes 14
Appendix: user_data.json file after factory reset 15
Appendix: LuaUPnP.log after factory reset 17
Appendix: Example openLuup startup.lua file 18
Appendix: openLuup_reload.bat for Windows 19
Appendix: code for /usr/bin/GetNetworkState.sh 20
Appendix: Undocumented features of Luup 21
Appendix: Unimplemented features of openLuup 22
unimplemented luup API calls 22
unimplemented HTTP requests 22

openLuup: User Guide - version 2016.02.25 � / �1 22

Overview

openLuup is an environment which supports the running of some MiOS (Vera) plugins on
generic Unix systems (or, indeed, Windows systems.) Processors such as Raspberry Pi
and BeagleBone Black are ideal for running this environment, although it can also run on
Apple Mac, Microsoft Windows PCs, anything, in fact, which can run Lua code (most
things can - even an Arduino Yún board.) The intention is to offload processing (cpu and
memory use) from a running Vera to a remote machine to increase system reliability.

Running on non-specific hardware means that there is no native support for Z-wave,
although plugins to handle Z-wave USB sticks may support this. The full range of
MySensors (http://www.mysensors.org/) Arduino devices are supported though the
Ethernet Bridge plugin available on that site. A plugin to provide a bi-directional
‘bridge’ (monitoring / control, including scenes) to remote MiOS (Vera) systems is provided
in the openLuup installation.

openLuup is extremely fast to start (a few seconds before it starts running any created
devices startup code) has very low cpu load, and has a very compact memory footprint.
Whereas each plugin on a Vera system might take ~4 Mbytes, it’s far less than this under
openLuup, in fact, the whole system can fit into that sort of space. Since the hardware on
which it runs is anyway likely to have much more physical memory than current Vera
systems, memory is not really an issue.

There is no built-in user interface, but we have, courtesy of @amg0, the most excellent
altUI: Alternate UI to UI7 (see the Vera forum board http://forum.micasaverde.com/
index.php/board,78.0.html) An automated way of installing and updating the ALTUI
environment is now built-in to openLuup. There’s actually no requirement for any user
interface if all that’s needed is an environment to run plugins.

Devices, scenes, rooms and attributes are persisted across restarts. The startup
initialisation process supports both the option of starting with a ‘factory-reset’ system, or
any saved image, or continuing seamlessly with the previously saved environment. A
separate utility is provided to transfer a complete set of uncompressed device files and
icons from any Vera on your network to the openLuup target machine.

For compatibility with Vera systems, openLuup has been written in Lua version 5.1 and
requires the appropriate installation to be loaded on your target machine. Installation is
not trivial, but it’s not hard either. I would urge you to read this document carefully and
then follow the installation steps, and, particularly, the section on “Suggested
commissioning process steps” which move from simple tests to more complex ones
and will aid any problem diagnosis if and when it comes to that. 

openLuup: User Guide - version 2016.02.25 � / �2 22

http://www.mysensors.org/
http://forum.micasaverde.com/index.php/board,78.0.html

Release 7 (2016-02-25)

Release 7 is a comprehensive (but not totally complete) implementation of Luup, and
includes a set of features which are generally sufficient to run a number of standard
plugins. The latest additions extend the number of compatible plugins.

Changes from the previous release include:

WSAPI connector for Lua module CGIs
index.html file support (with redirects)
support for /etc/cmh-lu/ directory
port 3480 access to device icons (icons work over secure connections)
supports the DataYours plugin as an AltUI Data Storage Provider
various bug fixes
further internal refactoring to support future enhancements

The details are in the Configuration section below (which is perhaps worth a careful read.)

What openLuup does:
runs on any Unix machine - I often run it within my development environment on a Mac
also runs under Windows. However, plugins which spawn commands using the Lua
os.execute() function may not operate correctly
runs the ALTUI plugin to give a great UI experience
runs the MySensors Arduino plugin (ethernet connection to gateway only) which is
really the main goal - to have a Vera-like machine built entirely from third-party bits
(open source)
includes a bridge app to link to remote Veras (which can be running UI5 or UI7 and
require no additional software.)
runs many plugins unmodified – particularly those which just create virtual devices  
(eg. Netatmo, ...)
uses a tiny amount of memory and boots up very quickly (a few seconds)
supports scenes with timers and ALTUI-style triggers
has its own port 3480 HTTP server supporting multiple asynchronous client requests
has a fairly complete implementation of the Luup API and the HTTP requests
has a simple to understand log structure - written to LuaUPnP.log in the current
directory - most events generate just one entry each in the log.
writes variables to a separate log file for ALTUI to display variable and scene changes.

What it doesn't do:
Some less-used HTML requests are not yet implemented, eg. lu_invoke.
Doesn't support the <incoming> or <timeout> action tags in service files,  
but does support the device-level <incoming> tag.
Doesn’t directly support local serial I/O hardware (there are work-arounds.)
Won't run encrypted, or licensed, plugins.
Doesn't use lots of memory.
Doesn’t use lots of cpu.
Doesn’t constantly reload (like Vera often does, for no apparent reason.)
Doesn't do UPnP (and never will.)

If you like openLuup, do please consider donating something to Cancer Research UK. 

openLuup: User Guide - version 2016.02.25 � / �3 22

https://www.justgiving.com/DataYours/

Installation

NOTE: this has changed from previous versions - specifically the icon directories.

There are several basic installation steps to set up an openLuup system running the ALTUI
interface running the Arduino plugin, and bridging to a remote Vera:

1. install Lua and some of its packages on your target machine
2. create necessary directories on the target machine
3. install ALTUI using files using a simple HTTP request
4. install the Arduino plugin (if you want it)
5. install the VeraBridge plugin (if you want it)
6. install device files and icons from your Vera
7. add the code for the script /usr/bin/GetNetworkState.sh

Once set up, initial overall system configuration is done with a startup file which, like
almost everything else in openLuup, is written in Lua (the exceptions being the standard
device .xml and .json files… even CGIs can now be written in Lua!)

1. Lua installation

For compatibility with Vera systems, openLuup has been written in Lua version 5.1 and
requires the appropriate installation to be loaded on your target machine. You will also
need the LuaSocket library, LuaFileSystem, and for some plugins with secure (SSL)
network connections the LuaSec library. It’s not difficult, but the guide assumes some
familiarity with Linux-type systems (although much is also applicable to Windows.)

It’s target machine dependent, but couple of the simpler cases are:

DEBIAN (BEAGLEBONE BLACK)

apt-get install lua5.1  
apt-get install lua-socket
apt-get install lua-filesystem
apt-get install lua-sec

OPEN-WRT (ARDUINO YUN)

(Lua is pre-installed)

opkg update  
opkg install luasocket  
opkg install luafilesystem
opkg install luasec

openLuup: User Guide - version 2016.02.25 � / �4 22

2. Host directory tree

The minimal requirement is a single directory which should contain the basic openLuup installation
(itself containing one sub-directory called ‘openLuup’) which can be anywhere. However, it’s
recommended to construct a more complete emulation of the Vera environment. To do this you
need to create:

A. /etc/cmh-ludl/ this is the directory from which openLuup will be run (it doesn’t actually have
to be called this at all, but this is the conventional Vera name for this place) into which the
D_xxx.xml, D_xxx.json, I_xxx.xml, J_xxx.js, L_xxx.ljua, S_xxx.xml (etc.) files should go.
These files should NOT be compressed (.lzo), as they are in Vera – again, memory is not
an issue in most environments. See step 6 below for an easy way to get these files.

B. /etc/chh-ludl/icons/ into which any .png image files (device icons) you need should go.
C. /var/log/cmh/ this is where the LuUPnP.log file gets written for ALTUI.

3. ALTUI installation

ALTUI installation is now greatly simplified - it can be done with a single HTTP request to a running
factory-reset openLuup system. See the suggested commissioning steps below for details.

ALTUI can also auto-update to the latest version. When doing so it creates a directory tree:

/etc/cmh-ludl/
plugins/downloads/altui/ - containing the latest download files
plugins/backup/altui/ - containing the previous running file versions

4. Arduino Gateway plugin

The Arduino Gateway plugin is available from the MySensors site: http://www.mysensors.org/
controller/vera

Simply place all the files into the /etc/cmh-ludl/ directory (or wherever you put the other plugins.)

At this time, only the Ethernet version of the plugin is supported (ie. hardware serial I/O is not yet
supported in openLuup)

openLuup: User Guide - version 2016.02.25 � / �5 22

http://www.mysensors.org/controller/vera

5. VeraBridge plugin

The VeraBridge plugin is an openLuup plugin which links to remote Veras. Unlike the built-in Vera
‘bridge’ capability (which, I think, uses UPnP discovery) this has no limitation as to the Vera
firmware version that it links to and you can quite happily run multiple copies of this linking to UI5
and UI7 remote machines (which, themselves, require no special software installation.)

The VeraBridge installation (in the openLuup - VeraBridge directory) comprises:

D_VeraBridge.json
D_VeraBridge.xml
I_VeraBridge.xml
L_VeraBridge.lua

These files should also go into /etc/cmh-ludl/

and the file VeraBridge.png

which should go into /etc/cmh-ludl/icons/

VeraBridge provides local clones of devices and scenes from a remote Vera, which:

reflect the status of the remote devices (ie. device variables)
present, through ALTUI, a display panel and controls
allow control of the remote devices (eg. on/off, dimming, ...)  
through the usual luup.call_action mechanism (or the control panel)
makes remote scenes visible locally, allowing timers and triggers to be added

The device numbering is different from that on the remote machine, being incremented by
multiples of 10000 for each different bridge, and one of VeraBridge's main functions is to
intercept actions on the local devices and pass them to the remote ones. What does NOT
work is to set a variable on a local device and expect that variable on the corresponding
remote device to change.

Since it is possible (but fairly unlikely) that the VeraBridge will miss an update to a Vera
device variable, every so often (actually, about every minute) it scans the whole lot and
updates all the cloned devices on openLuup. This means that WHATEVER changes you
make to cloned device variables will get overwritten frequently. The motto is this...  
do NOT write variables to cloned devices.

Running under openLuup, VeraBridge supports any serviceId/action command request  
(ie. those not returning device status parameters) This covers most device control
scenarios.

openLuup: User Guide - version 2016.02.25 � / �6 22

6. Installing other Device files

The entire set of device files (*.xml, *.js, *.json, *.lua) can be copied from a Vera on your local
network using the openLuup_getfiles utility found in the Utilities folder of the distribution.

Simply run the Lua file from the command line when in the /etc/cmh-ludl/ directory

> lua openLuup_getfiles.lua

openLuup_getfiles - utility to get device and icon files from remote Vera
Remote Vera IP: 172.16.42.14 <—— input your remote Vera IP here
221 ALTUI_LuaRunHandler.lua
4728 D_ALTUI.json
1086 D_ALTUI.xml
4814 D_ALTUI_UI7.json
10564 D_Arduino1.json
1034 D_Arduino1.xml
…

It lists the file size and names as it uncompresses and transfers files. Device files are put into a
‘files’ sub-directory, and icons into ‘icons’.

Some or all of the files in files/ may be moved to /etc/cmh-ludl/.
The icons may remain in their directory as they are accessed directly there by the server.

7. Adding code for /usr/bin/GetNetworkState.sh and /etc/cmh/ui

Some plugins (eg. Sonos) use a shell command /etc/bin/GetNetworkState.sh to determine the
machine's IP address. I used to provide this (actually for ALTUI, but it doesn't need it now.) So
you need to create that file with the contents shown in the Appendix.

On a Windows machine you may need to use the simpler hard-coded address version of the script
shown there. I’m not actually sure that this works.

At least one plugin (IOSPush) requires the file /etc/cmh/ui with the single line (the digit seven):

7

openLuup: User Guide - version 2016.02.25 � / �7 22

Configuration

Configuration changes to the system happen in different ways in the three major phases of
normal running, startup and shutdown:

STARTUP
the default behaviour is to look for a JSON file called user_data.json in the current
directory (/etc/cmh-ludl/) loading the device/room/scene configuration from that.
an optional startup parameter is one of:

• the word reset, which forces a ‘factory reset’, or
• a user_data JSON formatted filename, or
• a Lua filename to be run in the context of a factory-reset system (with no rooms

or scenes, and only devices 1 (Gateway) and 2 (Z-wave controller) defined)

RUNNING
every 6 minutes the system configuration is check-pointed to the file user_data.json,
regardless of the name or type of the startup file. This will capture device variable and
attribute changes, scene creation/deletions, etc.
logged events are written to the log files as they happen and not cached.

SHUTDOWN
on luup.reload, or full exit, the configuration will be written to the file user_data.json
in the current directory
on luup.reload, or any other configuration change requiring a reload (eg. new child
devices created) the process will exit with status 42
on exit (from the HTTP request id=exit) will exit with status of 0 (successful exit)

This means that it is easy to save and restore arbitrary configurations, or start from
scratch. Since any reload will cause the process to exit, it’s necessary to launch
openLuup from within a script, in order to restart automatically. A Unix shell script to do
this, openLuup_reload, is included in the distribution (in the openLuup - Utilities directory)
and shown here. For Windows, see the relevant Appendix.

#!/bin/sh
#
reload loop for openLuup
@akbooer, Aug 2015
you may need to change ‘lua’ to ‘lua5.1’ depending on your install

lua openLuup/init.lua $1

while [$? -eq 42]
do
 lua openLuup/init.lua
done

An example Lua startup code, shipped with the openLuup installation and listed in an
Appendix, shows how to make a minimal system running ALTUI, Arduino Gateway, and a
VeraBridge to a remote Vera. The bold lines show where you might change the
customisation.

openLuup: User Guide - version 2016.02.25 � / �8 22

Suggested commissioning process steps

On the basis of walking before you can run, the following sequence should help getting
openLuup up and running and simplify diagnostics:

INSTALLATION CHECK

From the /etc/cmh-ludl directory run
> lua5.1 openLuup_check.lua

This may produce diagnostic warnings, but should not generate an error. If it does, some
installation files are missing.

OPENLUUP - FACTORY RESET

From the /etc/cmh-ludl directory run
> lua5.1 openLuup/init.lua reset

After a second or so, the process should terminate with a reload message.
Has this created the files: LuaUPnP.log and user_data.json ?
Compare these with the examples shown in the Appendices.

STARTUP THE RESET SYSTEM

From the /etc/cmh-ludl directory run
> lua5.1 openLuup/init.lua

This should not terminate, and should allow you to proceed with the following steps.

PORT:3480 SERVER

From your browser:
http://<YourIP>:3480/data_request?id=alive

…should return the message “OK”.

Also from the browser:
http://<YourIP>:3480/data_request?id=user_data

…should return a JSON object (which your browser may render in a special view or a plain
text) showing an expanded ‘user_data’ version of the user_data.json file you already saw.

Also, check you can access an image file in the icons directory:
http://<YourIP>:3480/icons/VeraBridge.png

The following URL should halt the openLuup engine and exit cleanly:
http://<YourIP>:3480/data_request?id=exit

openLuup: User Guide - version 2016.02.25 � / �9 22

ALTUI USER INTERFACE

Restart the openLuup engine, doing a factory reset:
> ./openLuup_reload reset

All the ALTUI files can be installed into the /etc/cmh-ludl/ directory automatically using
the URL:

http://<YourIP>:3480/data_request?id=altui

(this takes about one minute and requires, of course, an internet connection.) If you want
to watch it working you can tail the log with tail -f LuaUPnP.log

This should load a functional ALTUI interface which should run when you access the URL

http://<YourIP>:3480/data_request?id=lr_ALTUI_Handler&command=home#

You will immediately be prompted to upgrade to the latest version (you don’t have to –
again, it takes about a minute and will restart openLuup.) You should be able to exercise
all the ALTUI functionality through menus, etc., and simply see a single device (ALTUI) in
the system.

Exit cleanly:

http://<YourIP>:3480/data_request?id=exit

STARTUP WITH LUA FILE

Make a copy of the startup_example.lua file and name it startup.lua
customising it to your needs. Since you’ll be starting from a clean system you do need to
explicitly create the ALTUI device. All the files, though, should be in place following the
previous update step.

Restart the openLuup engine, this time using the shell script to implement restarts:
> ./openLuup_reload startup.lua

From your browser:
http://<YourIP>:3480/data_request?id=user_data

should now return a more extensive user data dump showing the additional devices
configured in the startup file, along with any top-level attributes and rooms you may have
defined.

Note that subsequent reloads of the system using the script file openLuup_reload (with no
parameter) will NOT use this startup code, but whatever Lua code you have set in the
“StartupCode” top-level attribute.

openLuup: User Guide - version 2016.02.25 � / �10 22

ARDUINO GATEWAY

This should be visible as an installed device on the ALTUI Devices pages. Start/stop
inclusion and other actions are available from the device control panel.

VERA BRIDGE

If you have installed the VeraBridge plugin files and configured the correct remote Vera IP
address in the luup.ip_set command in the startup file, then you should see in the
interface all your remote devices bridge to the openLuup system.

Sensors should reflect their correct readings, actions such as set dimmer level and light
on/off should work as expected.

You should be up and running with your very own openLuup system. Other devices can
be installed and configured following the example in the startup_examples file.

BACKUP

Whatever else you do, backup your functional user_data.json file.

You can always revert to this if you get stuck, using it as the input parameter to openLuup_reload.
So long as it is call something different, it will NOT be over-written, so this is a very easy way to
switch between different configurations.

One other ‘safety net’ that openLuup gives you in terms of restoring a configuration is to use a
startup.lua file (again, you can have many of these called different things.) The Lua syntax of the
file gives a very simple and readable description of the configuration and, as the example shows,
it’s very easy to create devices, rooms, etc. Scenes are more difficult, however. In fact, at the
moment, you can’t – you’d have to recreate them manually through the ALTUI interface.

If you DO recreate a system from a startup.lua file, then be aware that every plugin that creates
new child devices will, in turn, request a reload. Depending on what the plugin does in its own
startup code (access REST APIs over the network, local files, delayed startups…) this can take
quite a long time and you should see the system restart messages. During this time the ALTUI
interface (if you have configured it) will not be accessible.

Even after a system reboot, the only thing required to get openLuup restored to its previous state is
to start the openLuup_reload script (with no parameters) since this just picks up the latest
user_data.json file and runs with it.

openLuup: User Guide - version 2016.02.25 � / �11 22

More about the port 3480 web server
As well as supporting Luup HTML requests, the openLuup server on port 3480 has some of the
functionality of any normal server, but also some special features:

File Access

The root directory for the port 3480 server is /etc/cmh-ludl/ (or wherever the openLuup process
is started.) However, in addition, the server will search in /etc/cmh-lu/ (actually ../cmh-lu/) if
it fails to find the requested file. This mimics Vera’s use of that directory. It means that you can put
.xml, .json, and other files there for convenience.

Note, however, that a plugin which expects to find a file in /etc/cmh-ludl/ using io.open() will
NOT automatically find it if it resides in /etc/cmh-lu/.

The Lua package path has also been modified to search /etc/cmh-lu/ so that required Lua
modules may also be located there. Note also that any files here are not in compressed for (.lzo)
as they are in Vera.

Additionally, file-based icon references in .json files are redirected during loading to access the
/etc/cmh-ludl/icons/ directory through the port 3480 server. This means that the requests do
not go from AltUI to port 80, but to port 3480, which in turn means that device icons work over a
secure connection to port 3480 only. It also means that the icon directories under /www/cmh/
skins/default/… are not required. Existing HTPP icon references are untouched.

index.html Files

The server looks for an index.html file if the request is for a directory (ends with ‘/‘). This means
that an index.html file may be used to present any web page you like, but in particular it may be
used to redirect the request. For example:

With the following text in /etc/cmh-ludl/index.html

<!DOCTYPE html>
<html>
<head>
 <!-- HTML meta refresh URL redirection -->
 <meta http-equiv="refresh"
 content="0; url=/data_request?id=lr_ALTUI_Handler&command=home#">
</head>
<body>
</body>
</html>

then http://openLuupIP:3480/ redirects to AltUI.

Once again, this is useful functionality for access over a secure connection.

openLuup: User Guide - version 2016.02.25 � / �12 22

CGI processing

The openLuup HTTP server has a WSAPI connector for openLuup to allow it to run WSAPI (Lua)
applications as CGIs.

This means that arbitrary web server functionality can be added to openLuup simply by writing a
short, stand-alone, Lua module. The first time a CGI URL is accessed, the module is compiled and
loaded. Thereafter, it runs just as quickly as any built-in server code. The implementation adheres
exactly to the (brief) documentation here: http://keplerproject.github.io/wsapi/manual.html.

The connector supports CGI code in both the cgi/ and cgi-bin/ directories in /etc/cmh-ludl/.
So, for example, taking exactly the code from the simple example in the above documentation:

#!/usr/bin/env wsapi.cgi

module(..., package.seeall)

function run(wsapi_env)
 local headers = { ["Content-type"] = "text/html" }

 local function hello_text()
 coroutine.yield("<html><body>")
 coroutine.yield("<p>Hello Wsapi!</p>")
 coroutine.yield("<p>PATH_INFO: " .. wsapi_env.PATH_INFO .. "</p>")
 coroutine.yield("<p>SCRIPT_NAME: " .. wsapi_env.SCRIPT_NAME .. "</p>")
 coroutine.yield("</body></html>")
 end

 return 200, headers, coroutine.wrap(hello_text)
end

...and putting it into /etc/cmh-ludl/cgi/hello.lua, allows you to invoke it with

http://openLuupIP:3480/cgi/hello.lua

...and get the returned page:

Hello Wsapi!

PATH_INFO: /

SCRIPT_NAME: /cgi/hello.lua

Any other CGI action can be implemented in the same way.

Note that shell scripts and other CGI implementations are not yet supported by the port 3480
server, but this mechanism does enable some of the key CGIs used by Vera to be emulated
through a small amount of effort.

openLuup: User Guide - version 2016.02.25 � / �13 22

http://keplerproject.github.io/wsapi/manual.html

More about VeraBridge and Remote Scenes

Remote Scenes

The remote scenes are not really clones,but simply local scenes which trigger remote ones through
one line of Lua. No aspect of the remote scenes can be changed - it is not an editor for remote
scenes - but local device watch triggers and timers, and indeed additional Lua code, can be added
(although this might be confusing.)

They are really there as a basis for re-writing them to operate entirely locally in the openLuup
environment as you migrate plugins and scene logic from Vera to openLuup.

openLuup: User Guide - version 2016.02.25 � / �14 22

Appendix: user_data.json file after factory reset
{
 "BuildVersion":"*1.7.0*",
 "City_description":"Greenwich",
 "Country_description":"UNITED KINGDOM",
 "Device_Num_Next":"3",
 "InstalledPlugins2":[],
 "KwhPrice":"0.15",
 "LoadTime":"1444832719",
 "Mode":"1",
 "ModeSetting":"1:DC*;2:DC*;3:DC*;4:DC*",
 "PK_AccessPoint":"88800000",
 "Region_description":"England",
 "StartupCode":"",
 "TemperatureFormat":"C",
 "currency":"£",
 "date_format":"dd\/mm\/yy",
 "devices":[{
 "ControlURLs":{"service_1":{
 "ControlURL":"upnp\/control\/dev_1",
 "EventURL":"\/upnp\/event\/dev_1",
 "service":"urn:micasaverde-com:serviceId:ZWaveNetwork1",
 "serviceType":"urn:schemas-micasaverde-org:service:ZWaveNetwork:1"}},
 "altid":"",
 "category_num":19,
 "device_file":"D_ZWaveNetwork.xml",
 "device_type":"urn:schemas-micasaverde-com:device:ZWaveNetwork:1",
 "id":1,
 "id_parent":0,
 "impl_file":"I_ZWave.xml",
 "invisible":"1",
 "ip":"",
 "mac":"",
 "manufacturer":"",
 "model":"",
 "name":"ZWave",
 "room":"0",
 "states":[],
 "subcategory_num":0,
 "time_created":"1444832719"},{
 "ControlURLs":{
 "service_2":{
 "ControlURL":"upnp\/control\/dev_2",
 "EventURL":"\/upnp\/event\/dev_2",
 "service":"urn:micasaverde-com:serviceId:SceneController1",
 "serviceType":"urn:schemas-micasaverde-com:service:SceneController:1"},
 "service_3":{
 "ControlURL":"upnp\/control\/dev_3",
 "EventURL":"\/upnp\/event\/dev_3",
 "service":"urn:micasaverde-com:serviceId:HaDevice1",
 "serviceType":"urn:schemas-micasaverde-com:service:HaDevice:1"}},
 "altid":"",
 "category_num":14,
 "device_file":"D_SceneController1.xml",
 "device_json":"D_SceneController1.json",
 "device_type":"urn:schemas-micasaverde-com:device:SceneController:1",
 "id":2,
 "id_parent":1,

openLuup: User Guide - version 2016.02.25 � / �15 22

 "invisible":"1",
 "ip":"",
 "mac":"",
 "manufacturer":"",
 "model":"",
 "name":"_SceneController",
 "room":"0",
 "states":[],
 "subcategory_num":0,
 "time_created":"1444832719"}],
 "gmt_offset":"0",
 "latitude":"51.48",
 "longitude":"0.0",
 "mode_change_delay":"30",
 "model":"Not a Vera",
 "rooms":[],
 "scenes":[],
 "timeFormat":"24hr",
 "timezone":"0"}  

openLuup: User Guide - version 2016.02.25 � / �16 22

Appendix: LuaUPnP.log after factory reset

2016-02-25 10:05:23.287 :: openLuup STARTUP ::
2016-02-25 10:05:23.287 openLuup.init:: version 2016.02.25 @akbooer
2016-02-25 10:05:23.296 openLuup.scheduler:: version 2015.11.27 @akbooer
2016-02-25 10:05:23.297 openLuup.wsapi:: version 2016.02.20 @akbooer
2016-02-25 10:05:23.297 openLuup.server:: version 2016.02.25 @akbooer
2016-02-25 10:05:23.312 openLuup.plugins:: version 2015.12.22 @akbooer
2016-02-25 10:05:23.314 openLuup.scenes:: version 2015.11.12 @akbooer
2016-02-25 10:05:23.315 openLuup.chdev:: version 2016.02.15 @akbooer
2016-02-25 10:05:23.316 openLuup.io:0: version 2016.02.15 @akbooer
2016-02-25 10:05:23.316 openLuup.luup:0: version 2016.02.10 @akbooer
2016-02-25 10:05:23.318 openLuup.rooms:: version 2015.10.15 @akbooer
2016-02-25 10:05:23.318 openLuup.requests:: version 2016.02.22 @akbooer
2015-11-17 20:57:02.484 luup.create_device:: [1] D_ZWaveNetwork.xml / /
2015-11-17 20:57:02.484 luup.create_device:: [2] D_SceneController1.xml / /
2015-11-17 20:57:02.484 openLuup.init:: loading configuration reset
2015-11-17 20:57:02.484 openLuup.luup:0: device 0 '_system_' requesting reload
2015-11-17 20:57:02.484 luup.reload:0: saving user_data
2015-11-17 20:57:02.490 openLuup.luup:0: exiting with code 42 - after 0.0
hours

openLuup: User Guide - version 2016.02.25 � / �17 22

Appendix: Example openLuup startup.lua file
-- Example startup.lua

do -- define top-level attributes required to personalise the installation
 local attr = luup.attr_set

 attr ("City_description", "Oxford")
 attr ("Country_description", "UNITED KINGDOM")
 attr ("KwhPrice", "0.15")
 attr ("PK_AccessPoint", "88800127") -- TODO: use machine serial number?
 attr ("Region_description", "England")
 attr ("TemperatureFormat", "C")

 attr ("currency", "£")
 attr ("date_format", "dd/mm/yy")
 attr ("latitude", "50")
 attr ("longitude", "-1")
 attr ("model", "BeagleBone Black")
 attr ("timeFormat", "24hr")
 attr ("timezone", "0")
end

do -- create rooms (strangely, there's no Luup command to do this directly)
 local function room(n)
 luup.inet.wget ("127.0.0.1:3480/data_request?id=room&action=create&name="..n)
 end
 room "Upstairs" -- these are persistent across restarts
 room "Downstairs"
end

do -- ALTUI
 local dev = luup.create_device (‘’, “ALTUI”, ”ALTUI”, "D_ALTUI.xml")
end

do -- ARDUINO
-- local dev = luup.create_device ('', "Arduino", "Arduino", "D_Arduino1.xml")
-- luup.ip_set ("172.16.42.21", dev) -- your Arduino gateway IP address
end

do -- the VERA BRIDGE !!
 local dev = luup.create_device (‘’, "Vera", "Vera", "D_VeraBridge.xml")
 luup.ip_set ("172.16.42.10", dev) -- set remote Vera IP address
end

-- set up whatever Startup Lua code you normally need here
luup.attr_set ("StartupCode", [[

luup.log "Hello from my very own startup code"

]])

openLuup: User Guide - version 2016.02.25 � / �18 22

Appendix: openLuup_reload.bat for Windows
For Windows, you will need an alternative shell file to run the basin openLuup reload loop. I’m
indebted to @vosmont for the following information which I’ve copied directly from the post here
http://forum.micasaverde.com/index.php/topic,34480.msg259829.html#msg259829

For the moment, I use openLuup on Windows.

Install http://luadist.org/ (contains Lua 5.1 and all the needed libraries)

Copy this file "openLuup_reload.bat" in "openLuup\etc\cmh-ludl", and change "LUA_DEV"
according to LuaDist folder.

@ECHO OFF
SETLOCAL
SET LUA_DEV=D:\devhome\app\LuaDist\bin
SET CURRENT_PATH=%~dp0
ECHO Start openLuup from "%CURRENT_PATH%"
ECHO.
CD %CURRENT_PATH%
"%LUA_DEV%\lua" openLuup\init.lua %1

:loop
IF NOT %ERRORLEVEL% == 42 GOTO exit
"%LUA_DEV%\lua" openLuup\init.lua
GOTO loop

:exit

openLuup: User Guide - version 2016.02.25 � / �19 22

http://forum.micasaverde.com/index.php/topic,34480.msg259829.html#msg259829

Appendix: code for /usr/bin/GetNetworkState.sh

Some plugins (eg. Sonos, DLNA, Squeezebox, …) require an external shell script (part of a
standard Vera installation) to define the host machine IP address.

There’s two basic ways to implement this.

This file can either be VERY simple:

echo -n 172.16.42.88

...with the IP address appropriately set (manually)

…or a more sophisticated approach using a Lua script to return the result (automatic) which is
described here:

http://forums.coronalabs.com/topic/21105-found-undocumented-way-to-get-your-devices-ip-
address-from-lua-socket/

#! /usr/bin/env lua
--
-- discover main IP address of machine and write to standard output
-- http://forums.coronalabs.com/topic/21105-found-undocumented-way-to-get-your-
devices-ip-address-from-lua-socket/
--
local socket = require "socket"
function myIP ()
 local mySocket = socket.udp ()
 mySocket:setpeername ("42.42.42.42", "424242") -- arbitrary IP/PORT
 local ip = mySocket:getsockname ()
 mySocket: close()
 return ip or "127.0.0.1"
end
io.write (myIP())

openLuup: User Guide - version 2016.02.25 � / �20 22

http://forums.coronalabs.com/topic/21105-found-undocumented-way-to-get-your-devices-ip-address-from-lua-socket/

Appendix: Undocumented features of Luup
The documentation for Luup is poor: out of date, misleading, incomplete, unclear, and sometimes
just plain wrong. During the implementation of openLuup a number of undocumented ‘features’
have come to light. In some cases, these features are used by various plugins, either deliberately
or unknowingly, through sins of commission or omission. As a result, I’ve had to include them in
the openLuup implementation.

If you’re a developer, please try NOT to use these things in your plugin code.

Here’s what I’ve found - if you know more, let me know.

lul_device – this variable is often included in callback function parameter lists to indicate the
target device, and that’s fine. However, it ALSO turns out to be in scope in the whole body of
a plugin’s Lua code. Some plugins rely (possibly inadvertently) on this feature. 

nil device parameter in luup.variable_watch – whilst the use of a nil variable parameter to
watch ALL service variables is documented, the use of a nil DEVICE is not, but works as
expected: the callback occurs a change in ANY device with an update to the given serviceId
and variable (thanks for @vosmont for that information.) 

nil device parameter in luup.variable_set/get – it appears that when called from device
code, a missing device parameter gets the current luup.device variable value substituted.

openLuup: User Guide - version 2016.02.25 � / �21 22

Appendix: Unimplemented features of openLuup
openLuup is, as of this time, an unfinished work. The following features are known to be
unimplemented, poorly implemented, or non-functional at this time, for a variety of reasons.

unimplemented luup API calls

luup.devices_by_service – the definition of the functionality here Luup_Lua_Extensions is
not adequate to make an implementation. 

luup.job.* – all functions in this module (status, set, setting) are empty stubs. 

luup.job_watch – not yet implemented. 

luup.require – undocumented. 

luup.xj – undocumented.

unimplemented HTTP requests

id=scene – only create, delete, list, and rename are implemented (ie. no interactive creation
of scenes.) Also note that scene triggers (or notifications) are not stored. 

id=action – the virtual category 999 is not implemented. Actions on groups of devices defined
by category is not implemented.  

id=finddevice – not implemented. 

id=resync – not implemented.  

id=archive_video – not implemented. 

id=jobstatus – not implemented. 

id=invoke – not implemented. 

id=relay – not implemented.

openLuup: User Guide - version 2016.02.25 � / �22 22

http://wiki.micasaverde.com/index.php/Luup_Lua_extensions#function:_devices_by_service

