

PAGE OF CONTENTS

 INTRODUCTION

 FUNCTIONS

 WORK STRATEGY

➢ ADMIN

➢ DOCTOR

➢ PATIENT

➢ EMPLOYEE

A SHORT DOCUMENTATION

INTRODUCTION

The hospital management system (HMS) is integrated software that handles

different directions of clinic workflows. It manages the smooth healthcare

performance along with administrative, medical, legal, and financial control. That

is a cornerstone for the successful operation of the healthcare facility.

This application is the backend part of a hospital management system. You can use

this backend application if you have any frontend graphical user interface of a

hospital management system. This HMS application is completely designed in

Python for specifically PostgreSQL Database.

Here different algorithms have been implanted from the developer’s point of view.

It is suitable for a mid-level hospital or clinic. If you use this application in the

production part of a higher-level hospital, you may face problems because of the

lack of functions. Then you have to create functions of your own. Note that many

functions don’t return any value, they just print the value in the terminal. But you

probably need to return values instead of printing them. For that purpose, you have

to change the source code.

Working strategy plays a vital role to keep this application running smoothly. Here

Admin is the main player of this entire database, he has a handsome set of

functions and can perform them to keep the track of every users’ activity.

Every user is distinct by their unique 3-digit usernames. Usernames are the primary

keys of each table. All of the operations are powered by the username.

There are lots of functionalists that can be applied in this application and lots of

code blocks can be improved. I will work on this application in my free time and

implement a few other basic functions and error handling. I have also planned to

create a Frontend GUI and connect this backend to make it a full-stack project.

If you want to use this application in your project, first contact me.

mailto:ahammadshawki8@gmail.com

FUNCTIONS

This Hospital Management System has eight modules and all of the modules have

several useful functions.

• constant.py: Contains several constants that are used in other modules.

• DB_config.py: Configuration for connecting the database server.

o admin_config(): Used for extra tasks outside from the hms database

server, but in the main database system.

o config(): Used for connecting the ‘hms’ database server.

• main.py: This is the main board of Hospital Management System. It is

connected to all the modules. All of the backend work will be done from here.

main.py can be used for glue code when connecting a frontend GUI to this

backend program.

• login.py: When a user wants to perform a task in this program, he has to first

be logged in or signed up in the system. This module supports this exact

functionality.

o login(): First a user have to login, if he is a new user, then he can sign

up in the system by the signup() function.

o signup(): Automatically called from the login() function for new user.

o DB_pass(): Fetch the password from the database for the user who

tries to login.

• admin.py

o start_program(): This function will be run at the very first moment

while creating a hospital management system. It drops the previous

hospital management system database, and also doctor, patient and

employee table (if exists). And then start a new database and creates

those tables again. It also set up a default doctor named “Hospital”

(hpt). This operation is vital for the entire application.

o see_my_employee(): Admin can see all the employees who are

working for the ‘hospital’ apart from their regular basis work using this

function.

o add_employee(): Admin can add an employee for hospital’s extra work

by this function.

o remove_employee(): Admin can also remove their existing employees.

o update_db(): Only admin can update different fields from every tables

of this db. If user make mistakes while signup to the hospital

management system. He can request the admin to update this record

from the db.

o add_notifications(): Admin can sent notifications to doctors, patients

and employees using this function.

o total_earning(): Admin can see the total earning of the hospital using

this function. It calculates the total income by performing a complex

calculation. It sums up total earnings from the patients and the

employees and subtracts hospital fixed cost (constant.py) and also

subtracts the cost for the employees.

o remove_doctor_parmanently(): Admin can remove a doctor from the

hospital management system’s database permanently.

o remove_patient_parmanently(): Admin can remove a patient from the

hospital management system’s database permanently.

o remove_employee_parmanently(): Admin can remove an employee

from the hospital management system’s database permanently.

o create_database(): This function is called inside the start_program()

function. Admin can also call it externally. It creates the ‘hms’ database

server.

o delete_database(): Admin can call this function if he wants to delete

the ‘hms’ database server. Using this function is not recommended.

o show_all_doctor(): Admin can see all doctors info of the hospital.

o show_all_patient(): Admin can see all patients info of the hospital.

o show_all_employee(): Admin can see all employees info of the

hospital.

o delete_doctor_table(): This function is called inside the

start_program() function. Admin can also call it externally. It deletes

the doctor table from the ‘hms’ database server.

o delete_patient_table(): This function is called inside the

start_program() function. Admin can also call it externally. It deletes

the patient table from the ‘hms’ database server.

o delete_employee_table(): This function is called inside the

start_program() function. Admin can also call it externally. It deletes

the employee table from the ‘hms’ database server.

o create_doctor_table(): This function is called inside the

start_program() function. Admin can also call it externally. It creates

the doctor table in the ‘hms’ database server.

o create_patient_table(): This function is called inside the

start_program() function. Admin can also call it externally. It creates

the patient table in the ‘hms’ database server.

o create_employee_table(): This function is called inside the

start_program() function. Admin can also call it externally. It creates

the doctor table in the ‘hms’ database server.

• doctor.py

o see_patients_report(): open patients specific report in the web

browser.

o see_my_employee(): See the employees who are working for this

doctor.

o recent_notifications(): Returns the recent notification from the admin.

o salary(): Returns the total income from the patients subtracts the

employees’ salaries.

o show_all_employee(): show all employee according to their work.

o add_employee(): A doctor can add an employee for his personal work

by this function.

o remove_employee(): Doctors can also remove their existing

employees.

o remove_patient(): A doctor can remove a patient after or before the

treatment.

o see_my_patient(): A doctor can see all of his patients info.

o see_all_requested_patient(): Doctors can see the patients info who are

requesting for the appointment of the doctor.

o see_all_patient_of_my_speciality(): A doctor can see all of the

patients who are facing problem in that particular category where this

specific doctor have skills.

• employee.py

o isreceptionist(): Checks if an employee is a receptionist or not.

o recent_notifications(): Returns the recent notification from the admin.

o appoint_doctor(): Only a receptionist can appoint a doctor including a

date (format: “dd-mm-yy hh-mm”) for the patient.

o salary(): Calculate the total salary earned from doctors and hospital.

And then subtracts the percentage of salary given to the hospital.

o see_my_doctors(): See the doctors info for whom the employee is

working for.

• patient.py

o recent_notifications(): Returns the recent notification from the admin.

o add_report(): Add a new report with url.

o cost(): See the doctor’s fee and the hospital charge.

o remove_request(): remove the appointment request.

o request_doctor(): request a doctor for appointment.

o see_all_doctors_for_my_problem(): see the info of all doctors

according to the problem of the patient facing.

o see_my_doctors_stat(): After the appoint request have been

approved, the patient can see his doctor stats using this function.

Work Strategy

In this Hospital Management System, every user has some specific work strategies.

They have their own duties and according to their duties they have several

functions. If any user does not follow his work strategy the whole application might

crash.

Admin
Admin is the main character in his entire application. All the application is designed

based on the admin's work strategy. For starting this application successfully, the

admin has to log in to the database server first. Note that, while asking the category

in the login function, we haven’t mentioned the admin category as we don’t want

other users to log in as admin accidentally. But the admin can input admin as the

category. Then he has to input his password. Admin’s password is not stored in the

database. In my machine, it is stored in the environment variable. Admin can store

his password in the environment variable and grab the password in the constant.py

file. Or he can directly change the variable in the constant.py module (not

recommended). Then he has to call the start_program() function as it sets up the

default environment and creates the database server and tables. Admin can add

employees, remove employees, see the employees who work extra for the hospital.

He can calculate the total earning of the hospital. He can also create a doctor,

patient, and employee table and delete them. And the important part is that he

can add notifications to doctor, employee, or patient records so that they remain

notified about their workflows. If any doctor, employee, or patient request the

admin for any update, only the admin can update the database. Admin can also

delete and create the database. He can also delete a doctor, employee, or patient

permanently from the database.

Doctor
A doctor has to first log in to the application or sign-up y inputting proper

information. Note that, the password of the doctor has to be a maximum of 5

characters. And for the specialty section doctor will input certain field names where

he is capable like Eye, Teeth, Skin, Brain, Muscle, Bone, etc. He can only mention

one specialty. After login into the application, he can add employees, remove

employees, and see his employees who are working under him. He can also see his

recent notification from the admin. He can see his patients’ info and reports. Also,

he can remove his patients. He can see his total salary. He can see which patients

fall into his specialty and which patient is asking for his appointment.

Patient
A patient has to first login or signup to the application. During signup, he can

request a doctor an appointment. But if he is not familiar with the doctors, then he

can skip this question. After logging in to the application, he can add reports using

URLs, see his recent notifications from the admin. He can see all the doctors who

are capable to give him treatment. He can request an appointment. Once his

request has been approved by the receptionist, he can see his doctor's stat. He can

also remove his request and see his total cost for the treatment.

Employee
An employee first has to log in to the application or he can sign up. For signing up,

he needs to choose his salary per work and also his work. An employee’s work can

be a receptionist, assistant, guard, cleaner, etc. As soon as he signed up on the

database server, he will get his first client which is no other than the hospital. He

will get only 10% of his salary per work from the hospital for joining the hospital.

Hospitals admin can add the employees to working for the hospital. If the admin

adds them, then they will get the 100% of their salary. They can also be added by

the doctors. An employee can work for the hospital as well as for multiple doctors.

He can see his salary too. But note that, he will only get 80% of his total salary, the

other 20% will be added to the hospital's salary. This value can be changed from

the constant.py file. Only a receptionist can appoint the doctor with his patients.

