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1. Overview 
    1.1 Background   

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an        
established and robust method to generate genome wide maps of DNA binding            
proteins. Recently, new methods have been developed allowing time resolved          
ChIP-seq and ChIP-seq-like experiments to be conducted, effectively allowing         
protein-DNA binding dynamics and other DNA interaction dynamics to be          
established. As a response to the increasing potential of time course ChIP-seq            
experiments, we developed a robust software specializing in time course ChIP-seq,           
as well as other time resolved sequencing analysis. Our software, Time-Dependent           
ChIP-seq Analyser (TDCA), produces biologically relevant output informing users of          
protein-DNA binding dynamics. TDCA reads alignment data in BAM file format and            
genomic coordinates in BED file format.  
 
    1.3 Implementation 

TDCA functionalities were developed using C++ and its graph features were           
built-up under R. TDCA uses samtools for BAM file coverage calculations and            
bedtools for peak intersection with genome features. TDCA makes various calls to            
the command line while running such as sed, awk, find, and others. Some hard              
coded files are created as well which users should keep in mind while using TDCA in                
pipelines. Samtools, bedtools, and R must be accessible from the command line. 
 
    1.4 Note about the manual 

The proceeding contents of the manual contain example commands including          
TDCA usage. If a line starts with the $ character, it is meant to imply a command run                  
in the terminal with the appropriate files available in the working directory. The             
following instructions assume a basic understanding of terminal navigation and          
command execution. This manual is intended to teach uses how to effectively use             
TDCA.  
 

2. Installation 
   2.1 Software Requirements 
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Before installing TDCA, we require users to install the dependencies listed           
below, in Table 1: 
 
Table 1. TDCA dependencies and download links 

Name Download Link 

R https://cran.r-project.org/bin/windows/base/ (Windows) 

R Package plot3D install.packages(“plot3D”) 

R Package drc install.packages(“drc”) 

R Package rgl install.packages(“rgl”) 

R Package ggplot2 install.packages(“ggplot2”) 

R Package scales install.packages("scales") 

R Package grid install.packages("grid") 

R Package reshape install.packages("reshape") 

R Package scatterplot3d install.packages("scatterplot3d") 

Bedtools https://github.com/pezmaster31/bamtools 

Samtools https://github.com/samtools/samtools 
 

TDCA requires bedtools (Quinlan and Hall, 2010) and samtools (Li et al.,            
2009) be installed on the user's local computer and set on the environmental             
variables. TDCA calls these programs in many of its calculations. The user can             
check if bedtools and samtools is accessible globally by typing “samtools” and            
“bedtools” in the command line. If the programs are accessible, relevant information            
regarding the program will print. Alternatively, the user can check their bashrc file, or              
equivalent, with the following command: 
 
$gedit ~/.bashrc 
 

An alternative text editor to gedit may be used. If samtools and bedtools are              
set in environmental variables then the path to each of these program directories will              
be documented on a line in the bashrc file like this: 
 
export PATH=$PATH:/software/folder/bedtools/bin  
export PATH=$PATH:/software/folder/samtools/bin  
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Although depending on how the softwares were installed, the above lines may            
not be present in your bashrc file. Again, the simple way to check if these programs                
are installed and accessible to TDCA is by typing “samtools” and bedtools” in the              
command line, because this is how TDCA calls these programs. 

 
TDCA uses the R packages drc (Ritz,C. et al. 2015) for sigmoidal curve fitting              

and ggplot2 for graphical output (H. Wickham, 2009). Installation of R packages can             
be conducted as follows: 

  
$R 
Installing package: 
>install.packages(“package_name”) 
Checking if package is installed: 
>library (“package_name”) 
 

To our knowledge, the R package drc which is used for curve fitting requires              
R version 3.3.1 or later.  
  
       2.1 TDCA Installation Guide on Linux 

Once all the dependencies are installed users can proceed to TDCA           
installation. Users can download a tar file from: 
https://github.com/TimeDependentChipSeqAnalyser/TDCA 

Unpack and navigate to the tdca directory. Assuming the unpacked tdca           
folder is in the home directory: 
$cd home/tdca 
Run make: 
$make 
Now add tdca directory to environmental variables to allow accession from any 
directory: 
$gedit ~/.bashrc 
Write this line: export PATH=$PATH:home/tdca  
 

Once tdca is added to the environmental variables, the program can be used             
from any directory like so: 
$tdca <options> 

If tdca is not added to the environmental variables, the full program path must              
be specified from the working directory. Ex: 
$/home/tdca/tdca <options> 
 
     2.2 TDCA Installation Guide on Windows 
    2.2.1 Virtual Box  

1. Download Oracle VM VirtualBox 
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2. Download Ubuntu Desktop 
3. Install VirtualBox 
4. In VirtualBox Manager, click New 
5. Give a name to the operating system and select Linux for Type and 

Ubuntu 32/64 bits depending on the Windows OS 
6. For RAM Memory size, give above 4GB (4096MB) 
7. For Hard Disk, select Create a virtual hard disk now 
8. For Hard Disk File Type, select VDI 
9. Select Dynamically allocated 
10.For File Location and Storage, give above 32 GB 
11. In Storage, click on [Optical Drive] and select Choose a disk image 
12.Open the ubuntu-version-desktop-amd32/64.iso 
13.Click Start to initiate Ubuntu system in VirtualBox 
14.Follow the steps to complete the Ubuntu installation 
15.Once Ubuntu is successfully installed, run the command prompt and 

install all the necessary softwares for TDCA. Please read the 
installation guide on Linux in 2.1 

 
     2.3 Using TDCA 

Calling tdca without any arguments results in an output of the flag options and              
a brief description, as shown in Table 2. 
 
Table 2. TDCA options and brief description 

Command Description 

-v Display program version and exit program. 

-h Display a detailed list of all command line options and exits the 
program. 

-bam User specified folder containing sorted BAM turnover files including 
index files. 

-bed User specified BED file containing loci of interest. 

-i User specified folder containing sorted input BAM turnover files 
including index files. 

-g Genome name. Currently supported: mm10, mm9, hg38, hg19, 
dm6, dm3, ce11. 

-3d User specified gene file containing RefSeq gene names. 

-s Plateau range threshold (allowable range from 0.5-0.95). Default = 
0.85. 
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-t  Leading/trailing threshold consideration for data modelling 
(allowable range from 0-2). Default = 1. 

-name User specified name for output files. Default = turnover.exp. 

-model Data modelled based on prediction. Default is no data modelling. 

-poisson Data modelled to 3 parameter sigmoidal curve assuming Poisson 
distributed coverage. 

 -dm  Data matrix used to normalize user defined input files. 

-prenorm User defined pre-normalized read counts with genome 
coordinates. 

-nonorm Read coverage will not be normalized based on sequencing 
coverage of non-peak loci. 

-L5 Model data to five parameter sigmoids instead of the default four 
parameter sigmoids. 

-proc Explicitly state number of processors to use. 

-lin Perform linear regression on time course data. 

 
3. Core Algorithm Description 

TDCA reads genomic coordinates provided in BED file format, extracts the           
sequencing coverage at coordinates from the provided time course BAM formatted           
sequence files with Samtools, and models the sequencing coverage to four (default)            
or five parameter (4P or 5P) sigmoidal curves using the drc R package. The equation               
and description of parameters for a 5P sigmoid are shown in equation 1. Figure 1               
shows what sigmoidal curves look like when the incorporation rate index (IRI)            
parameter is altered. Figure 2 shows the effect of changes in the asymmetry value f. 

 
Where, 
a = Lower asymptote 
b = Incorporation rate index (IRI, a measure of the slope at the inflection point) 
c= Inflection point when f=1 (also the time at which the curve reaches th when f=1)  
d = Upper asymptote 
f = Asymmetry factor 

6 



 

 
Figure 1. Graphical representation of the effect of changes in IRI (Hill coefficients)             
on the shape of 5P curves. For each of the three curves, the lower asymptote is held                 
at 40, the upper asymptote at 1000, and the asymmetry factor at 1. The blue curve                
has a IRI of 3 and inflection point of 3. The orange curve has a IRI of 1.5 and                   
inflection point of 9. The grey curve has a IRI of 0.5 and inflection point of 15.  
 

 
Figure 2. Graphical representation of the effect of changes in asymmetry value f on              
y in blue as well as the first derivative y’ in red and second derivative y’’ in green. All                   
other values for y remain the same as indicated. (A) In cases where 0 < f < 1, the                   
inflection point (given by the maximum in y’ and the root of y’’ occurs closer to the                 
lower asymptote. (B) For f = 1 : y is rotationally symmetric about the inflection point.                
The increase in rate is the same as decrease in rate (as seen by the vertical                
symmetry of y’) such that inflection point occurs exactly in between the lower and              
upper asymptote. (C) For f > 1 : y inflection point occurs closer to the upper                
asymptote). Plots were generated using Derivative Calculator at        
https://www.derivative-calculator.net/ 
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In the case of a positive b value as in the Figure 2 plots, 0 < f < 1 results in an                      

earlier inflection point which could be interpreted biologically as a fast induction            
mechanism that reaches its maximal rate quickly but takes a relatively long time to              
saturate. In fact, the behaviour of this curve is very similar to that of an inverse                
negative exponential function which has been used previously to fit chIP-Seq data            
(Deal, 2010). Conversely for f > 1, this results in a later inflection point, which could                
be interpreted as a slower induction mechanism that reaches its maximal rate slowly             
but saturates quickly once it reaches the inflection point. Note that the recommended             
default setting for f is fixed 1 and changing this setting should only be done by expert                 
users with a clear biological rationale since a variable f may lead to misleading fitting.  

During fitting, each locus in a time course ChIP-seq experiment is reduced to             
one of six characteristic TDCA categories of change in sequencing coverage as a             
function of time. These six categories of behaviour are defined as follows: 
 
1) Rises: Sequencing coverage increases over time and data are modelled to a  
    single 4P sigmoid having a negative IRI. 
2) Falls: Sequencing coverage decreases over time and data are modelled to a  
    single 4P sigmoid with a positive IRI. 
3) Hills: Sequencing coverage increases and then decreases over time and data are  
    modelled to two 4P sigmoids - a rise then a fall. 
4) Valleys: Sequencing coverage decreases and then increases over time and data  
    are modelled to two 4P sigmoids - a fall then a rise. 
5) Undefined: Do not display the behavior of the previous categories but are  
    nevertheless modelled as either single rise or fall. 
6) Eliminated: Loci that are predicted to behave as a certain category but do not.  
 

TDCA normalizes sequencing coverage data before modelling. This is done in           
a two fold manner. Firstly, the values at each loci are normalized by the maximum               
sequencing coverage at non-peak loci for all time points in a time course replicate.              
Using non-peak loci is meant to capture true background sequencing levels. Table 3             
indicates this behaviour in tabular format. 
 
Table 3. Normalization of time course Chip-seq experiments based on sequencing           
coverage.  

Time course experiment 
(relative time units) 

Coverage at non-peak 
loci 

Normalization constant 

1 5,000,000 1.20 

2 6,000,000 1.00 
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3 5,500,000 1.09 

4 4,000,000 1.50 
 

The normalization constant is unique for each time point and is carried out             
throughout the program to correct for sequencing coverage. The constant is           
multiplied by the values calculated at each loci. If users specify the -nonorm flag, all               
the normalization constant values will be fixed to a value of 1. This can be useful to                 
get an idea of raw coverage values across time points. Additionally, TDCA can             
incorporate a standard input for normalization. ‘Input’ refers to sequencing data for            
an experiment wherein the protein-DNA complexes are not specifically         
immunoprecipitated and the result is the baseline coverage distribution. If input is            
provided, the input is normalized by the same manner except using coverage across             
the entire genome rather than at non-peak loci. The input values for each time point               
are then subtracted from the experimental coverage values at each loci to a lower              
limit of zero. If replicates are included, these final values are averaged. However,             
applying this subtraction strategy may lead to zero inflation depending on the input             
used. To combat this, we have enabled TDCA to analyze pre-normalized read            
counts, which allows users to apply the most appropriate normalization strategy to            
their particular experiment (Liang and Keleş, 2012; Diaz, 2012; Lun and Smyth,            
2016). In section 6.4: Creating Normalized Read Counts with DiffBind, we provide an             
example of how users can achieve normalized read counts using DiffBind           
(Ross-Innes, 2012), which incorporates the popular programs DESeq2 (Love, 2014)          
and edgeR (Robinson, 2010) that account for overdispersion. Alternatively, TDCA          
can use specified normalization values (see -dm flag explanation, section 5.1.9:           
Reporting Turnover Rates with a Specified Depth Matrix), or pre-normalized read           
counts depending on the user's preference (see -prenorm flag explanation, section           
5.1.10: Reporting Turnover Rates with Pre-Normalized Counts). 

TDCA uses normalized coverage values to model data. Without the -model           
flag, TDCA uses all time points at a given loci to model data which results in either a                  
rise (4P sigmoid increasing in signal over time) or fall (4P sigmoid decreasing in              
signal over time). If the -model flag is specified, TDCA uses a prediction algorithm              
based on the time at which the absolute minimum coverage value and absolute             
maximum coverage value occurs in time. TDCA checks if there are trailing data             
points (those occurring later in time), and leading data points (those occurring before             
in time) for the absolute minimum and maximum to decide if a single loci should be                
modelled as a hill or valley (candidate for double 4P sigmoid modelling). This is              
where the -s and -t flags come into play.  

Given a loci with absolute maximum coverage Dmax and absolute minimum           
coverage Dmin, over time, the range of coverage, R = Dmax - Dmin. In order to decide if                  
a coverage value at a certain time point is a genuine trailing or leading time point of                 
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the absolute minimum or maximum, the user specified plateau range threshold (-s)            
value (numerical value S, with a range of 0.5-0.95, default = 0.85) is considered.  

Genuine leading/trailing data points of the absolute minimum satisfy the          
equation: T ≥ Dmin + R * (1 - S), and genuine leading/trailing data points of the                 
absolute maximum satisfy the equation: T ≤ Dmax - R * (1 - S), where time point T is a                    
leading/trailing data point of the absolute minimum or maximum. 

Given the implications of the -s flag, the user can tailor their desire for points               
to be considered as genuine leading or trailing data points of the absolute maximum              
and absolute minimum. TDCA is more likely define loci categories as rises and falls              
rather than hills and valleys as the -s parameter becomes smaller. This is useful for               
data with significant noise where the expected behaviour is of rises/falls. 

The -s flag is essential in determining if a data point is considered a genuine               
leading or trailing data point of the absolute minimum and maximum coverage            
values. The leading/trailing threshold (-t) flag also affects how TDCA will define loci             
categories. -t decides how many of these genuine leading and trailing points            
(determined by -s) are necessary to define the categorical shift from rises or falls to               
hills or valleys, essentially determining if a single or double 4P sigmoid should be              
modelled to the coverage values at a given locus. The default value of -t is 1 (base                 
zero numbering) and is translated into the requirement of at least 2 genuine data              
points necessary to lead or trail the absolute minimum and/or maximum in order to              
shift locus modelling from a single 4P to double 4P. The lowest value of -t is 0, which                  
requires only 1 coverage value defined as a genuine leading or trailing value of the               
absolute minimum or maximum coverage. Figure 3 shows sequencing coverage of a            
hypothetical locus over 6 time points.  
 

 
Figure 3. Sequencing coverage of a hypothetical locus over 6 time points. Relative             
time units are indicated on the x-axis and coverage on the y-axis.  
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The locus in Figure 3 has a coverage range, R, of 100 - 0 = 100. Since this                  

locus has its absolute maximum at the last time point, it cannot have any data points                
trailing the absolute maximum. In order for the data point (4,95) to be considered a               
genuine leading data point of the absolute maxima, it must be less than or equal to                
Dmax - R * (1 - S). Solving for S results in S = 0.95. So, if the -s flag was set to 0.95 or                         
lower, then the data point (4,95) would be considered a genuine trailing data point of               
the absolute maximum. The remaining leading points would also result in genuine            
leading data points.  

Similarly, for the absolute minimum data point (1,0), the -s flag must be set to               
a value equal or less than 0.95 for the data point (0,5) to be considered a genuine                 
leading data point. Also, the -s flag must be set to a value equal or less than 0.94 for                   
the data point (2,6) to be considered a genuine trailing data point. Notice how the               
lower the -s flag is set, the more likely data points will be considered genuine leading                
or trailing values. 

TDCA then determines if data at each locus should be separated into two 4P              
sigmoid curves based on whether the number of genuine leading and trailing data             
points of the absolute minimum and maximum exceed the -t flag value. Ultimately,             
this results in the assignment of a locus as either a rise, fall, hill, valley, or undefined.                 
Loci that are undefined contain data points that are not defined in the categorical              
prediction algorithm. Undefined loci are, however, still analysed by TDCA as a single             
4P sigmoid, resulting in either undefined rises or undefined falls.  

Now that TDCA has defined a category for each locus, data is modelled with              
drc. For data with increasing signal over time (rises, undefined rises, and inclines of              
hills and valleys), TDCA uses a 4P sigmoid equation as default. If this results in a                
lower asymptote of less than zero (biologically meaningless since one cannot           
sequence negative DNA), then TDCA forces the lower asymptote to zero. If,            
however, the lower asymptote is less than zero and the inflection point is five times               
greater than the maximum time point (error prone prediction), TDCA forces the lower             
asymptote to the minimum coverage value. This recovers data closer to its true             
values based on simulated data testing. For data with decreasing signal over time             
(falls, undefined falls, and the declines of hills and valleys), TDCA uses a similar              
procedure as above except the upper asymptote is fixed to the maximum coverage             
value. 

Once modelling is complete, TDCA verifies if the models match the prediction.            
If not, the locus is eliminated. Note that running TDCA with no model, there cannot               
be eliminated loci. Figure 4 shows a visual representation of the TDCA core             
algorithm. The prediction algorithm is shown in Figure 5. The graphical output mainly             
focuses on a turnover time index (TTI), which is the inflection point adjusted by the               
asymmetry factor (see equation 1). This is indicative of the binding half life of a               
protein at a particular locus.  
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Figure 4. TDCA analysis work flow, requirements, and performance. (A) Simplified           
workflow. Required input data are genomic coordinates in BED format and folders            
containing BAM TC sequence files. TDCA normalizes data based on total           
sequencing coverage of each time point and also handles input files and replicates             
using additional normalization procedures. Loci can be modeled as the following           
categories of signal change: rise, fall, hill, or valley. An identity matrix that predicts              
loci category is based on the time at which absolute minimum sequencing coverage             
(black arrows ▼) and absolute maximum sequencing coverage (red arrows ▲)           
occurs as set by user defined thresholds. Each sigmoid color indicates a rise or fall               
with different combinations of absolute maximum and absolute minimum coverage          
positions in time with genuine leading and trailing points. Alternatively, users can            
model all their data to a single sigmoidal curve. The resulting parameters from data              
fitting are then reported to the user along with raw sequencing coverage calculations.             
Graphical output is provided to the user which can be enriched by specifying             
genome and genes. R scripts are provided in case users would like to change the               
look of default figures. (B) Plots show sequencing coverage (y-axis) over time            
(x-axis) at loci for coordinates of chromosome 1:5012338-5013264 obtained from a           
H3.3 ChIP-seq experiment (Kraushaar, 2013) using previously applied modeling         
strategies of inverse negative exponential (upper left) and multi-linear (upper right),           
and the sigmoidal fitting used by TDCA (lower). TDCA requires on terminal access to              
samtools (Li, 2009) for sequencing coverage calculation of BAM files, bedtools           
(Quinlan, 2010) for BED file manipulations, and R with the drc (Ritz, 2015) package              
for curve fitting. In the example shown here, parameters that govern data modeling             
by TDCA can be fine-tuned to result in either a single or double sigmoid. The lower                
and upper horizontal dashed lines represent absolute minimum coverage and          
absolute maximum coverage values, respectively. The overall sequencing coverage         
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range at a locus is shown as a vertical dashed line with red arrows. In this case, the                  
three data points marked with white arrows exceed the plateau range threshold (gray             
boxes) and are defined as genuine absolute maximum trailing data points. This            
results in double sigmoid modeling as shown here. Parameters for both sigmoids are             
reported to users. The plateau range threshold and leading/trailing threshold could           
be adjusted such that the locus is modeled to a single sigmoid.  
 

 
Figure 5. TDCA category prediction algorithm. Behaviour colours correspond to          
sigmoid colours in Figure 4 (a). If a locus satisfies the behaviour statement then              
there is a boolean true (1) in that row. Hill and valley categories can result in two                 
different ways. If there are loci with a prediction matrix that is not one of the six                 
defined matrices above, then that loci are undefined but are nevertheless modelled            
by drc as either a rise or a fall. If a locus is predicted to behave as a defined category                    
but is not modelled as such then it is eliminated. Tmin and Tmax represent the time at                 
which the absolute minimum and maximum coverage values occur. (Tmin trail) and            
(Tmin lead) indicate that Tmin has a satisfactory number of genuine trailing and leading              
data points, respectively, and similarly for Tmax. 

Once normalization and modelling is complete, TDCA reports the raw data in            
a tab delimited file and uses the modelled parameters to create biologically insightful             
graphs that provide general information about the user's experiment. 

 
4. General Usage Information 

4.1 Supported File Format 
4.1.1 BED File Format 
The required BED file should contain only three columns. The format for -bed 

<bed_peaks.BED> is the following: 
1. Chromosome, the name of the chromosome 

● Any string. ex. “Chr10” 
● Mandatory column 
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2. Start, the starting point 
● Any positive integer within the range of the genome of interest. 

ex. “23507998” 
● Mandatory column 

3. End, the ending point 
● Any number that is greater than starting point in above, and is a 

positive integer within the range of the genome of interest. ex. 
“23508239” 

● Mandatory column 
Do not use any special characters in naming BED files as undefined errors 

may arise. 
4.1.2 BAM File Format 

 The BAM folder for the -bam <bam_files_folder> flag requires bam files to be             
sorted and indexed and named with a “XXX_integer.bam” extension, where integer           
is the time in relative units of the time course experiment. ‘XXX’ should denote the               
additional file name. Index file should be named XXX_integer.bam.bai. For example,           
a BAM file could be named: one-hour-treatment_1.bam. Do not use any special            
characters in naming BAM files and the folder which they are contained as undefined              
errors may arise. 
 

4.1.3 Text File Format 
The required text file for -3d <text_file> is a list of refSeq gene names              

separated by newlines (/n).  
The required text file for -dm <text_file> is a list of integers separated by              

newlines (/n). The number of integers must equal the total of BAM files to be               
analysed. The coverage normalization value (in integer format) in the -dm file will be              
assigned to BAM files based on the order of the BAM folder in the argument list and                 
second by increasing time intervals. For further detail, see section 5.1.9: Reporting            
Turnover Rates with a Specified Depth Matrix.  
 
 

5. TDCA Suite 
     5.1 TDCA  
     5.1.1 Usage and Options Information 

Usage: $ tdca  -bed <bed_peaks.BED> -bam <bam_files_folder> 
Example: $tdca -bed ChIP-seq.peaks.bed -bam bamFolder -i bamInputFolder        

-g mm9  -3d  gene_list.txt -name exp-name 
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Table 4. TDCA options and detailed description 

Options Description 

-bed <bed_peaks.BED> 
-bam <bam_files_folder> 
(Mandatory if -prenorm 
not specified) 

BED file followed by BAM files folder. Sequencing 
coverage of loci in bed_peaks.BED are extracted from 
each BAM file inside bam_files_folder in order to 
calculate the turnover rates. 

-i 
<input_bam_files_folder> 
(Optional) 

Input BAM files folder path. Input BAM files are used to 
normalize data. 

-g <genome_name> 
(Optional) 

Generates additional graphs including gene feature 
boxplot of TTI and ideogram TTI heat map. Supported 
genomes include: human (hg18, hg19), mouse (mm9, 
mm10), fly (dm3, dm6), worm (ce11), and yeast 
(sacCer3). 

-3d <text_file> (Optional) Text file. The -3d flag requires the -g flag. A series of 
compressed 3D scatter plot of coverage for each gene 
listed in the given text file is generated as PDF. 

-s <0.85> 
(Optional) 

Plateau range threshold (allowable range from 
0.5-0.95). Default is 0.85. Value only applies if -model 
is called.  

-t <1> 
(Optional) 

Leading/trailing threshold (allowable range from 0-2). 
Default is 1. Value must be integer and only applies if 
-model is called. 

-name  <exp_name> 
(Optional) 

Rename the output file as user-specific. Default is 
turnover.exp. 

-model (Optional) Model data to rises, falls, hills, and valleys. 

-poisson (Optional) Data modelled to 3 parameter sigmoidal curve 
assuming Poisson distributed coverage. 

-dm <text_file> (Optional) Text file containing integers for normalization. The 
number of integers must equal the total number of 
BAM files.  

-prenorm <text_file> 
(Mandatory if -bed and 
-bam not specified) 

A pre-normalized count data frame is specified. 

-nonorm (Optional) Read coverage will not be normalized based on 
sequencing coverage of non-peak loci. 
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-L5 (Optional) Data is modelled to a five parameter sigmoid instead of 
the default 4P. 

-proc <integer> 
(Optional) 

Specify the number of processors to use in integer 
format. Default = maximum number of processors. 

-lin (Optional) Linear regression is performed. 
 
      5.1.2 Default Behavior 

Using only the mandatory parameters -bed and -bam, TDCA generates output           
containing three quality charts: pie chart of loci categories (rises, falls, etc.), bar chart              
of absolute minimum and maximum coverage as a percent occurrence of all loci, and              
a normalized coverage heatmap across time points. The analysis graphs provided           
include average read profiles of each loci category, log2 upper asymptote and lower             
asymptote ratios for incline and declines of hills and valleys, scatter plots of TTI and               
IRI for data separated by signal increase and signal decrease, distributions of delta             
coverage by locus type, and distributions of residuals from the different sigmoidal            
curves. Note that for the residuals to be calculated, at least 5 time points must be                
provided for a given curve, resulting in 1 degree of freedom. Figures 6-12 show              
images and descriptions of the default output using data from Kraushaar, et al.             
(2013).  

The following command would output the default graphs. The requirement of           
BAM file format is specified in 4.1.1 BAM File Format. BED file format is described in                
4.1.2 BED File Format. 

For example (-bed <bed_peaks.BED> -bam <bam_files_folder>): 
$tdca -bed ChIP-seq.peaks.bed -bam bamFolder/ 
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Figure 6. TDCA pie chart of data category. The diagram shows typical display when              
the -model flag is set. If the data is not modelled, the proportion of only rises and falls                  
will be shown. 
 

 
Figure 7. Percent occurrence of absolute minimum and maximum normalized          
coverage across all loci at each time point. The behaviour shown is typical for data               
expected to model as rises.  
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Figure 8. Normalized coverage heatmap across time points. Coverage of each loci            
across time points is shown as horizontal lines (see scale bar for loci width).              
Coverage is normalized from 1 (max) to 0 (min) for each locus so that loci can be                 
compared to each other. 

 
Figure 9. Average rise and fall profiles. TDCA analyses all loci modelled as rises              
and falls and produces an average profile as a fold enrichment of reads with zero as                
the lower limit rather than one. The vertical dashed lines indicate the time points              
used in the analysis. The dots indicate individual averaged values for each time point              
and the line is the modelled rise or fall. If the data contains no rises or falls then a                   
blank graph will show up with a description indicating so. Falls are messy here              
because they are not biologically relevant to this particular experiment. 
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Figure 10. Asymptote symmetricity and loci category profiles. (A) log2 upper           
asymptote ratios for incline and declines of hills and valleys. (B) log2 lower             
asymptote ratios for incline and declines of hills and valleys. The log2 asymptote             
ratios are an indication of the symmetricity of hills and valleys. (C-F) Average profiles              
for undefined rises, undefined falls, hills, and valleys as in Figure 9. Blue lines in the                
hills and valleys profiles indicate the model for signal increase (incline) and green             
lines indicate the model for signal decrease (decline). 
 

For loci that model as hills, TDCA does not ensure that the upper asymptote 
of hill incline and the upper asymptote of the hill decline will be the same value. 
Figure 10(A) shows this discrepancy as a log2 ratio of the incline curve over decline 
curve. This phenomenon is true for both upper and lower asymptotes of hills and 
valleys. We call this ratio the asymptote symmetricity and graph the values for both 
upper and lower asymptotes of hills and valleys. In summary, for hills and valleys, 
TDCA does not use the parameters of one curve to affect the parameters of another 
curve. 
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Figure 11. Scatter plot of TTI and IRI for data separated by categories that display               
signal increase. A separate figure is output for loci that display signal decreases (not              
shown here). Histograms show loci count, of different loci categories that fall within             
binned regions of TTI and Hill’s coefficient.  
 

 
Figure 12. Distribution of delta coverage (bp) by locus type (left) and distribution of              
residuals from the various sigmoidal curves (right). 
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5.1.3 Reporting the Turnover Rates with Multiple 
Replicate BAM Files 

With additional replicated BAM files are given by the user, TDCA will take             
extra time to compute the analysis and graphs. TDCA generates an extra page of              
graphs for users to perform data quality comparison, shown in Figure 13. 

The requirement of BAM file format is specified in 4.1.1 BAM File Format.             
BED file format is described in 4.1.2 BED File Format. 

For example (-bed <bed_peaks.BED> -bam <bam_files_folder_1> -bam       
<replicated_bam_file_folder_2>): 

$tdca -bed ChIP-seq.peaks.bed -bam rep1-bamFolder/ -bam rep2-bamFolder/ 
 

 
Figure 12. TDCA output with replicates. (A) Correlation of standard deviation and            
upper TTI of loci with signal increase. (B) Correlation of standard deviation and             
upper TTI of loci with signal decrease. (C) Distribution of standard deviation at             
across time points. 
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5.1.4 Reporting the Turnover Rates of Given BAM 
Files with Inputs (-i) 

Given BAM input files from the user, additional normalization via subtracting           
coverage of input to a lower limit of zero will be computed. No additional graphs are                
created, the calculations are simply adjusted accordingly. 

The requirement of BAM file format is specified in 4.1.1 BAM File Format. 
For example (-bed <bed_peaks.BED> -bam <bam_files_folder> -i 

<input_bam_files_folder>): 
$tdca -bed ChIP-seq.peaks.bed -bam rep1-bamFolder -i rep1-bamInputFolder 

-bam rep2-bamFolder -i rep2-bamInputFolder 
 

5.1.5 Reporting the Turnover Rates of Given BAM 
Files with a Specific Genome (-g) 

Given a user-specified genome that is supported, TDCA generates a box plot            
of TTI values at genomic features. Default genome features include: 3’UTR exon and             
1000bp upstream of transcriptional start site, 5’UTR exon and 1000bp downstream           
of transcriptional end site, coding exons, CpG islands, introns, whole gene -            
characterized as 1000bp upstream of transcriptional start site to 1000bp downstream           
of transcriptional end site, and intergenic regions - characterized as reciprocal           
coordinates of whole gene. Additional gene features can be included by the user in a               
BED file format. This process is described in section 5.1.10 Expanding Genome            
Feature Libraries. Supported genomes include human (hg19, hg38), mouse (mm9,          
mm10), fly (dm3, dm6), nematode (ce11), and yeast (sacCer3). Contact the authors            
to request additional genomes. 

In addition, TDCA generates an ideogram heatmap of TTI values at each            
canonical chromosome. Figure 14 shows the output of TTI at gene features and             
Figure 15 shows a heatmap ideogram. 

For example (-bed <bed_peaks.BED> -bam <bam_files_folder> -g 
<genome_name>): 

$tdca -bed ChIP-seq.peaks.bed -bam bamFolder -i bamInputFolder -g mm9 
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Figure 14. TDCA gene feature boxplot with specified genome. Distribution of TTI            
values of loci that display signal increase at different gene features. Lower lines,             
lower part of box, midline, upper part of box, and upper line are 1st quartile, 2nd                
quartile, median, 3rd quartile and 4th quartile respectively. A boxplot for signal            
decrease loci is also output (not shown here). 
 

   
Figure 15. TDCA ideogram heatmap with specified genome. Chromosomes are          
shown as white polygons with labels at the bottom. Centromeres are located at             
crosses (most are telometric in mouse - shown here). Bands on the chromosomes             
indicate where user specified loci are with TTI indicated colorimetrically. Both signal            
increase loci (shown here) and signal decrease loci (not shown here) are output.  
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5.1.6 3D Coverage Profiles of User Specified Genes  
When a user-specified genome is provided, additional graphs can be printed           

as a series of 3D scatter plots displaying time dependent coverage for select genes              
from a user specified gene list. The user-specified gene list is a text file with refSeq                
gene names separated by newline characters (\n). Figure 16 shows an example of             
3D scatter plots at genes. 

The required format of the user-specified gene list is described in 4.1.3: Text             
File Format. 

For example (-bed <bed_peaks.BED> -bam <bam_files_folder> -g 
<genome_name> -3d <text_file>): 

$tdca -bed ChIP-seq.peaks.bed -bam bamFolder -i bamInputFolder -g mm9 
-3d chr.txt 
 

 
Figure 16. 3D coverage scatter plots of NM_001161849 (a) and NM_001001144 (b).  
 

The 3D scatter plot option shows time on the z axis (into the page). Data is                
compressed to show four time bins. This is done so that the plot is not cluttered. The                 
compression processes is visually described in the Figure 17. The purpose of this             
diagram is to get a relative idea of turnover times for various peaks located at genes. 
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Figure 17. Visual display of 3D scatter plot algorithm. Numbers oriented in horizontal             
lines represent the number of time points in a given ChIP-seq time course             
experiment. The amount of time points shown in the scatter plot is set to four no                
matter how many additional time points are given as can be seen from the green or                
red circled time points, which represent coverage values that are used in the plot              
(kept) or average, respectively. The first time point is used as a normalization point              
by subtracting its coverage from the other data points. An experiment with only four              
time points would show all four, each normalized by the first, therefore the first time               
point would look like a flat line.  

 
The x axis of all 3D genes show a picture of the exons in black boxes and                 

introns in thicker black lines. 1000bp upstream and downstream regions of the gene             
are shown as thinner black lines on the left and right sides of the gene body                
respectively. An algorithm has been created to search a built in library of refSeq              
gene information. Keep in mind that refSeq genes have multiple isoforms of certain             
genes. Remember to choose the appropriate isoform. USCS browser is a great tool             
to visually inspect coordinates of isoforms (Kent,W.J. et al. 2002). 

 
5.1.7 Reporting Turnover Rates with Different Plateau 

Range Threshold 
TDCA offers a plateau range threshold flag (-s). This threshold can be            

adjusted by the user to be between 0.55-0.95 (default = 0.85). The -s flag is               
discussed in section 3: Core Algorithm Description. -s plays a major role in the              
modelling procedure. 
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5.1.8 Reporting Turnover Rates with Different 
leading/trailing Threshold 

TDCA offers a leading/trailing threshold flag (-t). This threshold can be           
adjusted by the user to be between 0-2 (default = 1). The -t flag is discussed in                 
section 3: Core Algorithm Description. -t plays a major role in the modelling             
procedure. 

 
5.1.9 Reporting Turnover Rates with a Specified Depth 

Matrix 
As a response to novel ChIP-seq normalization strategies, such as internal           

spike in standards, users can specify their own values to normalize BAM files by,              
genome wide and at non-peak loci, for input and experiment files respectively. A             
newline(\n) separated file containing integers equal to the number of BAM files must             
be specified after the -dm flag. TDCA will assign these values to BAM files in order of                 
replicates, input before experiment, and then by chronological order. The user can            
double check if TDCA assigned the correct values to each file by inspecting the              
runtime output. 

 
5.1.10 Reporting Turnover Rates with Pre-Normalized 

Counts (-prenorm) 
Depending on the complexity of a given time course sequencing experiment,           

users may want to take advantage of normalization strategies not offered by TDCA             
yet are keen to use the automated modelling provided by TDCA. We have included              
the -prenorm flag for this purpose. Users can normalize their time course data             
anyway they would like and provide a tab delimited coverage file with a header to               
TDCA after specifying the -prenorm flag.  

The required format of the user-specified pre-normalized count file is          
described in 4.1.3: Text File Format. 

For example (-prenorm <norm_counts.txt>): 
$tdca -prenorm norm_counts.txt 

 
The first three columns in norm_counts.txt in the example above would be the             

same as a BED file (tab delimited: chromosome, start, end). The header of these first               
three column must be “chromosome”, “start”, “end”. Any additional columns must be            
the normalized coverage data at each locus across time (tab delimited). The headers             
of these columns must be a time point in integer format. For example, the first few                
rows of a normalized count table with 5 time point (1-5) could look like this (2 periods                 
represent normalized counts): 
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Chromosome start end 1 2 3 4 5 
2L 500 600 .. .. .. .. .. .. ..  
2L 1500 1600 .. .. .. .. .. .. ..  
2L 5500 5600 .. .. .. .. .. .. ..  
 

5.1.11 Performing Linear Regression (-lin) 
Specifying the -lin flag enables one to perform linear regression as well as the              

sigmoidal fitting on a time course data set. TDCA will output an additional tab              
delimited file with the locus coordinates (chromosome, start, end), as well as the             
y-intercept, slope and residuals from the linear regression. When performing linear           
regression, TDCA uses the “lm” function in R, using the coverage for all time points               
(no separation of time points in performed as in the sigmoidal modelling). When the              
-lin flag is specified, additional graphical outputs are given as shown in Figure 18. 

 
 

 
Figure 18. Graphical output from linear regression. Distribution of slope values by            
locus category (left). Scatter plot of slope and the residuals from the linear             
regression fit (right).  

 
 
5.1.12 Reporting Turnover Rates with Poisson 

Distributed Data (-poisson) 
To accommodate a wider range of data distributions, we have enabled TDCA 

to model time course sequencing coverage at a set of loci to a three parameter 
Poisson model, using the drm function L.3(), type=poisson function within drc. This 
strategy puts less weight on time points containing high read counts and may be 
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more appropriate for certain types of experiments. To implement the Poisson 
distribution modelling, specify the -poisson flag in combination with other options. 

For example (-bed <bed_peaks.BED> -bam <bam_files_folder> -poisson): 
$tdca -bed ChIP-seq.peaks.bed -bam bamFolder -poisson 

 
5.1.13 Expanding Genome Feature Libraries 
Users can input their own BED file format genome features into the            

appropriate genome folder located in the TDCA GenomeFeatures folder. UCSC          
table browser was used to get default libraries (Karolchik D., et al. 2004). TDCA will               
use the newly input file(s) in analysis of TTI at genome features.  
 

6. Example Usage 
6.1 Comprehensive Example 
In this short subsection we provide users comprehensive usage of TDCA           

including visual representation of the required files. The following command runs           
TDCA with 1 replicate, genes for 3D analysis, a depth-matrix, and specification of the              
mouse mm9 genome: 

$tdca -bed loci.bed -bam rep1 -dm depth-matrix.txt -3D genes.txt -g mm9 
 
Figure 19 shows a visual representation of required and additional files for this             

command. 
 

 
Figure 19. Visual display of directory contents and files for TDCA input. (A) Contents              
of main directory where the user will run TDCA. The folders (rep1, rep2, input1, and               
input2) contain BAM files, appropriately named, that will be read by TDCA. (B)             
Contents of the genes.txt file: RefSeq ID of five genes separated by a newline (\n)               
character. (C) Contents of the rep1 folder: 10 Bam files properly named            
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(XXX_time.bam) with indices. The contents of the BAM folders rep2, input1, and            
input2 must contain the same number of BAM files with the same time points. (D)               
BED file containing 3 tab delimited column, chromosome, start, and end. There can             
be any number of loci here. (E) Depth matrix used to specify values to normalized               
BAM files to. There must be an equal number of integers separated by a newline (\n)                
character as there are BAM files in each folder. The integers are assigned to BAM               
files in chronological order. (F) Genomes supported by TDCA -g flag. (G)            
Hypothetical output files generated by TDCA. Along with these is a data folder that              
the Rscript reads in order to generate a pdf. 
 

If the user wanted to include multiple replicates and input, such as: 
$tdca -bed loci.bed -bam rep1 -i input1 -bam rep2 -i input2 -dm 

depth-matrix.txt -3D genes.txt -g mm9 
The depth-matrix.txt file must contain the appropriate number of integers.          

Alternatively, the user can specify no depth matrix. 
 

6.2 Getting data 
During development, TDCA was tested on many published time dependent          

sequencing data sets. One of the most robust experiments was ChIP-seq performed            
using an inducible HA tagged H3.3. The GEO accession number for project is             
GSE51505 (found at: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51505    
). The experiment was done in MEF cells using 2 replicates on 11 time points,               
including input. In this next section we show users how to get this data and prepare it                 
for TDCA processing. Alternatively, at the end of the section we offer users a link to                
this pre-processed data so that users can go straight to testing TDCA.  
 
Accession numbers and names of data we will use for example: 
GSM1246648 MEF_H3.3_0h_r1 
GSM1246649 MEF_H3.3_1h_r1 
GSM1246650 MEF_H3.3_2h_r1 
GSM1246651 MEF_H3.3_3h_r1 
GSM1246652 MEF_H3.3_4h_r1 
GSM1246653 MEF_H3.3_5h_r1 
GSM1246654 MEF_H3.3_6h_r1 
GSM1246655 MEF_H3.3_12h_r1 
GSM1246656 MEF_H3.3_18h_r1 
GSM1246657 MEF_H3.3_24h_r1 
GSM1246658 MEF_H3.3_48h_r1 
GSM1246659 MEF_H3.3_72h_r1 
GSM1246660 MEF_H3.3_0h_r2 
GSM1246661 MEF_H3.3_1h_r2 
GSM1246662 MEF_H3.3_2h_r2 
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GSM1246663 MEF_H3.3_3h_r2 
GSM1246664 MEF_H3.3_4h_r2 
GSM1246665 MEF_H3.3_5h_r2 
GSM1246666 MEF_H3.3_6h_r2 
GSM1246667 MEF_H3.3_12h_r2 
GSM1246668 MEF_H3.3_18h_r2 
GSM1246669 MEF_H3.3_24h_r2 
GSM1246670 MEF_H3.3_48h_r2 
GSM1246671 MEF_H3.3_0h_Input 
GSM1246672 MEF_H3.3_1h_Input 
GSM1246673 MEF_H3.3_2h_Input 
GSM1246674 MEF_H3.3_3h_Input 
GSM1246675 MEF_H3.3_4h_Input 
GSM1246676 MEF_H3.3_5h_Input 
GSM1246677 MEF_H3.3_6h_Input 
GSM1246678 MEF_H3.3_12h_Input 
GSM1246679 MEF_H3.3_18h_Input 
GSM1246680 MEF_H3.3_24h_Input 
GSM1246681 MEF_H3.3_48h_Input 
GSM1246682 MEF_H3.3_72h_Input 
 

Download the above SRA experiments and unpack using sra toolkit          
(Leinonen,R. et al. 2011) fastq-dump command. Data then needs to be aligned (Li H              
and Durbin R. 2009) to the mouse genome and peaks need to be called (Zhang,Y. et                
al. 2008). We used the following commands for this: 
 
Align to mm9: 
$bwa mem mm9.fa MEF_H3.3_0h_r1 > MEF_H3.3_72h_r1.mm9.mem_0.sam 
Convert sam to bam: 
$samtools view -bS MEF_H3.3_72h_r1.mm9.mem_0.sam > 
MEF_H3.3_72h_r1.mm9.mem_0.bam 
Sort bam: 
$samtools sort MEF_H3.3_72h_r1.mm9.mem_0.bam 
MEF_H3.3_72h_r1.mm9.mem.sorted_0.bam 
Remove duplicates if any: 
$samtools rmdup MEF_H3.3_72h_r1.mm9.mem.sorted_0.bam 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup_0.bam 
Create bam index: 
$samtools index MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup_0.bam 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup_0.bam.bai 
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Repeat this for each fastq file. Note that the bam files are named with the               
convention “XXX_integer.bam”. This is naming convention is essential for TDCA to           
detect the time point in question. TDCA uses regular expression to do this. The              
integer extension for time course BAM files should all be in the same units. Next, call                
peaks using time point with longest treatment time: 4320 minutes (72 hours of             
doxycycline treatment). 
 
Call broad peaks with macs2 (77531 peaks): 
 
$macs2 callpeak -t MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup_4320.bam -c 
MEF_H3.3_72h_input.mm9.mem.sorted.rmdup_4320.bam --broad -g mm -name 
h3.3.72h-72hinput.macs2-broad.0.05 --broad-cutoff 0.05 
 

The bed file required for TDCA input must contain 3 tab delimited columns:             
chromosome, start, and end for each peak. Copy and paste these into a text file from                
the macs2 xls output. Once data is obtained, put all the bam files and indices with                
correct name extension for time points (XXX_integer.bam) in a folder for each            
replicate and input.  
 
For example: 
Make a directory for replicate 1 files: 
$mkdir Kraushaar-rep1  
Move files replicate 1 files to newly created directory: 
$mv -t ./Kraushaar-rep1 MEF_H3.3_48h_r1.mm9.mem.sorted.rmdup_2880.bam 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup.bam 
MEF_H3.3_0h_r1.mm9.mem.sorted.rmdup_0.bam 
MEF_H3.3_1h_r1.mm9.mem.sorted.rmdup_60.bam 
MEF_H3.3_3h_r1.mm9.mem.sorted.rmdup_180.bam 
MEF_H3.3_5h_r1.mm9.mem.sorted.rmdup_300.bam 
MEF_H3.3_12h_r1.mm9.mem.sorted.rmdup_720.bam 
MEF_H3.3_24h_r1.mm9.mem.sorted.rmdup_1440.bam 
MEF_H3.3_48h_r1.mm9.mem.sorted.rmdup_2880.bam 
MEF_H3.3_6h_r1.mm9.mem.sorted.rmdup_360.bam 
MEF_H3.3_18h_r1.mm9.mem.sorted.rmdup_1080.bam 
MEF_H3.3_2h_r1.mm9.mem.sorted.rmdup_120.bam 
MEF_H3.3_4h_r1.mm9.mem.sorted.rmdup_240.bam 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup.bam 
MEF_H3.3_0h_r1.mm9.mem.sorted.rmdup_0.bam.bai 
MEF_H3.3_24h_r1.mm9.mem.sorted.rmdup_1440.bam.bai 
MEF_H3.3_4h_r1.mm9.mem.sorted.rmdup_240.bam.bai 
MEF_H3.3_12h_r1.mm9.mem.sorted.rmdup_720.bam.bai 
MEF_H3.3_2h_r1.mm9.mem.sorted.rmdup_120.bam.bai 
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MEF_H3.3_5h_r1.mm9.mem.sorted.rmdup_300.bam.bai 
MEF_H3.3_18h_r1.mm9.mem.sorted.rmdup_1080.bam.bai 
MEF_H3.3_3h_r1.mm9.mem.sorted.rmdup_180.bam.bai 
MEF_H3.3_6h_r1.mm9.mem.sorted.rmdup_360.bam.bai 
MEF_H3.3_1h_r1.mm9.mem.sorted.rmdup_60.bam.bai 
MEF_H3.3_48h_r1.mm9.mem.sorted.rmdup_2880.bam.bai 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup_4320.bam.bai 
 

Repeat this for both replicates and input. If the user is working with the two               
replicates and input from Kraushaar et al. (2013) then there should be three folders              
corresponding to the two replicates and the input, each containing appropriately           
named files with indices. The working directory should also contain a BED file of              
H3.3 peaks.  
 
$ls 
Kraushaar-rep1  
Kraushaar-rep2  
Kraushaar-input 
H3.3.72h-72hinput.macs2-broad.0.05.chr10.bed 
 

Note that the H3.3 data only has time point 4320 for replicate 1. TDCA will 
give an error if replicates have differing timepoints. So the name of the bam file for 
time point 4320 was changed from 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup_4320.bam to 
MEF_H3.3_72h_r1.mm9.mem.sorted.rmdup.bam. The absence of the “XXX_integer 
naming convention will make it invisible to TDCA. 
 

Alternatively, we provide pre-aligned chromosome 10 data along with peaks 
for faster testing. This data can be found here: 
https://drive.google.com/open?id=0B5BFPUpdPrmhdG5jbkFUSlEtZDA 
 

6.3 Running TDCA 
These files now satisfy the basic input requirement to run TDCA. TDCA 

commands could be ran as follows: 
 
Run replicate 1 with no genome specified (heatmap ideogram and gene 

features boxplot will not be created): 
$tdca -bed H3.3.72h-72hinput.macs2-broad.0.05.chr10.bed -bam 
Kraushaar-chr10-rep1 -name r1.chr10.minimum 
 

Run both replicates and input and specify genome: 
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$tdca  -bed H3.3.72h-72hinput.macs2-broad.0.05.chr10.bed -bam 
Kraushaar-chr10-rep1 -bam Kraushaar-chr10-rep2 -i Kraushaar-chr10-input -i 
Kraushaar-chr10-input -g mm9 -name r1.r2.input.chr10.mm9  
 

6.4 Creating Normalized Read Counts with DiffBind 
As mentions, users may wish to normalize their data using other published            

techniques and provide the normalized counts to TDCA for sigmoidal fitting to gain             
the turnover parameters presented previously. In this section, we provide a brief            
example of how a user can do this using DiffBind. The text below in blue represents                
the R code required to perform such an analysis. The sample sheet named:             
‘diffbind_samplesheet.csv’ in the code below should include metadata regarding the          
BAM files that the user would like to analyse. A sample sheet with two replicates of a                 
time course experiment with five time points and a control for each replicate with              
input control for each BAM file might look something like this: 
 
SampleID,Tissue,Factor,Condition,Treatment,Replicate,bamReads,ControlID,bamControl,Peaks,PeakCaller 
r1_0,HEK,0h,wt,timecourse,1,bams/r1.0.bam,input.r1_0,inputBams/input.r1.0.bam,peaks.bed,bed 
r1_1,HEK,1h,wt,timecourse,1,bams/r1.1.bam,input.r1_1,inputBams/input.r1.1.bam,peaks.bed,bed 
r1_2,HEK,2h,wt,timecourse,1,bams/r1.2.bam,input.r1_2,inputBams/input.r1.2.bam,peaks.bed,bed 
r1_3,HEK,3h,wt,timecourse,1,bams/r1.3.bam,input.r1_3,inputBams/input.r1.3.bam,peaks.bed,bed 
r1_4,HEK,4h,wt,timecourse,1,bams/r1.4.bam,input.r1_4,inputBams/input.r1.4.bam,peaks.bed,bed 
r1_5,HEK,5h,wt,timecourse,1,bams/r1.5.bam,input.r1_5,inputBams/input.r1.5.bam,peaks.bed,bed 
r1_5,HEK,control,wt,control,1,bams/r1.control.bam,input.r1_control,inputBams/input.r1.control.bam,peaks.bed,bed 
r2_0,HEK,0h,wt,timecourse,2,bams/r2.0.bam,input.r2_0,inputBams/input.r2.0.bam,peaks.bed,bed 
r2_1,HEK,1h,wt,timecourse,2,bams/r2.1.bam,input.r2_1,inputBams/input.r2.1.bam,peaks.bed,bed 
r2_2,HEK,2h,wt,timecourse,2,bams/r2.2.bam,input.r2_2,inputBams/input.r2.2.bam,peaks.bed,bed 
r2_3,HEK,3h,wt,timecourse,2,bams/r2.3.bam,input.r2_3,inputBams/input.r2.3.bam,peaks.bed,bed 
r2_4,HEK,4h,wt,timecourse,2,bams/r2.4.bam,input.r2_4,inputBams/input.r2.4.bam,peaks.bed,bed 
r2_5,HEK,5h,wt,timecourse,2,bams/r2.5.bam,input.r2_5,inputBams/input.r2.5.bam,peaks.bed,bed 
r2_5,HEK,control,wt,control,2,bams/r2.control.bam,input.r2_control,inputBams/input.r2.control.bam,peaks.bed,bed 
 

The R code could be executed as follows: 
 

# Diffbind tutorial. For more information see the following: 
# http://genomicsclass.github.io/book/pages/ChIPseq.html 
# http://bioconductor.org/packages/release/bioc/manuals/DiffBind/man/DiffBind.pdf 
library(DiffBind) 
# set directory to where BAM files are located  
setwd("/DiffBind_Directory") 
ta <- dba(sampleSheet="diffbind_samplesheet.csv") # meta data here 
ta2 <- dba.count(ta, minOverlap=3) 
# this gives a heatmap of normalized count similarities: 
plot(ta2) 
 
ta2 <- dba.contrast(ta2, categories=DBA_TREATMENT, minMembers=2)  
ta2 <- dba.analyze(ta2) 
 

33 



#Retrieve all sites with confidence stats and normalized counts 
norm_counts <- dba.report(ta2, th=1, bCounts=TRUE) 
write.table(norm_counts, "/DiffBind_Directory/DiffBind-norm-counts.txt", sep="\t") 
 
#Retrieve all sites with confidence stats and raw counts 
raw_counts <- dba.report(ta2, th=1, bCounts=TRUE,bNormalized=FALSE) 
write.table(raw_counts, "/DiffBind_Directory/DiffBind-raw-counts.txt", sep="\t") 
 

The user could then tailor the output files called ‘DiffBind-raw-counts.txt’ and           
‘DiffBind-norm-counts.txt’ according to the -prenorm file input specifications. 
 

7. FAQ 
    6.1 Installation fails for R package, “rgl” in Ubuntu environment because of X11 
not found but required. 

Run the following in command line, sudo apt-get install r-cran-rgl. 
    6.2 Generate pdf file without compiling tdca. 

Once the R scripts are generated by tdca, run the following in command line, 
Rscript name_R_script. “xxx.tdca3Dgenes.R” is used to generate 3D graphs and 
“xxx.tdca.R” generates default graphs  
    6.3 Changing the look of output graphs. 

R scripts are provided for each graphical output. Users may wish to change 
the look of certain graphs and can do so with a basic understanding or R and 
ggplot2. R scripts are generated in a modular fashion to facilitate single change 
options. Data generated from larger genomes may create extremely large R scripts 
and may not open well with all text editors. The format of all R scripts is the same 
given the same tdca flag calls. Thus R scripts can also be manipulated by line 
swapping using combinations of awk and cat or other commands. 
    6.4 What compiler do I need to install tdca? 

TDCA is compiled using g++. Most later versions should work and version 
4.9.3 has been tested exhaustively. C++ standard library 2014 (-std=c++14) is used 
in the TDCA Makefile, however C++ standard library 2011 also works. Users may 
change the -std=c++14 flag to -std=c++11 in the TDCA Makefile if they wish. The 
openmp library used for parallelization requires an appropriate compiler. 
    6.5 Sometimes while TDCA is running the drc script, the following error is 
produced: 

Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control 
= list(maxit = maxIt,  : non-finite finite-difference value [1] 

Error in drmOpt(opfct, opdfct1, startVecSc, optMethod, constrained, warnVal, 
:  Convergence failed 

What does this mean? 
This error is produced when drc cannot model a locus. TDCA catches this 

error and simply classifies the locus as eliminated.  
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8. Runtime Dependencies 

8.1 Number of Processors/BED File Peaks/ BAM files 
TDCA is parallelized to run on all available processors. Runtime          

dependencies were tested using replicates from Kraushaar et al. (2013) on the            
bugaboo server of westgrid computer cluster.  

TDCA outputs the coverage at non-peak loci for experiment files and the total             
coverage of input files. If only 1 processor is in use, the order that the coverage of                 
the files are printed will be chronological. If, however, openmp is enabled, the files              
will be printed in an unpredictable way. This is one simple way to check if               
parallelization is working. Secondly, if parallelized, these files will be printed in            
clusters, rather than one by one in sequential blocks. When TDCA is running the drc               
R script, the user can check the directory that the program is running if there are R                 
script named drcVersitile.X.R, where X is an integer, equal to the number of             
processors then parallelization is working. These are simple ways to ensure           
parallelization is working. Using openmp on cloud clusters may require additional           
efforts to ensure proper functioning. For example, on westgrid systems it is required             
that parallel jobs be ran on processors on the same node. Furthermore, it is best to                
run jobs in seperate folders in case of hard coded file crosstalk. As shown in Figure                
20, the run time of TDCA decreases as increased processing power is available. 

 
 

 
Figure 20. Processing time of H3.3 time course data using eleven time points on              
chromosome 10 loci (4180 loci) with 4, 6, 8, 10, and 12 processors. TDCA utilizes               
openmp to parallelize various algorithms in the program. 
 

35 



It is worth mentioning that if the -prenorm flag is used, the samtools depth              
command is skipped, and therefore the runtime is decreased. If users find            
themselves running TDCA over and over, a count file can be created from the output               
file, which will minimize repeat analysis time. 
 

9. TDCA Support 
Please submit bug reports and request for library expansions to: 

mmyschyshyn@gmail.com 
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