
MS-E2139 Nonlinear Programming

Lecture slides

Spring 2017

December 28, 2016

©Systems Analysis Laboratory, Aalto University
Kimmo Berg

Contents

1 Introduction 3

2 Convex sets 8

3 Convex functions and subgradients 13

4 Optimality conditions 20

5 Optimality for inequality constrained problem 24

6 Equality and inequality constrained problem 28

7 Duality 35

8 Numerical methods for unconstrained problems 40

9 Conjugate gradient methods 54

10 Numerical methods for constrained problems 64

11 Primal-dual interior point method 78

MS-E2139 Nonlinear Programming Kimmo Berg

1 Introduction

Practicalities

• teaching: 4h lectures, 4h exercises per week

• exam (24/30p), assignments (2x4p)

• extra points from homework (3p) and exercises (2p)

• (voluntary programming assignment)

• textbook

History and Applications of optimization
(see the course website)

• Dido, Kepler, Newton, Gauss, Dantzig, Stigler, Karmarkar

• logistics, routing, shape and antenna design, pricing, scheduling

• Markowitz portfolio optimization, diet and Goddard rocket problem

Classes of optimization problems

Nonlinear optimization problem (NLP):

min
x∈X

f(x)

• decision variables x ∈ Rn

• objective function f : X 7→ R or Rn 7→ R (functional),
usually continuous and differentiable

• feasible set X ⊂ Rn

• it can be defined by the constraints: gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i =
1, . . . , l, or in matrix form g(x) ≤ 0̄, g : Rn 7→ Rm

• if X = Rn then unconstrained problem

Example.

min
x1,x2

(x1 − 3)2 + (x2 − 2)2 = f(x1, x2) = f(x)

s.t. x21 − x2 − 3 ≤ 0,

x2 − 1 ≤ 0,

−x1 ≤ 0.

3

MS-E2139 Nonlinear Programming Kimmo Berg

• e.g. g1(x) = x21 − x2 − 3

• draw the figure, feasible set, contours/level sets {(x1, x2) : f(x1, x2) = c ∈ R}

Linear optimization problem (LP):

min cTx

s.t. Ax = b, x ≥ 0̄.

• linear objective function

• feasible set X polyhedron, g, h linear, A ∈ Rm×n

• MS-E2140 Linear programming

• MS-E2143 Network optimization (usually LP, transportation)

Definition 1.1. Function f : Rn 7→ R is linear if
f(ax+ by) = af(x) + bf(y), f = aTx, or f = Ax.
Function f is affine if f(x) = L(x) + b, where L is linear.
Function f is additive if f(x+ y) = f(x) + f(y).
Function f is homogenous of degree k if f(ax) = akf(x), ∀x, a ̸= 0.

Convex optimization problem:

min f(x)

s.t. g(x) ≤ 0̄, Ax = b.

4

MS-E2139 Nonlinear Programming Kimmo Berg

• objective f(x) and feasible set g(x) convex

• MS-E2144 Optimization theory

• convexity will be defined shortly

Quadratic programming problem (QP):

min
1

2
xTAx+ bTx

s.t. cTx ≤ d, eTx = f.

• objective quadratic, feasible set polyhedron (constraints linear)

• if A positive semidefinite then convex QP

• Markowitz portfolio optimization

Definition 1.2. A matrix Q is positive semidefinite if xTQx ≥ 0, ∀x.
A matrix S is positive definite if xTSx > 0, ∀x ̸= 0̄.
(all eigenvalues are (strictly) positive)

More classes of optimization:

• stochastic or robust optimization if f,g,h are not exactly known

• integer programming if X discrete (MS-E2146 Integer optimization)

• dynamic optimization if dim X = ∞ (MS-E2148 Dynamic optimization)

• multicriteria optimization if multiple objectives (MS-E2153 Multiobjec-
tive optimization)

Example

Resource allocation, portfolio, diet problem:

max cTx

s.t. Ax ≤ b, x ≥ 0.

• LP, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

• m resources, n activities, xi level of activity i

5

MS-E2139 Nonlinear Programming Kimmo Berg

• cixi utility from activity i, f(x) = cTx =
∑n

i=1 cixi

• activity j with level xj uses resource i by aijxj

• total usage given by Ax =

 ∑n
j=1 a1jxj
. . .∑n

j=1 amjxj

, available resources b

Stochastic problem if ci stochastic variable, c stochastic vector with expected
value c̄ and covariance V = Vij = E [(ci − c̄i)(cj − c̄j)].
we get portfolio problem: invest b so that Ax ≤ b and multiple objectives

max c̄Tx, expected profit

min xTV x, variance (risk)

Assume that the decision maker has utility function for the profit z, u(z) = 1−e−kz,
where k is the risk aversion parameter. Also, assume that the profit z = c̄Tx is
normally distributed with variance σ2 = xTV x, then maxE [u(z)] is equivalent to
(under monotonic transformation)

max c̄Tx− 1

2
kxTV x

s.t. Ax ≤ b, x ≥ 0.

QP problem, Markowitz
with different k different solutions (draw a figure)
Pareto efficient solutions

What optimization studies?

1. Modeling: assumptions, simplifications, choices for functions

2. Optimization theory: existence, uniqueness, characterization with optimality
conditions (local, global, necessary, sufficient, geometric), duality

3. Computation: methods, complexity

Optimality conditions

Definition 1.3. x∗ ∈ S is a global minimum if f(x) ≥ f(x∗), ∀x ∈ S. (strict
if f(x) > f(x∗), ∀x ∈ S, x ̸= x∗)

6

MS-E2139 Nonlinear Programming Kimmo Berg

Definition 1.4. x∗ ∈ S is a local minimum if ∃ϵ > 0 s.t. f(x) ≥ f(x∗),
∀x ∈ Nϵ(x

∗) ∩ S.

Definition 1.5.

• int S = {x | ∃ϵ > 0, Nϵ(x) ⊂ S},

• Nϵ(x) = {y ∈ Rn | ∥x− y∥ < ϵ}, ϵ > 0,

• cl S = {x | ∀ϵ > 0, S ∩Nϵ(x) ̸= ∅},

• ∂S = {x | S ∩ Nϵ(x) ̸= ∅, SC ∩ Nϵ(x) ̸= ∅, ∀ϵ > 0}, where SC is the
complement of S,

Note: S is open if S = int S and S is closed if S = cl S.
Directional derivatives and differentiability

Definition 1.6. Let S ⊂ Rn, S ̸= ∅, f : S 7→ R, x0 ∈ S and direction d ̸= 0̄ s.t.
x0 + λd ∈ S, ∀λ ∈ [0, λ0] for some λ0 > 0. Gateaux derivative of f at x0 in
direction d is (when the limit exists)

f ′(x0; d) = lim
λ→0+

f(x0 + λd)− f(x0)

λ
.

Definition 1.7. Function f : S 7→ R, S ⊂ Rn is Frechet differentiable at
x0 ∈ int S ̸= ∅ if ∃∇f(x0) ∈ Rn (gradient) and a function α : Rn 7→ R s.t.

f(x) = f(x0) +∇f(x0)T (x− x0) + ∥x− x0∥α(x0;x− x0), ∀x ∈ S,

where α(x0;x− x0) → 0 when x→ x0.

If a function if Frechet differentiable it has all Gateaux derivatives and they
equal (f ′(x0; d) = ∇f(x)td). If a function is differentiable it is also continu-
ous. The gradient ∇f(x) is unique and ∇f(x) = [∂f(x)/∂x1, . . . , ∂f(x)/∂xn].
If f : Rn 7→ Rl, f(x) = (f1, . . . , fl)

T then the Jacobian is
∇f(x) =

[
∇f1(x)T , . . . ,∇fl(x)T

]
.

Example. ∇(xTAx).

Definition 1.8. Function f : S ⊂ Rn, ̸= ∅ 7→ R is twice differentiable at
x0 ∈ int S if ∃∇f(x0) ∈ Rn, a symmetric n×n Hessian matrix ∇2f(x0) ∈ Rn×n

and α : Rn 7→ R s.t. α(x0; x− x0) → 0 when x→ x0 and ∀x ∈ S

f(x) = f(x0)+∇f(x0)T (x−x0)+1/2(x−x0)T∇2f(x0)(x−x0)+∥x−x0∥2α(x0;x−x0).

7

MS-E2139 Nonlinear Programming Kimmo Berg

Note that (∇2f(x0))ij =
∂2f(x0)
∂xi∂xj

.

Unconstrained optimization

Definition 1.9. d ∈ Rn is a descent direction of f at x′ if ∃δ > 0 s.t. f(x′ +
λd) < f(x′), ∀λ ∈ (0, δ). The cone of descent directions is d ∈ F .

Theorem (4.1.2). If f : Rn 7→ R differentiable at x′ then
F0 = {d,∇f(x′)Td < 0} ⊂ F.

Proof. Diff.: (f(x′ + λd) − f(x′))/λ = ∇f(x′)Td + ∥d∥α(x′;λd) ⇒ ∃δ > 0 s.t.
f(x′ + λd)− f(x′) < 0, ∀λ(0, δ) since α(x′;λd) → 0 when taking the limit λ → 0.
So d ∈ F . □

Theorem (Fermat 1646, first order necessary). Let f : Rn 7→ R diff. (S ̸= ∅ open
or x∗ ∈ int S). If x∗ is a local optimum then ∇f(x∗) = 0̄.

Proof. Assume ∇f(x∗) ̸= 0̄. Choose d = −∇f(x∗) ⇒ −∥∇f(x∗)∥2 < 0, i.e.,
d ∈ F0. From Theorem 4.1.2., ∃λ > 0 and d ∈ F s.t. f(x∗ + λd) < f(x∗), which
is a contradiction of local optimality. There cannot be descent directions at local
minima. □

Theorem (4.1.3, second order necessary). Let f : Rn 7→ R twice diff. If x∗ is a
local minimum then ∇2f(x∗) is positive semidefinite.

Proof. As before but use the second order Taylor explansion instead of the first.
□

Theorem (4.1.4, sufficient). Let f : Rn 7→ R twice diff. If ∇f(x∗) = 0̄ and
∇2f(x∗) positive definite then x∗ is a strict local minimum.

2 Convex sets

Definition 2.1. A set S ∈ Rn is convex if for all x1, x2 ∈ S holds that
λx1 + (1− λ)x2 ∈ S, ∀λ ∈ (0, 1).

Example. The following sets are convex:

• hyperplanes S = {x ∈ Rn | pTx = a},

• open and closed half-spaces S = {x ∈ Rn | pTx < a} (≤),

8

MS-E2139 Nonlinear Programming Kimmo Berg

• polyhedra P = {x | Ax ≤ b, Cx = d},

• norm balls B = {x | ∥x − xc∥ ≤ r}, where ∥x∥ =
√
x · x =

√
< x, x > =√

xTx =
√∑n

j=1 x
2
i ,

• norm cones C = {(x, t) | ∥x∥ ≤ t} ∈ Rn+1,

• ellipsoids E = {x | xTQx+ pTx+ q ≤ 0, Q p.s.d.}

Definition 2.2. Set C is a cone from origin if x ∈ C ⇒ λx ∈ C, ∀λ ≥ 0.
The dual cone of C is C∗ = {y | yTx ≥ 0 for all x ∈ C}. The polar cone of C
is C0 = {y | yTx ≤ 0 for all x ∈ C}.

Definition 2.3. The weighted averages
∑k

j=1 λjxj of points x1, . . . , xk are called:

• linear combinations when λj ∈ R,

• affine combinations when
∑k

j=1 λj = 1,

• conical combinations when λj ≥ 0,

• convex combinations when
∑k

j=1 λj = 1, λj ≥ 0.

• conv(S) is the set of its convex combinations
(shown in exercises: conv(S) =

∩
{C ⊂ X : C conv., S ⊂ C})

• Note S is convex if S = conv(S).

Theorem (2.1.6, Caratheodory). If S ⊂ Rn and x ∈ conv(S) then
x ∈ conv(x1, . . . , xn+1).

Convexity preserving operations for sets

• Theorem 2.1.2:
∩
, ±

where A±B = {x± y | x ∈ A, y ∈ B},

• affine functions f = Ax+ b: scaling, translation, (image and inverse image)

• cartesian product ×: S1 × S2 = {(x1, x2) | x1 ∈ S1, x2 ∈ S2},

• perspective functions P (x, t) = x
t
, t > 0,

• linear-fractional functions g(x) = Ax+b
cT x+d

, dom g = {x | cTx+ d > 0},

9

MS-E2139 Nonlinear Programming Kimmo Berg

• interior int, closure cl, convex hull conv.

How to examine if a set is convex?

• proof based on the definition

• using earlier results and convexity preserving operations

• draw a figure

• simulation: numeric testing by choosing points in random and test convexity
(proving the set is not convex)

Existence

Definition 2.4. Infimum α = infx∈S f(x) if α ≤ f(x) ∀x ∈ S and ∄α0 > α s.t.
α0 ≤ f(x) ∀x ∈ S, and minimum α = minx∈S f(x) if ∃x∗ ∈ S s.t. α = f(x∗) ≤
f(x) ∀x ∈ S.

Note the axiom of real numbers: if A ̸= ∅ ⊂ R and ∃M s.t. x ≤ M ∀x ∈ A
then ∃ supA.

Theorem (2.3.1, Weierstrass). If S ̸= ∅ ⊂ Rn compact (closed and bounded) and
f : S 7→ R (lower semi)continuous then ∃x∗ ∈ S s.t. f(x∗) = minx∈S f(x) =
infx∈S f(x).

Minimum distance from a convex set

Theorem (2.4.1). If S ̸= ∅ ⊂ Rn closed convex and y /∈ S then ∃!x∗ ∈ S s.t.

∥x∗ − y∥ = min
x∈S

∥x− y∥ = inf
x∈S

∥x− y∥.

and x∗ is the minimum ⇔ (y − x∗)T (x− x∗) ≤ 0, ∀x ∈ S.

Proof. Existence. S ̸= ∅ ⇒ ∃x′ ∈ S, S0 = S∩{x, ∥x−y∥ ≤ ∥y−x′∥} is compact.
f : S0 7→ R continuous, Weierstrass.

Uniqueness. Assume ∃x′ ∈ S s.t. ∥y − x∗∥ = ∥y − x′∥ = γ. Since S is convex,
1/2(x∗ + x′) ∈ S. Now,

∥y− 1/2(x∗ + x′)∥ = ∥1/2(y− x∗)+ 1/2(y− x′)∥ ≤ 1/2∥y− x∗∥+1/2∥y− x′∥ = γ

by triangle inequality, and it is a contradiction.

10

MS-E2139 Nonlinear Programming Kimmo Berg

If part. ∥y−x∥2 = ∥y−x∗+x∗−x∥2 = ∥y−x∗∥+∥x∗−x∥2+2(x∗−x)T (y−x∗) ≥
∥y − x∗∥2.

Only if part. x∗ is a minimum, i.e., ∥y−x∥2 ≥ ∥y−x∗∥2 ∀x ∈ S. Since S convex,
x ∈ S ⇒ x∗+λ(x−x∗) ∈ S, ∀λ [0, 1]. ∥y−x∗−λ(x−x∗)∥2 ≥ ∥y−x∗∥2, ∀λ [0, 1].
∥y − x∗ − λ(x − x∗)∥2 = ∥y − x∗∥2 + λ2∥x − x∗∥2 − 2λ(y − x∗)T (x − x∗). Thus,
λ2∥x − x∗∥2 ≥ 2λ(y − x∗)T (x − x∗), ∀λ [0, 1]. Assume λ > 0 ⇒ λ∥x − x∗∥2 → 0
when λ→ 0. When λ→ 0 then 2(y − x∗)T (x− x∗) ≤ 0. □

Application: Let x1, . . . , xm ∈ Rn linearly independent and y ∈ Rn.

min
αi≥0

∥y −
m∑
i=1

αixi∥,

where S = {x | x =
∑m

i=1 αixi, αi ≥ 0} is closed and convex cone. Thus,
there is a unique minimizer and (y −

∑
α∗
ixi)

T (
∑
xi(αi − α∗

i)) ≤ 0. This implies
(y −

∑
α∗
ixi)

Txi ≤ 0 and = when α∗
i > 0. We get so called normal equations

Aα∗ − b = z,

z ≥ 0̄,

α∗T z = 0.

where bi = yTxi and Gram matrix

A =

 xT1 x1 . . . xT1 xn
...

...
xTnx1 . . . xTnxn

 .
Definition 2.5. Let S1, S2 ̸= ∅ ∈ Rn. A hyperplane H separates sets S1 and S2

if S1 ⊂ H+ = {x | pTx ≥ α} and S2 ⊂ H− = {x | pTx ≤ α}.
If also S1 ∪ S2 /∈ H then H separates properly.
Separation is strict if S1 ⊂ int H+ and S2 ⊂ int H−. If the sets are open then
the separation is strict.
Separation is strong if ∃ϵ > 0 s.t. S1 ⊂ {x | pTx ≥ α + ϵ} and S2 ⊂ H−.

Theorem (2.4.4, point and set). If S ̸= ∅Rn closed, convex and y /∈ S then
∃p ∈ Rn, p ̸= 0̄ and α ∈ R s.t. pTy > α, pTx ≤ α, ∀x ∈ S.

Proof. From Theorem 2.4.1, ∃!x∗ ∈ S s.t. (x − x∗)T (y − x) ≤ 0, ∀x ∈ S.
0 < ∥y − x∗∥2 = yT (y − x∗) − x∗T (y − x∗) = pTy − α, where p = y − x∗ ̸= 0̄ and
pTx∗ = α. Substituting p, pT (x− x∗) ≤ 0 ⇔ pTx ≤ α. □

Note the connection to Hahn-Banach separation theorem.
Corollary. If S ∈ Rn closed, convex then S =

∩
S⊂H− H−, where H− half-

spaces.

11

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (2.4.5, Farkas). Let A ∈ Rm×n and c ∈ Rn. Exactly one system has a
solution:

(1) Ax ≤ 0̄, cTx > 0, for some x ∈ Rn,

(2) ATy = c, for some y ≥ 0̄, y ∈ Rm.

Proof. Assume (2) has a solution. Assume Ax ≤ 0̄ ⇒ cTx = xTATy = (Ax)Ty ≤
0̄, so (1) does not have a solution.

Assume (2) does not have a solution. Let S = {x′ = ATy, y ≥ 0̄} closed, convex
and c /∈ S. By Theorem 2.4.4, ∃p ∈ Rn s.t. pT c > α, pTx ≤ α, ∀x ∈ S. Especially,
0̄ ∈ S ⇒ α ≥ 0 ⇒ pT c > 0. When x ∈ S, pTx = pT (ATy) = yT (Ap) ≤ α, ∀y ≥ 0̄.
y can be chosen arbitrarily large ⇒ Ap ≤ 0̄. So p solves (1). □

Theorem (2.4.9, Gordan). Let A ∈ Rm×n. Exactly one system has a solution:

(1) Ax < 0̄, for some x ∈ Rn,

(2) ATy = 0̄, for some y ≥ 0̄, y ̸= 0̄ ∈ Rm.

Proof. Ax < 0̄ ⇔ Ax + es ≤ 0̄. Choose in Farkas A′ =

[
A
e

]
, where e =

[1 . . . 1]T ∈ Rn and s > 0. Farkas and Gordan systems are equal by choosing

12

MS-E2139 Nonlinear Programming Kimmo Berg

x′ = [x s]T and c′ = [0 . . . 0 1]:

[A e]

[
x
s

]
≤ 0̄ , [0 . . . 0 1]

[
x
s

]
> 0,

[
AT

eT

]
y =


0
...
0
1

 , y ≥ 0̄ ⇔ ATy = 0̄, eTy = 1, for some y ≥ 0

⇔ ATy = 0̄, y ≥ 0̄, y ̸= 0̄.

□

Theorem (Motzkin). Let A1 ∈ Rm×n and A2 ∈ Rl×n. Exactly one system has a
solution:

(1) A1d < 0̄, A2d = 0̄, for some d ∈ Rn, (A3d ≤ 0̄),

(2) AT
1 y1 + AT

2 y2(+A3y3) = 0̄, y1 ≥ 0̄, y1 ̸= 0̄ ∈ Rm, y2 ∈ Rl. (y3 ≥ 0̄)

3 Convex functions and subgradients

Definition 3.1. A function f : S 7→ R, S ⊆ Rn, S ̸= ∅ convex set, is (strictly)
convex in set S if for all x1, x2 ∈ S, λ ∈ (0, 1) holds that

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (< when x1 ̸= x2).

Example. The following functions are convex:

• affine f(x) = pTx+ a

• norms ∥x∥

• pos.sem.def. quadratic functions f(x) = xTAx+ bTx+ c, A p.s.d

• exp(ax), a ∈ R

• xa, x > 0, a ≥ 1 or a ≤ 0

• −xa, x > 0, 0 ≤ a ≤ 1

• − log(x) or x log(x), x > 0,

13

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (one dimensional property). f convex ⇔ g(t) = f(x+ tv) convex ∀x ∈
dom f, v ∈ Rn.

Convexity preserving operations for functions

• non-negative weighted sum g = w1f1 + . . .+ wmfm, wi ≥ 0

• affine scaling g(x) = f(Ax+ b), dom g = {x | Ax+ b ∈ dom f}

• pointwise maximum g(x) = max{f1(x), . . . , fm(x)}, dom g =
∩
dom fi

• over infinite set g(x) = supy∈A f(x, y)

• composition g(x) = f(h(x)) if f convex, non-decreasing (non-increasing) and
h convex (concave)

• minimization g(x) = infy∈C f(x, y), C ̸= ∅ convex

Example. These operations can for example be applied in

• f(x) = −
∑m

i=1 log(bi − aTi x), when (bi − aTi x > 0) (sum, log, affine)

• f(x) = x[1] + . . .+ x[k] (sum of k largets components)
=max{xi1 + . . .+ xik | 1 ≤ i1 < . . . < ik ≤ n} (n!/(k!(n− k)! combinations,
max of linear)

• f(X) = sup{yTXy, ∥y∥2 = 1} (maximum eigenvalue, sup of linear)

Jensen inequality

f convex ⇔ f(
∑k

i=1 λixi) ≤
∑k

i=1 λif(xi),
∑k

i=1 λi = 1, λi ≥ 0, xi ∈ S

Example. geometric mean is smaller than arithmetic mean:

(a1 · . . . · an)1/n ≤ (a1 + . . .+ an)/n, ai > 0

Example. If f convex then f(Ex) ≤ Ef(x) (expectation of random variable)

You can derive other inequalities like Hölder’s inequality by applying Jensen
inequality to some appropriate functions.

Connection between convex sets and functions

14

MS-E2139 Nonlinear Programming Kimmo Berg

Definition 3.2. Epigraph (hypograph, hyp) of a function is
epi f = {(x, y) | x ∈ S, y ≥ f(x)} ⊂ Rn+1 (≤).

Theorem (3.2.2). If S ⊆ Rn, S ̸= ∅ convex, f : S 7→ R then
f convex ⇔ epi f convex (set)

Properties of convex functions

Definition 3.3. Lower-level-set (upper) Sα = levαf = {x ∈ S, f(x) ≤ α},
α ∈ R (≥).

Theorem (3.1.2). If S ⊂ Rn, S ̸= ∅, f : S 7→ R convex then
levαf is convex for all α ∈ R.

Note that a function whose all lower-level-sets are convex need not be convex.

Definition 3.4. Function f is quasiconvex if f(λx1+(1−λ)x2) ≤ max{f(x1), f(x2)},
for all x1, x2 ∈ S, λ ∈ (0, 1).

Quasiconvexity is strict if (<) ∀f(x1) ̸= f(x2) and strong if (<) ∀x1 ̸= x2.

Theorem (3.5.2). f is quasiconvex ⇔ levαf convex ∀α ∈ R.

Definition 3.5. Function f is pseudoconvex if ∀x1, x2 ∈ S, ∇f(x1)T (x2−x1) ≥
0̄ ⇒ f(x2) ≥ f(x1). Strict if f(x2) > f(x1) when x1 ̸= x2.

Continuity of convex functions

Definition 3.6. Limit xn → x̄ means ∀δ > 0,∃N
s.t. ∀n > N , ∥xn − x̄∥ < ϵ.

Definition 3.7. Function f is continuous in x̄ if ∀ϵ > 0, ∃δ > 0 s.t.
∥x− x̄∥ ≤ δ ⇒ |f(x)− f(x̄)| ≤ ϵ. (∀xn → x̄⇒ f(xn) → f(x))

Theorem (3.1.3). If f : S 7→ R convex then f continuous in int S.

Legendre-Fenchel conjugate function

Definition 3.8. Convex hull conv(f) = sup{g : S 7→ R convex, g ≤ f}.

Definition 3.9. Conjugate function f ∗(y) = supx{yTx− f(x)} (convex, sup of
affine)

15

MS-E2139 Nonlinear Programming Kimmo Berg

Definition 3.10. Biconjugate f ∗∗ = conv(f).

Directional derivatives of convex functions

Theorem (3.1.5). Let S ⊂ Rn, S ̸= ∅ convex, f : S 7→ R convex, x0 ∈ S and
d ̸= 0̄ s.t. x0 + λd ∈ S, ∀λ ∈ [0, λ0] for some λ0 > 0 then

∃f ′(x0; d) (possibly ±∞),
if x0 ∈ int S, then |f ′(x0; d)| <∞.

The gradient is a global underestimator with local information and the gradient
is monotone.

Theorem (3.3.3 and 3.3.4). If S ̸= ∅ open, convex, f differentiable then

f convex ⇔ i) f(x) ≥ f(x0) +∇f(x0)T (x− x0), ∀x ∈ S (> strictly)
ii) (∇f(x2)−∇f(x1))T (x2 − x1) ≥ 0, ∀x1, x2 ∈ S

Proof. Let us show i): Only if part. Let x, y ∈ S. Since f is convex there is
0 < λ ≤ 1

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x),

∥y − x∥f(x+ λ(y − x))− f(x)−∇f(x)Tλ(y − x)

∥λ(y − x)∥
+∇f(x)T (y − x) ≤ f(y)− f(x),

⇔ ∇f(x)T (y − x) ≤ f(y)− f(x),

where the first part → 0 when λ→ 0.
If part. Let x′, y′ ∈ S, 0 ≤ λ ≤ 1 and x = λx′+(1−λ)y′. From the assumption

we get

f(x′) ≥ f(x) +∇f(x)T (x′ − x),

f(y′) ≥ f(x) +∇f(x)T (y′ − x).

Multiplying the first by λ and second by (1− λ) and summing

λf(x′)+ (1−λ)f(y′) ≥ f(x)+∇f(x)T (λx′+(1−λ)y′− (λx′+(1−λ)y′)) = f(x).

□

Theorem (3.3.7). Let S ̸= ∅ open convex, f : S 7→ R twice differentiable on S.
Function f is convex if and only if Hessian is positive semidefinite at each point
in S.

16

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (3.3.8). Let S ̸= ∅ open convex, f : S 7→ R twice differentiable on S.
If Hessian is positive definite in S then f is strictly convex. If f is strictly convex
then Hessian is positive semidefinite in S. (p.s. if quadratic)

Note. Positive definite Hessian is sufficient for strictly convexity but not nec-
essary. f(x) = x4 is strictly convex even though f ′′(0) = 0 (p.s.d).

How to prove that a function is convex?

• use convex functions and convexity preserving operations

• convexity is one dimensional property

• f ′ monotonic and non-decreasing

• f ′′ non-negative

• if f twice differentiable, ∇2f p.s.d. in int S

Supporting hyperplanes

Definition 3.11. Let S ̸= ∅ ⊂ Rn and x′ ∈ ∂S.
H is a supporting hyperplane of S at x′ if either S ⊂ H+ or S ⊂ H−. If also
S ̸⊂ H then H is proper support.

Note. H supports S ⇔ pTx′ = infx∈S p
Tx or pTx′ = supx∈S p

Tx.

Theorem (2.4.7). If S ̸= ∅ ⊂ Rn convex and x′ ∈ ∂S then
∃p ̸= 0̄ s.t. pT (x− x′) ≤ 0, ∀x ∈ cl S.

Proof. Let us separate the points in closure from the points in interior. When
x ∈ ∂S ⇒ ∃ sequence yk, yk ∈ cl S s.t. yk → x. Theorem 2.4.4 implies ∀yk ∃pk
s.t. pTk yk > pTk x, ∀x ∈ cl S. Since pk is bounded, there is subsequence pki s.t.
pki → p, when i → ∞, ∥p∥ = 1. This implies pTx′ ≥ pTx, ∀x ∈ cl S. (= when
x = x′ ∈ cl S) □

Corollary. S convex, x′ /∈ int S ⇒ ∃p ̸= 0̄ s.t. pT (x − x′) ≤ 0, ∀x ∈ cl S.
Proof. if x /∈ cl S Theorem 2.4.4 and if x ∈ cl S Theorem 2.4.7.

Theorem (2.4.8, proper separation). If S1, S2 ̸= ∅ convex, S1 ∩ S2 = ∅ then

∃p ̸= 0̄ s.t. inf
x∈S1

pTx ≥ sup
x∈S2

pTx

17

MS-E2139 Nonlinear Programming Kimmo Berg

Proof. Let S = S1 − S2, which is convex. S1 ∩ S2 = ∅ ⇒ 0̄ /∈ S. Let us
separate 0̄ and S by Theorem 2.4.7: ∃p ̸= 0̄ s.t. pTx ≥ 0, ∀x ∈ S ⇔ pTx1 ≥ pTx2,
∀x1 ∈ S1, x2 ∈ S2. □

Theorem (2.4.10, strong separation). If S1, S2 closed convex, S1 bounded, S1 ∩
S2 = ∅ then

∃p ̸= 0̄, ϵ > 0 s.t. inf
x∈S1

pTx ≥ ϵ+ sup
x∈S2

pTx.

Proof. Let S = S1 − S2, which is closed and convex. Use Theorem 2.4.4. □
Subgradients

Definition 3.12. A vector ξ ∈ Rn is a subgradient of function f at x′ ∈ S if

f(x) ≥ f(x′) + ξT (x− x′), ∀x ∈ S.

ξ ∈ ∂f(x′) denotes the set of subgradients, i.e., the subdifferential, at x′.

It is shown in the exercises that the subdifferential is a convex and closed set.

Example. f(x) = |x|, ∂f(0) = {ξ,−1 ≤ ξ ≤ 1}. (unit square in R)

Note that f = maxi=1,...,k fi(x) typically has solution at a corner.

Theorem. If f convex, x0 ∈ int dom f then for all d ∈ Rn

f ′(x0; d) = sup
ξ∈∂f(x0)

ξTd.

Theorem (3.2.5). If f : S 7→ R convex, x′ ∈ int S ̸= ∅, then ∂f(x′) ̸= ∅.

Proof. From Theorem 3.2.2, epi f is convex. From Theorem 2.4.7, ∃(ξ0, µ) ̸=
(0̄, 0), ξ ∈ Rn, µ ∈ R s.t.

ξt0(x− x′) + µ(y − f(x′)) ≤ 0, ∀(x, y) ∈ epi f,

where y can be arbitrarily large, and thus µ ≤ 0. If µ = 0 then ξT0 (x − x′) ≤ 0,
∀x ∈ S. If x′ ∈ int S then ∃λ > 0 s.t. x′ + λξ0 ∈ S, λξT0 ξ0 ≤ 0 ⇒ ξ0 = 0̄. This
means that (ξ0, µ) = (0̄, 0) which is a contradiction and it should be that µ < 0.
Now, we can denote ξ = −ξ0/µ and we get

ξT (x− x′)− y + f(x′) ≤ 0, ∀(x, y) ∈ epi f.

So (−1, ξ) is a supporting hyperplane for epi f and the above equation means
ξ ∈ ∂f(x′) when y = f(x). □

18

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (3.2.6). If f : S ̸= ∅ 7→ R, ∂f(x) ̸= ∅, ∀x ∈ int S then
f : int S 7→ R convex.

Proof. Let x1, x2 ∈ int S. Then y = λx1 + (1 − λ)x2 ∈ int S, λ ∈ (0, 1).
Especially,

f(x1) ≥ f(y) + (1− λ)ξT (x1 − x2),

f(x2) ≥ f(y) + λξT (x2 − x1),

⇒ λf(x1) + (1− λ)f(x2) ≥ f(y),

where the third equation is a sum of the first equation multiplied by λ and the
second by (1− λ). □

Theorem (3.3.2). if f : S ̸= ∅ 7→ R convex and differentiable at x′ ∈ int S then
∂f(x′) = {∇f(x′)}.

Proof. From Theorem 3.2.5, ∃ξ ∈ ∂f(x′). Let d ̸= 0̄ ∈ Rn and ∃λ > 0 s.t.
x′ + λd ∈ S. From the definition of ξ and differentiability

f(x′ + λd) ≥ f(x′) + λξTd,

f(x′ + λd) = f(x′) + λ∇f(x′)T +∇∥d∥α(x′;λd),
⇒ 0 ≥ λ(ξ −∇f(x′))Td− λ∥d∥α(x′;λd).

Dividing by λ and taking the limit λ→ 0, we get (ξ−∇f(x′))Td ≤ 0. By choosing
d = ξ −∇f(x′), we get ξ = ∇f(x′). □

Theorem (Dubovitsky-Milyutin). If f(x) = max{f1(x), . . . , fm(x)} then
∂f(x) = conv{

∪
∂fi(x), fi(x) = f(x)}, x ∈

∩
int dom fi.

Example. f = max{f1(x), f2(x)}, where f1(x), f2(x) convex and differentiable.

Example. Subdifferentials for norms: f(x) = ∥x∥1 =
∑n

i=1 |xi|, f(x) = ∥x∥2,
f(x) = ∥x∥p = (

∑n
i=1 |xi|p)1/p and f(x) = ∥x∥∞ = max1≤i≤n |xi|.

Example. No subgradients at zero even though convex function:

f(x) =

{
−
√
x, x ≥ 0,
∞, x < 0.

Theorem (3.4.3, corollary). Uncostrained optimization revisited:
x∗ global minimum ⇔ 0̄ ∈ ∂f(x∗).

19

MS-E2139 Nonlinear Programming Kimmo Berg

4 Optimality conditions

Theorem (3.4.2). minx∈S f(x), S convex, x∗ local minimum

i) if f convex then x∗ is a global minimum,

ii) if f strictly convex then x∗ is the unique global optimum.

Proof. i) Assume x∗ is not a global minimum, which means that there is x0 ∈ S
s.t. f(x0) < f(x∗). Since S is convex, we have f(λx0+(1−λ)x∗) ≤ λf(x0)+ (1−
λ)f(x∗) < λf(x∗) + (1 − λ)f(x∗) = f(x∗). λx0 + (1 − λ)x∗ ∈ Nϵ(x

∗) ∩ S when λ
small and thus it is a contradiction to local optimality.
ii) Assume ∃x0 ∈ S, x0 ̸= x∗ s.t. f(x0) = f(x∗). Pick the middle point which
belongs to S. Due to strict convexity f((x0 + x∗)/2) < (f(x0) + f(x∗))/2 = f(x∗),
which is a contradiction of optimality. □

Corollary. Let f be convex and diff. x∗ is global optimum iff ∇f(x∗) = 0̄.

Corollary2. Let f twice differentiable and ∇2f(x) p.s.d ∀x. x∗ is global
optimum iff ∇f(x∗) = 0̄.

Theorem (4.1.5). Let f be pseudoconvex. x∗ is global optimum iff
∇f(x∗) = 0̄.

Convex optimization

“... in fact, the great watershed in optimization isn’t between linearity and non-
linearity, but convexity and nonconvexity.”
by R. Tyrell Rockafellar 1993

Theorem (3.4.3, necessary and sufficient). Let f : Rn 7→ R convex, S ̸= ∅ ⊂ Rn

convex, minx∈S f(x).

x∗ ∈ S global optimum ⇔ ξT (x− x∗) ≥ 0, ∀x ∈ S, for some ξ ∈ ∂f(x∗).

Proof. If part. f(x) ≥ f(x∗) + ξT (x− x∗) ≥ f(x∗), ∀x ∈ S, so x∗ optimum.
Only if part. Let us separate the following two sets:

S1 = {(x− x∗, y), x ∈ Rn, y > f(x)− f(x∗) ≥ 0} ⊂ Rn+1,

S2 = {(x− x∗, y), x ∈ S, y ≤ 0} ⊂ Rn+1,

where (x∗, 0) ∈ S2. S1, S2 are convex and S1 ∩ S2 = ∅. From Thorem 2.4.8
∃(ξ0, µ) ̸= (0̄, 0) and α ∈ R s.t.

ξT0 (x− x∗) + µy ≤ α, x ∈ Rn, y < f(x)− f(x∗),

ξT0 (x− x∗) + µy ≥ α, x ∈ S, y ≤ 0.

20

MS-E2139 Nonlinear Programming Kimmo Berg

Especially, (x∗, 0) ∈ S2 ⇒ α ≤ 0 from the second equation. Also, ∀ϵ > 0, (x∗, ϵ) ∈
S1 and from the first equation µϵ ≤ α ≤ 0 ⇒ µ ≤ 0. When ϵ is arbitrarily small
then α ≥ 0 and thus α = 0.
Assume µ = 0. From the first equation ξT0 (x − x∗) ≤ 0, ∀x ∈ Rn and especially
with x = x∗ + ξ0 ∥ξ0∥2 ≤ 0 and thus ξ0 = 0̄ is a contradiction. So it must be that
µ < 0 and we can define ξ = −ξ0/µ.
From the first equation: f(x) ≥ f(x∗) + ξT (x− x∗), ∀x ∈ Rn, i.e. ξ ∈ ∂f(x∗).
From the second equation: ξT (x − x∗) − y ≥ 0, x ∈ S, y ≤ 0. When y = 0
ξT (x− x∗) ≥ 0, ∀x ∈ S. □

Corollary. With same assumptions and S open, then x∗ global optimum iff
0̄ ∈ ∂f(x∗). Proof. Since S is open x = x∗ − λξ ∈ S for some λ > 0, ∀ξ ∈ ∂f(x∗).
Thus, −λ∥ξ∥2 ≥ 0 ⇒ ξ = 0̄.

Corollary2. With same assumptions and f differentiable, then x∗ global op-
timum iff ∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ S.

Note. In general variational inequality problem:
find x0 s.t. f : S 7→ Rn

f(x0)
T (x− x0) ≥ 0, ∀x ∈ S.

This problem class includes e.g. the complementary problem:
find x0 ≥ 0 s.t.

∇f(x0) ≥ 0, ∇f(x0)Tx0 = 0.

For example, finding a Nash equilibrium in game theory.

21

MS-E2139 Nonlinear Programming Kimmo Berg

The result allows a simple numerical method to find a minimum. At nonoptimal
point x′ where ∇f(x′)T (x−x′) < 0 for some x ∈ S, it is easy to find an improving
solution. Direction d = x − x′ can be used and the step size can be solved using
some one-dimensional line search method. The update can be written as xk+1 =
xk+λk(x−xk) ∈ S, where λk is the step size. It can be repeated until∇f(xk)T (x−
xk) ≥ 0, ∀x ∈ S. This is called the method of feasible direction.

The result could also be derived the following way with more strict assumptions.

Theorem (Moreau-Rockafellar). If f, g are convex then ∂f + ∂g ⊂ ∂(f + g) and
if int dom f ∩ dom g ̸= ∅ then ∂(f + g) ⊂ ∂f + ∂g.

Definition 4.1. The indicator function of set S is χS =

{
0, x ∈ S,

∞, x /∈ S.

Definition 4.2. The extension of f : S 7→ R is f̄ = f + χS, f̄ : Rn 7→ R̄, where
R̄ = R ∪∞.

Let S ̸= ∅ convex, f convex. infx∈S f(x) ⇔ infx∈Rn f(x) + χS. x
∗ is a global

minimum iff

0̄ ∈ ∂(f + χS)(x
∗) = ∂f(x∗) + ∂χS(x

∗),

⇔ 0̄ = ξ + ξ′, ξ ∈ ∂f(x∗), ξ′ ∈ ∂χS(x
∗),

⇔ −ξ ∈ ∂χS(x
∗) ⇔ χS(x) ≥ χS(x

∗) + (−ξ)T (x− x∗), ∀x ∈ Rn,

⇔ ξT (x− x∗) ≥ 0, ∀x ∈ S.

We need to assume either int dom f ∩ S ̸= ∅ or dom f ∩ int S ̸= ∅.
Maximizing convex function

Theorem (3.4.6). maxx∈S f(x), f, S convex. If x′ is a local maximum then

ξT (x− x′) ≤ 0, ∀x ∈ S, ∀ξ ∈ ∂f(x′).

Note that it is not a sufficient condition.

Example. f(x) = x2, S = {x,−1 ≤ x ≤ 2}, x∗ = 2, f(x∗) = 4,
f ′(2)(x− 2) ≤ 0, ∀x ∈ S but also f ′(0)(x− 0) = 0 ≤ 0, ∀x ∈ S.

Theorem (3.4.7). If S is polyhedron then x∗ is an extreme point of S.

22

MS-E2139 Nonlinear Programming Kimmo Berg

Applications: Risk management in portfolio optimization

max rTx

s.t. 1/2xTQx ≤ V,

Ax ≤ b, eTx = 1, x ≥ 0,

where rTx expected profit, 1/2xTQx variance, e = (1, . . . , 1). Covariance ma-
trix Q is always symmetric positive semidefinite and thus it is a convex problem.
The variance, however, measures both downside and upside risks, when typically
downside risk should be considered.

max rTx

s.t. RM(x) ≤ γ,

Ax ≤ b, eTx = 1, x ≥ 0,

where RM(x) is a risk measure, e.g., value at risk

V aRα(ξ) = min γ, s.t. P (ξγ) ≥ α,

where α is the confidence level (e.g. 95%). The measure tells that the loss is
at most V aRα with probability α. This measure is a popular measure in finance
industry, even though it is not convex nor coherent (sub-additive). These are
properties that good risk measures should satisfy. VaR has many local minima
and finding the best solution can be difficult.

The following measure is convex and coherent

CV aRα(ξ) = E(ξ, ξ ≥ V aRα(ξ)).

See slides in the course website and Uryasev and Rockafellar. The constraints
can be linearized, which allows very large problems to be solved with fast and
stable algorithms. This shows that the modeling part may have great effect on
how difficult optimization problem needs to be solved.

Robust optimization
(slides from the course website)

min cTx+ d

s.t. Ax ≤ b,

where c, d, A, b are in uncertainty set U due to data uncertainty, which can be from
forecasts, prediction, measurement and implementation errors.

23

MS-E2139 Nonlinear Programming Kimmo Berg

5 Optimality for inequality constrained problem

min
x∈S

f(x), S = {x ∈ X, gi(x) ≤ 0, 1 ≤ i ≤ m},

where gi : R
n 7→ R, X ⊂ Rn open, g =

 g1
...
gm

.
Definition 5.1. d ∈ Rn is a descent direction of f at x′ if ∃δ > 0 s.t. f(x′ +
λd) < f(x′), ∀λ ∈ (0, δ). The cone of descent directions is d ∈ F .

Definition 5.2. Let S ⊂ Rn, x′ ∈ cl S. The cone of feasible directions of S at
x′ is D = {d ∈ Rn, d ̸= 0̄, x′ + λd ∈ S, ∀λ ∈ (0, δ), for some δ > 0}.

Theorem (geometric optimality). x∗ is a local minimum iff there are no feasible
descent directions D ∩ F = ∅.

Theorem (4.2.2). Let f diff. at x∗ ∈ S. If x∗ is a local minimum then F0∩D = ∅.

Proof. F0 ⊂ F ⇒ F0 ∩D = ∅ by geometric optimality. □
Note. the condition is sufficient if f pseudoconvex and ∀x ∈ S ∩ Nϵ(x

∗) ⇒
x− x∗ ∈ D.

Definition 5.3. The index set of active constraints at x′ is denoted by I =
{i, gi(x′) = 0} and the corresponding cone

G0 = {d,∇gi(x′)Td < 0, ∀i ∈ I}.

Theorem (4.2.4). If gi, i /∈ I, continuous at x′ and gi, i ∈ I, differentiable at x′

then G0 ⊆ D.

Proof. Since x′ ∈ X open, ∃δ1 > 0 s.t. x′ + λd ∈ X, ∀λ ∈ (0, δ1). Since
gi(x

′) < 0, i /∈ I, are continuous, gi(x
′ + λd) < 0, i /∈ I, ∀λ ∈ (0, δ2). If d ∈ G0

then ∇gi(x′)Td < 0, i ∈ I. By Theorem 4.1.2 gi(x
′+λd) < gi(x

′) = 0, ∀λ ∈ (0, δ3).
Thus, x′ + λd ∈ S when λ ∈ (0,min(δ1, δ2, δ3)). □

Note that G0 ⊆ D ⊆ G′
0, where G

′
0 = {d ̸= 0̄,∇gi(x′)Td ≤ 0, i ∈ I}. Also,

D = G0 if gi, i ∈ I, are strictly ps.convex. D = G′
0 if they are strictly ps.concave.

Theorem (4.2.5, road to FJ). Let x∗ ∈ S, gi, i /∈ I, continuous in x∗, gi, i ∈ I,
diff. at x∗. If x∗ is local minimum then F0 ∩G0 = ∅.

Proof. By Theorem 4.2.2 F0 ∩D = ∅ and by Theorem 4.2.4 we have F0 ∩ G0 ⊆
F0 ∩D. □

Note that the condition is sufficient if f ps.convex at x∗, gi, i ∈ I, strictly
ps.convex at Nϵ(x

∗) for some ϵ > 0.

24

MS-E2139 Nonlinear Programming Kimmo Berg

Example (4.2.6).

min (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5,

x1 + x2 ≤ 3, x1 ≥ 0, x2 ≥ 0.

x∗ = (2, 1), I = {1, 2}, ∇f(x∗) = −(2, 2), ∇g1(x∗) = (4, 2), ∇g2(x∗) = (1, 1).
As should be F0 ∩G0 = ∅, which in general does not imply that F0 ∩D = ∅. The
problem does not satisfy the sufficient conditions since g2 is not strictly ps. convex,
and thus it cannot be said that x∗ is a local optimum only by having F0 ∩G0 = ∅.
However, F0 ∩ G′

0 = ∅ ⇒ F0 ∩D = ∅ and with this we can say that x∗ is a local
minimum. The feasible set is convex and the objective is strictly convex, and thus
x∗ is actually a unique global minimum.

The idea is to use the separation theorems (Gordan and Motzkin) with the
geometric optimality to prove the algebraic conditions: the Fritz-John (FJ) and
finally the Karush-Kuhn-Tucker (KKT) conditions. FJ conditions are more general
but there are typically too many (nonoptimal) points that satisfy them. By making
more assumptions to the problem and its constraints with so called constraint
qualification (CQ) conditions, we can get rid of these nonoptimal points, and we
get the KKT from the FJ conditions.

Note that we cannot use the same technique to the equality constraints with
the following simple trick. We could define h(x) = 0 by h(x) ≤ 0 and −h(x) ≤ 0
but then the geometric optimality would not work since G0 = ∅ for all points.

Theorem (4.2.8, FJ necessary). If x∗ is a local minimum then ∃ u0, ui, i ∈ I, s.t.

(FJ1)

{
u0∇f(x∗) +

∑
i∈I ui∇gi(x∗) = 0̄,

u0, ui ≥ 0, i ∈ I, uj ̸= 0 for some j = 0 or j = i ∈ I,

where the last one could be written as (u0, uI) ̸= (0, 0̄). If also gi, i /∈ I differen-
tiable at x∗ then

(FJ2)


u0∇f(x∗) +

∑m
i=1 ui∇gi(x∗) = 0̄,

uigi(x
∗) = 0, ∀i = 1, . . . ,m,

u0, u ≥ 0, (u0, u) ̸= (0, 0̄).

Proof. Since x∗ is a local minimum, Theorem 4.2.5 implies F0 ∩ G0 = ∅. Let
m′ ≤ m be the number of indexes in I, A ∈ R(m′+1)n with rows of ∇f(x∗)T and
∇gi(x∗)T , i ∈ I. Geometric optimality now means that ∄d ∈ Rn s.t. Ad < 0̄.
Theorem 2.4.9 (Gordan) implies that ∃p ≥ 0̄, p ̸= 0̄, s.t. ATp = 0̄, p ∈ Rm′+1.
Let us denote p = (u0, u1, . . . , um′). Thus, we have (FJ1). The second equation
in (FJ2), the complementary slackness condition, means that ui = 0, i /∈ I, and
it gives (FJ2). □

Note that if u0 = 0 then the conditions have no information about the objective.

25

MS-E2139 Nonlinear Programming Kimmo Berg

Example. min f(x) s.t. g1(x) ≤ 0 and g2(x) ≤ 0. Now, any feasible x′ with
∇g1(x′) = −∇g2(x′) ⇒ G0 = ∅ and x′ is an FJ point.

There are too many FJ points and more assumptions are needed.

Theorem (4.2.13, KKT necessary). Assume ∇gi(x∗) are linearly independent. If
x∗ is a local minimum then ∃ui ∈ R, i ∈ I s.t.

(KKT1)

{
∇f(x∗) +

∑
i∈I ui∇gi(x∗) = 0̄,

ui ≥ 0, i ∈ I.

If also gi, i /∈ I differentiable at x∗ then

(KKT2)


∇f(x∗) +∇g(x∗)Tu = 0̄, (Lagrange optimality)
uigi(x

∗) = 0, ∀i = 1, . . . ,m, (complementary slackness)
u ≥ 0. (dual feasibility)

The scalars ui are called the Lagrange multipliers or dual variables.

Example.

min (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5,

x1 + 2x2 ≤ 4, x1 ≥ 0, x2 ≥ 0.

x∗ = (2, 1), I = {1, 2}. ∇g1(x∗) = (4, 2), ∇g2(x∗) = (1, 2). We can choose the
multipliers, e.g., u0 = 3 > 0, u1 = 1 > 0, u2 = 2 > 0 and u3 = u4 = 0. These
satisfy both FJ and KKT conditions (Lagrange multipliers (1/3, 2/3)).

Example.

min −x1
s.t. x2 − (1− x1)

3 ≤ 0,

−x2 ≤ 0.

x∗ = (1, 0), I = {1, 2}. ∇g1(x∗) = (0, 1), ∇g2(x∗) = (0,−1). The constraints
gradients are linearly dependent. We can choose u0 = 0 and u1 = u2 arbitrarily so
that FJ conditions hold. Note that the optimum does not satisfy KKT conditions
and there are no Lagrange multipliers.

Sufficient conditions

Theorem (4.2.16, KKT sufficient). Assume f and gI are convex. If x∗ is a KKT
point then x∗ is a global minimum. If the convexities hold in Nϵ(x

∗) for some ϵ > 0
then x∗ is a local minimum.

26

MS-E2139 Nonlinear Programming Kimmo Berg

Extension: Production planning in continuous time*

This example is dynamic optimization and it is from Luenberger: optimization by
vector space methods p.234. Let us examine a production planning problem where
the decision variable is the production rate r(t) = ż(t), t ∈ (0, 1) and z(t) is the
amount of products manufactured. It is assumed that there are no inventory costs
and the demand rate d(t) = ṡ(t) is known, where s(t) is the amount of sold units.
It is assumed that the demand must be met

z(0) +

∫ t

0

r(y)dy ≥
∫ t

0

d(y)dy ⇔ z(t) ≥ s(t).

This means that the products available at time 0 plus production should be greater
than demand at all time instances.

min 1/2

∫ 1

0

r2(t)dt

s.t. ż(t) = r(t), z(t) ≥ s(t), z(0) > 0,

For example, z(0) = 1/2, s(t) =

{
2t, 0 ≤ t ≤ 1/2,
1, 1/2 ≤ t ≤ 1,

. The sales rate is constant

up to t = 1/2 and after that there is no sales. The space where the problem is
solved is chosen as X = Z = C [0, 1], the space of continuous functions between 0
and 1, i.e., it is assumed that z(t) = z(0) +

∫ t

0
r(k)dk is continuous. Note that the

minimum may not be in this space if there could be jumps in the function. The
dual space of continuous functions is NBV [0, 1], normalized bounded variation
functions, which may have finite number of finite jumps. The Lagrange multiplier
will belong to this space.

The Lagrange function is defined

ϕ(r, u) = 1/2

∫ 1

0

r2(t)dt+

∫ 1

0

(s(t)− z(t))du(t),

where u ∈ NBV [0, 1] and u is nondecreasing. We can simplify the equation by
Leibniz integration rule and integration by parts∫ 1

0

∫ t

0

r(y)dydu(t) = /10

∫ 1

0

r(y)dyu(t)−
∫ 1

0

r(t)u(t)d(t).

Now, we get

ϕ(r, u) = 1/2

∫ 1

0

r2(t)dt+

∫ 1

0

(s(t)− z(0))du(t)−
∫ 1

0

∫ t

0

r(y)du(du(t),

= 1/2

∫ 1

0

r2(t)dt+

∫ 1

0

(s(t)− z(0))du(t) +

∫ 1

0

r(t)u(t)dt− u(1)

∫ 1

0

r(t)dt,

27

MS-E2139 Nonlinear Programming Kimmo Berg

since u(0) = 0 from normalization. The optimality conditions give

∂ϕ

∂r
= r∗(t) + u∗(t)− u∗(1) ≥ 0, ∀t,

r∗(t)(r∗(t) + u∗(t)− u∗(1)) = 0, ∀t,
u∗(t) varies only when z(t) = s(t),

u∗(t) is nondecreasing.

The economic interpretation of Lagrange multiplier is the same. Let J be the
total cost then

∆J =

∫ 1

0

∆s(t)du(t) = −
∫ 1

0

∆ṡ(t)u(t)dt+∆s(t)u(1)−∆s(0)u(0).

Since ∆s(0) = 0, u(1) = 0, we have

∆J = −
∫ 1

0

∆d(t)u(t)dt,

i.e., −u(t) is the unit cost or the shadow price of extra demand. Now, this price
is zero when t > 1/2.

6 Equality and inequality constrained problem

For geometric optimality and feasible directions, we need more restrictive assump-
tions on the equality constraints and more mathematical machinery. The next
theorem gives the conditions that guarantee regularity in the constraints.

min f(x)

s.t. g(x) ≤ 0̄ ∈ Rm

h(x) = 0̄ ∈ Rl.

Definition 6.1. H0 = {d, ∇hi(x)Td = 0, i = 1, . . . , l}.

Theorem (implicit function). If i) f(x1, x2) = 0̄, x1 ∈ Rn, x2 ∈ Rl,
ii) f continuous,
iii) ∇x2f continuous,
iv) ∇x2f(x1, x2) nonsingular, i.e.∣∣∣∣∣∣∣

∂f1(x1,x2)
∂x1

. . . ∂f1(x1,x2)
∂xl

. . .
∂fl(x1,x2)

∂x1
. . . ∂fl(x1,x2)

∂xl

∣∣∣∣∣∣∣ ̸= 0,

28

MS-E2139 Nonlinear Programming Kimmo Berg

then
∃g : Nϵ(x1) 7→ Rl, g(x1) = x2 and f(x1, g(x1)) = 0.

If ∃∇x1f then g is differentiable. If p > 0, f p-times continuously differentiable
then g is also p-times continuously differentiable and

∇g(x1) = −∇xf(x1, g(x1))(∇x2f(x1, g(x1)))
−1, ∀x1 ∈ Nϵ(x1).

Theorem (geometric optimality). Let X ∈ Rn open, f, gi, hj : Rn 7→ R, 1 ≤
i ≤ m, 1 ≤ j ≤ l, f, gi, i ∈ I diff. at x∗, gi, i /∈ I, continuous at x∗, hj
continuously differentiable at Nϵ(x

∗) for some ϵ > 0. Assume that ∇hj(x∗) are
linearly independent. If x∗ is a local minimum then F0 ∩G0 ∩H0 = ∅.

Proof. Assume ∃y ∈ F0 ∩ G0 ∩ H0. Let us denote the Jacobian by ∇h(x) = ∇h1(x)T
...

∇hl(x)T

. Since y ∈ H0, ∇h(x∗)y = 0̄. Let us check the conditions of implicit

function theorem: i) h(x∗) = 0, ii) h(x) is continuous, iii) ∇h(x) is continuous and
iv) ∇h(x) is nonsingular since ∇hi(x) are linearly independent. Thus, we get ∃x :
[−a, a] 7→ Rn which is continuously differentiable s.t. x(0) = x∗, ẋ(0) = x′(0) = y
and hi(x(t)) = 0, ∀t ∈ [−a, a]. This means that we can move along h(x) = 0̄ at
least for small distance. The feasibility and descent in objective goes as earlier.
Feasibility: i ∈ I: d

dt
gi(x(t)) = ∇gi(x(t))T ẋ(t). at t = 0 ∇gi(x∗)Ty < 0 (y ∈ G0)

i /∈ I: from continuity gi(x(t)) < 0, t ∈ (0, t1)
X open: x(t) ∈ X, t ∈ (0, t2)
x(t) feasible when t ∈ (0, t′) where t′ = min(t1, t2, a).
Decrease: ∇f(x∗)Ty < 0 (y ∈ F0) ⇒ f(x(t)) < f(x∗), ∀t ∈ (0, t3).
This contradicts the local optimality and we get the result. □

Theorem (4.3.2, FJ necessary). gi, i ∈ I continuous at x∗, f, gi, i ∈ I differen-
tiable at x∗, hj continuously differentiable at Nϵ(x

∗) for some ϵ > 0. If x∗ is a
local minimum then ∃u0, ui, i ∈ I and vj, 1 ≤ j ≤ l s.t.

(FJ1)

{
u0∇f(x∗) +

∑
i∈I ui∇gi(x∗) +

∑l
j=1 vj∇hj(x∗) = 0̄,

u0, ui ≥ 0, ∀i ∈ I, (u0, uI , v) ̸= (0, 0̄, 0̄).

If also gi, i /∈ I differentiable at x∗ then

(FJ2)


u0∇f(x∗) + uT∇g(x∗) + vT∇h(x∗) = 0̄,
uigi(x

∗) = 0, ∀i = 1, . . . ,m,
u0, u ≥ 0, (u0, u, v) ̸= (0, 0̄, 0̄).

29

MS-E2139 Nonlinear Programming Kimmo Berg

Proof. Assume ∇hi(x∗) are linearly dependent then ∃vi s.t.
∑l

i=1 vi∇hi(x∗) = 0̄
and some vi ̸= 0. Choose u0 = ui = 0, i ∈ I, and we get (FJ1).
Assume ∇hi(x∗) are linearly independent then

denote A1 ∈ R(m′+1)n =


∇f(x∗)T
∇g1(x∗)T

...
∇gm′(x∗)T

 and A2 =

 ∇h1(x∗)T
...

∇hl(x∗)T

. By Theorem

4.3.1, ∄d ∈ Rn s.t. A1d < 0̄, A2d = 0̄. By Motzkin’s theorem, ∃p1 ∈ Rm′+1,
p2 ∈ Rl, p1 ≥ 0̄, p1 ̸= 0̄ s.t. AT

1 p1 + AT
2 p2 = 0̄, denote p1 = (u0 u1 . . . ui)

T and
p2 = v and we have (FJ1). □

Theorem (4.3.7, KKT necessary). Assume ∇gi(x∗), i ∈ I and ∇hj(x∗), 1 ≤ j ≤ l
are linearly independent. If x∗ is a local minimum then ∃ui, i ∈ I, vj, 1 ≤ j ≤ l
s.t.

(KKT1)

{
∇f(x∗) + uTI ∇g(x∗) + vT∇h(x∗) = 0̄,
ui ≥ 0, ∀i ∈ I.

If also gi, i /∈ I differentiable at x∗ then

(KKT2)


∇f(x∗) + uT∇g(x∗) + vT∇h(x∗) = 0̄,
uigi(x

∗) = 0, ∀i = 1, . . . ,m,
u ≥ 0.

Proof. From FJ, ∃u0, u′i, v′i ̸= (0, 0̄, 0̄). If u0 = 0 then (u′i, v
′
i) ̸= (0̄, 0̄) and this

contradicts the assumption of linear independence. Thus, u0 > 0 and we can
denote ui = u′i/u0 and vi = v′i/u0, and we have (KKT1). □

Note that there are other constraint qualification (CQ) or regularity conditions
beside linear independence that guarantee that u0 > 0.

Example.

min x21 + x22
s.t. x21 + x22 ≤ 5,

x1 + 2x2 = 4, x1 ≥ 0, x2 ≥ 0.

x∗ = (4/5, 8/5), I = ∅. ∇f(x∗) = (8/5, 16/5), ∇h(x∗) = (1, 2). The multiplier
v = −8/5 solves the KKT conditions.

Sufficient conditions

Theorem (4.3.8, KKT sufficient). Assume f, gI convex, hj, j ∈ {j, vj > 0} convex,
hj, j ∈ {j, vj < 0} concave. If x∗ is a KKT point then x∗ is a global minimum. If
the convexities hold in Nϵ(x

∗) for some ϵ > 0 then x∗ is a local minimum.

30

MS-E2139 Nonlinear Programming Kimmo Berg

Proof. Shown in exercises by relating KKT to the variational inequality of the
convex problem. KKT equals ∇f(x)T (x− x∗) ≥ 0, for all feasible x. □

Note that the requirement for the convexity/concavity of hj is not known before
the KKT conditions are solved. One way to get around this is to assume that
h(x) = Ax+ b, i.e., the equality constraints are affine.

Definition 6.2. The Lagrange function is ϕ(x, u, v) = f(x)+uTg(x)+ vTh(x).
The restricted Lagrangian is L(x) = ϕ(x, u∗, v∗), where (u∗, v∗) are the Lagrange
multipliers that solve the KKT conditions (with x∗).

Theorem (4.4.1, second order sufficient). i) If ∇2L(x) is p.s.d. ∀x ∈ S then KKT
x∗ is a global minimum.
ii) If ∇2L(x) p.s.d. ∀x ∈ S ∩ Nϵ(x

∗) for some ϵ > 0 then KKT x∗ is a local
minimum.
iii) If ∇2L(x∗) p.d. then KKT x∗ is a unique local minimum.

Proof. i) KKT ⇒ ∇L(x∗) = 0̄. ∇2L(x) p.s.d. then L(x) convex in S ⇒ f(x∗) =
L(x∗) ≤ L(x) ≤ f(x), ∀x ∈ S.
iii) ∇L(x∗) = 0̄ and p.d. ⇒ strict minimum for L(x) ⇒ f(x∗) = L(x∗) < L(x) =
f(x), ∀x ̸= x∗ ∈ {S ∩Nϵ(x

∗)}. □

Definition 6.3. Let I = {i, gi(x∗) = 0}, I+ = {i ∈ I, u∗i > 0} and I0 = {i ∈
I, u∗i = 0}.

Theorem (4.4.2, second order sufficient). Let C = {d ̸= 0̄ : ∇gi(x∗)Td = 0, for
i ∈ I+, ∇gi(x∗)Td ≤ 0, for i ∈ I0, and ∇hi(x∗)Td = 0, for i = 1, . . . , l}. If
dT∇2L(x∗)d > 0 for all d ∈ C, then x∗ is a strict local minimum.

Theorem (4.4.3, second order necessary). Assume CQ. If x∗ is a local minimum,
then x∗ is a KKT point and dT∇2L(x∗)d ≥ 0 for all d ∈ C.

Example (4.4.4).

min (x1 − 1)2 + x22
s.t. 2kx1 − x22 ≤ 0,

where k > 0. The objective is convex but the feasible set is not convex. The
unconstrained minimum is not feasible, so the constraint must be binding. There
are three KKT points depending on k: x1 = (0, 0), u1 = 1/k for any k > 0, and for
0 < k < 1, x2 = (1− k,

√
2k(1− k)), u2 = 1 and x3 = (1− k,−

√
2k(1− k)), u2 =

1. The constraint is not quasiconvex, so we cannot use the necessary conditions
4.2.16.

31

MS-E2139 Nonlinear Programming Kimmo Berg

L(x) = (x1 − 1)2 + x22 + u(2kx1 − x22) and ∇2L(x) =

[
2 0
0 2(1− u)

]
. C =

{d ̸= 0 : kd1 = x2d2}. Let us examine the necessary condition 4.4.3 first. For x1,
we have dT∇L(x)d = 2d21 + 2(1− 1/k)d22 and d ∈ C means d1 = 0. dT∇L(x)d ≥ 0
holds when k > 1 but is violated when 0 < k < 1. We can conclude by 4.4.3 that
x1 is not a local minimum when 0 < k < 1. ∇2L(x) are positive semidefinite at x2

and x3, and satisfy 2nd order necessary condition.
Now, we examine the sufficient condition 4.4.2. ∇2L(x1) is p.d. when k > 1, so

x1 is then strict local minimum. For k = 1, we don’t get this since dT∇L(x1)d =
2d21 = 0. However, ∇2L(x2) is not positive definite but C = {d ̸= 0 : kd1 =√

2k(1− k)d2} and dT∇L(x2)d = 2d21 > 0 for any d ∈ C. Thus, x2 is strict local
minimum for 0 < k < 1 by 4.4.2. So, 4.4.1 didn’t work and 4.4.2 was needed.
Similarly, for x3.

Definition 6.4. The bordered Hessian is HL(x) =

[
0̄ B
BT ∇2L(x)

]
, where B

contains the constraints’ gradients.

Let us examine a two-dimensional problem with one equality constraint. We

have HL(x) =

 0 gx gy
gx Lxx Lxy

gy Lyx Lyy

 .
32

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (second order sufficient). If x∗ is a KKT point and det(HL(x∗)) < 0,
then x∗ is a local minimum.

Sensitivity analysis

Theorem (Bertsekas, Nonlinear Prog.). Consider the family of problems

min
h(x)=t

f(x)

parameterized by t ∈ Rm. Assume that for t = 0̄, this problem has a local minimum
x∗, which is regular (satisfies some CQ) and together with its unique Lagrange mul-
tiplier v∗ satisfies the sufficient second order KKT conditions for local minimum.

Then there exists an open sphere S centered at t = 0̄ such that for every
t ∈ S, there is an x(t) and a v(t), which are a local minimum-Lagrange multiplier
pair of the parameterized problem. Furthermore, x(t) and v(t) are continuously
differentiable within S and we have x(0̄) = x∗, v(0̄) = v∗. In addition,

∇p(t) = −v(t), ∀t ∈ S,

where p(t) is the primal function p(t) = f(x(t)).

Proof. Apply the implicit function theorem to the system

∇f(x) +∇h(x)v = 0̄, h(x) = t.

Let us check the conditions: i) for t = 0̄ the system has the solution (x∗, v∗),
ii-iii) first and second derivatives need to be continuous for f(x) and h(x), iv) the
Jacobian

J =

(
∇2f(x∗) + vT∇2h(x∗) ∇h(x∗)

∇h(x∗)T 0̄

)
is nonsingular (∇h(x)∇h(x)T nonsingular since the constraints are linearly inde-
pendent). Thus, for all t ∈ S for some open sphere S centered at t = 0̄, there
exist x(t) and v(t) such that x(0̄) = x∗, v(0̄) = v∗, the functions x(t) and v(t) are
continuously differentiable, and

∇f(x(t)) +∇h(x(t))v(t) = 0̄, h(x(t)) = v.

For t close to t = 0̄, using sufficiency conditions, x(t) and v(t) are a local minimum-
Lagrange multiplier pair for the parameterized problem.

To derive ∇p(t), we i) differentiate h(x(t)) = t ⇒ ∇x(t)∇h(x(t)) = I, and
ii) differentiate the system ⇒ ∇x(t)∇f(x(t)) +∇x(t)∇h(x(t))v(t) = 0̄. Now, we
have

∇p(t) = ∇tf(x(t)) = ∇x(t)∇f(x(t)),
= −∇x(t)∇h(x(t))v(t) = −v(t).

33

MS-E2139 Nonlinear Programming Kimmo Berg

□
Summary

The optimality conditions were derived using the geometric optimality and suitable
separation theorems. In inequality constrained problem, the geometric optimality
was F0 ∩ G0 = ∅. The Gordan theorem was applied to this condition, and it
gave the more general FJ conditions. There are some special cases when the
optimum satisfies FJ but not KKT conditions. By assuming the linear independece
constraint qualification condition, in FJ conditions we can guarantee that u0 > 0
and we get the KKT conditions.

In equality constrained problem, we need to assume linear independence for
hj(x) even in the geometric optimality F0 ∩G0 ∩H0 = ∅. The suitable separation
theorem is Motzkin and the theory goes like in the inequality constrained problem.

Note that there are no convexity assumptions in the necessary conditions. They
appear only in the sufficient conditions. When the problem is convex and the
constraint qualification holds, the KKT conditions turn out to be the same as
the optimality conditions for the convex problem (variational inequality). Note
also that the complementary slackness condition uigi(x

∗) = 0 does not mean that
when gi(x

∗) = 0 ⇒ ui > 0. When both ui = gi(x
∗) = 0 it is said the the

constraint is weakly active, and it means that removing the constraint does not
alter the minimum. The constraint just happens to be active without restricting
the optimal value.

Non-differentiable convex problem*

inf f(x)

s.t. x ∈ S,

g(x) ≤ 0̄,

Ax− b = 0̄,

where f, gi, 1 ≤ i ≤ m : Rn 7→ (−∞,∞] convex, S ⊂ Rn convex, b ∈ Rp. Also,
define L = {x,Ax = b}.

Theorem (convex KKT, Eric Balder). Let x∗ be a feasible point of the problem.
i) x∗ is a global minimum if ∃u ∈ Rm

+ , v ∈ Rp and η ∈ Rn s.t.

uigi(x
∗) = 0, i = 1, . . . ,m, (complementary slackness)

0̄ ∈ ∂f(x∗) +
∑

i∈I(x∗)

ui∂gi(x
∗) + ATv + η, (normal Lagrange inclusion)

η∗(x− x∗) ≤ 0, ∀x ∈ S. (obtuse angle property)

34

MS-E2139 Nonlinear Programming Kimmo Berg

ii) If x∗ is a global minimum and if x∗ ∈ int dom f ∩ ∩i∈I(x∗)int dom gi and
int S ∩ L ̸= ∅ (regularity condition), then ∃u0 ∈ {0, 1}, u ∈ Rm

+ , (u0, u) ̸= (0, 0̄),
v ∈ Rp, η ∈ Rn s.t. CS, obtuse angle and

0̄ ∈ u0∂f(x
∗) +

∑
i∈I(x∗)

ui∂gi(x
∗) + ATv + η. (Lagrange inclusion)

When u0 = 1 it is said that the normal Lagrange inclusion occurs and the
abnormal when u0 = 0. The abnormal case is impossible with the regularity
or constraint qualification conditions, like when A is of rank p and the Slater’s
condition holds: ∃x′ ∈ S ∩ L s.t. gi(x

′) < 0, for i = 1, . . . ,m.

7 Duality

There are many kinds of duality in mathematics; see polyhedral duality, where
the role of vertices and faces is interchanged. Even in optimization, some classes
of problems have much stronger duality theorems than others. A dual problem
is another problem formulated with the data of the original problem that tells
something about the original problem. In nonlinear optimization the dual gives
lower (or upper) bounds for the original problem. This can be used in evaluation
of how far the current solution is from the optimum. This will be especially useful
in integer optimization, and this is demonstrated in the exercises.

For convex and linear problems, the results are much stronger. The dual may be
faster to solve (or not, see Boyd: convex optimization), it may give some properties
of optimal solution, or the dual can be used in proving the existence of a solution.
For example, duality is used in solving large LP problems.

The primal problem P is

min f(x) min
x∈X

sup
u≥0,v

ϕ(x, u, v)
.
= Lp(x),

s.t. g(x) ≤ 0̄, ⇔
h(x) = 0̄,
x ∈ X,

where ϕ(x, u, v) = f(x) + uTg(x) + vTh(x) is the Lagrange function,

Lp(x) =

{
f(x), x feasible,
∞, otherwise.

The Lagrange dual problem D is

max
u≥0̄,v

inf
x∈X

ϕ(x, u, v) = θ(u, v),

35

MS-E2139 Nonlinear Programming Kimmo Berg

where θ(u, v) is the dual function. We can see that the primal and dual are taking
the minimization over x and maximization over (u, v) in different order over the
Lagrange function ϕ(x, u, v).

Geometric interpretation

Let us study a problem with one inequality constraint g(x) ≤ 0. We can
examine the points x ∈ X in two-dimensional set G = {(y, z) = (g(x), f(x)), x ∈
X}. When we have u ≥ 0 then θ(u) = infx∈X f(x) + ug(x) = min z + uy, (y, z) ∈
G, and it is a line. The minimization moves this line as much down until it
supports G from below. θ(u) is the intersection point with z axis. Now, we have
the interpretation of the dual problem: find a slope u ≥ 0 s.t. the supporting
hyperplane of G intersects z axis as high as possible. (draw a figure)

Example. Linear programming (LP) problem

min cTx

s.t. Ax = b,

x ≥ 0,

and we choose X = {x, x ≥ 0}. The dual function is

θ(v) = inf
x∈X

cTx+ vT (b−Ax) = inf
x∈X

{(c−ATv)Tx}+ vT b =
{

vT b, c− ATv ≥ 0,
−∞, otherwise.

36

MS-E2139 Nonlinear Programming Kimmo Berg

The dual is another LP problem:

max bTv

s.t. ATv ≤ c.

Also, the dual of QP problem is another QP (exercises) and there are other
duals beside Lagrange dual problem. For example, Fenchel (defined soon) and
Wolfe dual max ϕ(x, u, v) s.t. ∇xϕ(x, u, v) = 0, u ≥ 0.

Duality theorems

Theorem (6.2.1, weak duality). If x is feasible for P and (u, v) feasible for D
then f(x) ≥ θ(u, v).

Proof.

θ(u, v) = inf
y∈X

f(y) + uTg(y) + vTh(y) ≤ f(x) + uTg(x) + vTh(x) ≤ f(x).

□
The dual function gives lower bound estimates for the primal problem. This

also raises a question whether f(x) = θ(u, v) for some (x, u, v). We also have the
following corollaries:
i) If inf f(x) s.t. x feasible is strictly larger than sup θ(u, v) s.t. u ≥ 0̄, then it is
said that the problem has a duality gap, which is the difference of these two values.
ii) If we find feasible (x′, u′, v′) s.t. f(x′) = θ(u′, v′) then x′ solves p and (u′, v′)
solves D.
iii) If supu≥0̄,v θ(u, v) = ∞ then P does not have a feasible point.
When is the duality gap zero?

Theorem (6.2.4, strong duality). If X open, convex, f, gi, i ∈ I convex, h(x) =
Ax − b (affine), Slater’s CQ holds: ∃x′ ∈ X s.t. g(x′) < 0̄, h(x′) = 0 and x′

regular, i.e., 0̄ ∈ int h(X) = int{h(x), x ∈ X}, then

inf{f(x), x ∈ X, g(x) ≤ 0̄, h(x) = 0̄} = sup{θ(u, v), u ≥ 0̄}.

If inf is finite then ∃u ≥ 0̄, v s.t. sup is achieved.
If inf is achieved at x0 with Lagrange multipliers (u0, v0) then u

T
0 g(x0) = 0.

Proof. Proofs by separation theorems. □
There is no duality gap for convex problems.

Definition 7.1. (x0, u0, v0) is a saddle point of ϕ if x0 ∈ X, u0 ≥ 0̄ and

ϕ(x0, u, v) ≤ ϕ(x0, u0, v0) ≤ ϕ(x, u0, v0), ∀x ∈ X, ∀(u, v), u ≥ 0̄.

37

MS-E2139 Nonlinear Programming Kimmo Berg

See zero-sum games for an application of saddle point results.

Theorem (6.2.5). (x0, u0, v0) is a saddle point for ϕ ⇔ x0 solves P , (u0, v0) solves
D and there is no duality gap ⇔
i) ϕ(x0, u0, v0) = minx∈X ϕ(x, u0, v0),
ii) g(x0) ≤ 0̄, h(x0) = 0̄,
iii) uT0 g(x0) = 0.

Corollary. With the assumptions of strong duality, there is no duality gap ⇒
x0 solves P⇒ ∃u0 ≥ 0̄, v s.t. (x0, u0, v0) is a saddle point for ϕ.

Theorem (6.2.6, KKT and saddle). If x0 is a KKT point with Lagrange multipliers
(u0, v0), f, gi, i ∈ I convex, hj affine for vj ̸= 0, then (x0, u0, v0) is a saddle point
for ϕ. Conversely, if (x0, u0, v0) is a saddle point of ϕ with x0 ∈ int X, u0 ≥ 0̄,
then x0 is a KKT point with Lagrange multipliers (u0, v0).

Properties of dual function

Theorem (6.3.1). Define β = (g, h) and w = (u, v). If X ̸= ∅ compact, f, β
continuous then

θ(w) = inf
x∈X

f(x) + wTβ(x), is concave in w.

Since θ is concave, from Theorem 3.4.2 we have that all local optimum are also
global optimum.

Theorem (6.3.4). If also

x0 ∈ C(w0) = {y ∈ argmin
x∈X

f(x) + wT
0 β(x)},

then β(x0) ∈ ∂θ(w0). If C(w0) = {x0} is a singleton then ∇θ(w0) = β(x0).

Thus, the primal constraints β(x0) give a subgradient to the dual function,
which could be used in generating ascent directions in numerical methods. In
general, (Ruszczynski: Nonlinear optimization, p. 165)

∂θ(w0) = conv(∪x0∈C′(w0)β(x0)),

where C ′(w0) = {x ∈ X,ϕ(x0, w0) = θ(w0)}.

Theorem (6.3.11). The steepest ascent direction of θ is ξ with the smallest Eu-
clidian norm:

d =

{
0̄, ξ = 0̄,

ξ/∥ξ∥, ξ ̸= 0̄.

38

MS-E2139 Nonlinear Programming Kimmo Berg

Interpretations of Lagrange multipliers

The Lagrange multipliers have different interpretations in applications. In elec-
tric circuits, the decision variables can be currents in primal problem and the dual
variables can then be voltages (exercises). In economics, if the primal variables are
levels of consumption, then the dual variables can be prices of different products
or services. In mechanics of materials, the primal variables can be stress levels
(strain) of some elements (in bridges or buildings) and the dual variables are dis-
placement of the element. The following gives an interpretation in mechanical
spring system.

Example. Let us examine three spring system with two blocks between two walls.
The spring constants are k1, k2, k3 > 0 and the distance between the walls is l. The
blocks have width w and they are centered at locations x1 and x2. The system will
be in equilibrium at point where the potential energy is at minimum:

min J = 1/2k1x
2
1 + 1/2k2(x2 − x1)

2 + 1/2k3(l − x2)
2,

s.t. the blocks and walls are rigid: w/2−x1 ≤ 0, w+x1−x2 ≤ 0, w/2− l+x2 ≤ 0.
So we have a QP problem with convex objective (check!) and linear constraints.

A suitable CQ condition in this case is the Slater’s CQ which says that 2w ≤ l,
which means that the blocks must fit between the walls. Now, the sufficient KKT
conditions are[

k1x1 − k2(x2 − x1)
k2(x2 − x1)− k3(l − x2)

]
+ u1

[
−1
0

]
+ u2

[
1
−1

]
+ u3

[
0
1

]
= 0̄,

u1(w/2− x1) = 0, u2(w − x2 + x1) = 0, u3(w/2− l + x2) = 0, and u1, u2, u3 ≥ 0.
The interpretation of Lagrange optimality is that the forces are in equilibrium:

k1x1 − k2(x2 − x1)− u1 + u2 = 0.

The complementary slackness conditions mean that the contact forces are active
only when the blocks touch each other or the walls. The dual feasibility means that
the contact forces are away from the contact surface.

We can see that the minimum potential solution equals the force balance equa-
tions (KKT), and this result has been used in the basic physics courses. We can
now see the meaning of convexity for getting this result.

Fenchel conjugate duality

Conjugate function is the basic tool in convex analysis.

39

MS-E2139 Nonlinear Programming Kimmo Berg

Definition 7.2. A conjugate function is

f ∗(u) = sup
x∈Rn

xTu− f(x), u ∈ Rn.

Example. if f(x) = ax− b then f ∗(u) =

{
b, u = a,

∞, u ̸= a.

if f(x) = |x| then f ∗(u) =

{
0, |u| ≤ 1,

∞, |u| > 1.
if f(x) = (c/2)x2 then f ∗(u) = u2/(2c).

Let us derive the dual for the following problem

min
x∈X1∩X2

f1(x)− f2(x),

max
u∈Ω1∩Ω2

f ∗
2 (u)− f ∗

1 (u),

where Ω1 = {u, f ∗
1 (u) < ∞} and Ω2 = {u, f ∗

2 (u) > −∞}. This can be shown for
example using Lagrange duality:

min
z=y

f1(y)− f2(z),

and the Lagrange dual function of this problem is

θ(u) = inf
yinX1,z∈X2

f1(y)− f2(z) + (z − y)Tu,

= inf
z∈X2

zTu− f2(z) + inf
y∈X1

f1(y)− yTu,

= f ∗
2 (u)− f ∗

1 (u).

This is the classical interpretation of duality. (draw a figure)

8 Numerical methods for unconstrained prob-

lems

Optimization is one of the important fields in numerical computation, beside solv-
ing differential equations and linear systems. We can see that these fields are not
independent and they share the algorithms and the ideas: solving (large) linear
optimization problems equals to solving general linear equations (Ax = b), solving
nonlinear unconstrained problems equals to solving a set of nonlinear equations
(f(x) = 0̄), and solving dynamic optimization problems equals solving (partial)
differential equations.

40

MS-E2139 Nonlinear Programming Kimmo Berg

Next, we examine how to solve different types of optimization problems. What
methods work in certain class of problems and why? Different approaches are pre-
sented for unconstrained and constrained, one-dimensional and multidimensional
problems. The focus is on methods for finding local minimum, and the global
methods or heuristics (simulated annealing, genetic algorithms etc.) are not pre-
sented on this course. Numerical methods are iterative algorithms that try to solve
the problem using finite number of operations. The algorithms produce a sequence
{xt}, where the next solution is given by some rule and the information up to that
point:

xt+1 = Xt+1(I0, I1, . . . , It),

where It is the information from iteration t.

Definition 8.1. Algorithmic map A : X → 2X maps each point to a set of
possible next iterates: xk+1 ∈ A(xk).

A final iterate x∗ is called solution and Ω is the solution set. Solution is
acceptable if

• x∗ is local optimum or FJ/KKT point

• f(x∗) < b acceptable value

• f(x∗) < LB + ϵ, LB some lower bound

• f(x∗) < OPT + ϵ

Closed maps

Definition 8.2. A map A is closed at x ∈ X if xk ∈ X, {xk} → x and yk ∈
A(xk), {yk} → y implies that y ∈ A(x). The map A is closed on Z ⊆ X if it is
closed at each point in Z.

Definition 8.3. A function α : X → R is a descent function if α(y) < α(x)
when x /∈ Ω is not a solution and y ∈ A(x).

Theorem (7.2.3). If map A is closed over the complement of Ω and α is continuous
descent function, then either the algorithm stops in a finite number of steps or it
generates an infinite sequence {xk} such that

• every convergent subsequence of {xk} has a limit in Ω

• α(xk) → α(x) for some x ∈ Ω

41

MS-E2139 Nonlinear Programming Kimmo Berg

Note that the sequence must converge to the single value if Ω is a singleton.
Stopping condition

Typical stopping conditions are

• ∥xk+N − xk∥ < ϵ

• ∥xk+1 − xk∥/∥xk∥ < ϵ

• α(xk)− α(xk+N) < ϵ

• (α(xk)− α(xk+N))/|α(xk)| < ϵ

Criteria to compare the methods

We can classify and compare the methods using the following criteria:

1. The required information:

– The zero-order methods use only the values of objective and constraint
functions.

– The first-order use also gradients of objective and constraints.

– The second-order use also the Hessians.

2. The convergence properties:
Let {sk} be a sequence and sk → s′, when k → ∞.

Definition 8.4. The order of convergence is

p = sup{q ∈ R+, lim
k→∞

sup
|sk+1 − s′|
|sk − s′|q

<∞},

where limk→∞ sup sk = limk→∞ sup{sm,m ≥ k}.

Definition 8.5. The convergence ratio is

β = lim sup
|sk+1 − s′|
|sk − s′|p

.

– sublinear convergence: p = 1, β = 1,

– linear convergence: p = 1, β < 1,

– superlinear convergence: p ≥ 1, β = 0, (p = 1 and β = 0, or p > 1)

– quadratic convergence: p = 2, β <∞.

42

MS-E2139 Nonlinear Programming Kimmo Berg

Example. Series sk = 1/k converges sublinearly as β = lim k/k + 1 = 1.
Series sk = 1/kk converges at least superlinearly since

sk+1

sk
=

kk

(k + 1)k+1
≤ kk

kk+1
=

1

k
→ 0.

The higher convergence order and the smaller ratio is faster. Convergence is
rather theoretical notion and it may be difficult to determine exactly for an
algorithm.

3. The computational complexity:
The required computational effort can be measured by the number of basic
operations, like additions and multiplications.

Definition 8.6. A function f(x) is O(g(x)) iff ∃c, n0 s.t. |f(x)| < c|g(x)|,
when x > n0.

4. The need for memory: does it need vectors or matrices to be stored?

5. The generality: does it solve all problems in certain class or just some specific
cases?

6. Stability: how do the rounding errors during computation and inaccuracies
in the original data affect the algorithm?

Line search methods

Difficult optimization problems are typically reduced to a set of easier problems.
Constrained problems can be converted to a series of unconstrained problems with
penalty and barrier functions. Multidimensional unconstrained problems can be
solved by line search methods that generate a series of one-dimensional problems.
Thus, solving line search problems efficiently is important for large class of opti-
mization problems.

We examine a problem min l(s) = f(xk + sdk), where s is the parameter to be
optimized, which can be from some multidimensional minimization problem with
objective f(x), where xk is the current iteration, dk the descent (search) direction
and s the step length. Typically, the step length is restricted to s ∈ S = {s, s ≥ 0}
or s ∈ [a, b] that is called the interval of uncertainty where the optimum lies.

Zero-order methods

Assume that l(s) is strictly quasiconvex in s. The minimum can then be found
with the following result. Let λ < µ then

i) l(λ) > l(µ) ⇒ l(z) ≥ l(µ), ∀z ≤ λ,

ii) l(λ) ≤ l(µ) ⇒ l(z) ≥ l(λ), ∀z ≥ λ,

43

MS-E2139 Nonlinear Programming Kimmo Berg

This means that in case i) the minimum cannot be between a ≤ z ≤ λ and in case
ii) between µ < z ≤ b, and the interval of uncertainty can be updated. This gives
the following methods:

• Uniform search: choose points uniformly between [a, b].

• Dichotomous search: choose δ > 0, pick λ = (a+ b)/2−δ, µ)(a+ b)/2+δ,
evaluate l(λ), l(µ) and update.

• Golden section: choose λ = a + (1 − α)(b − a), µ = a + α(b − a), α =
(
√
5− 1)/2 ≈ 0.618.

• Fibonacci: F0 = F1 = 1, Fi+1 = Fi+Fi−1, choose λ = a+Fn−k−1/Fn−k+1(b−
a), µ = a+ Fn−k/Fn−k+1(b− a).

• Quadratic fit: Using three points s1 < s2 < s3, l(s1) ≥ l(s2), l(s3) ≥ l(s2),
fit a second order polynomial (parable) p(s) s.t. p(si) = l(si) and find the
minimum s∗ for the parable. Evaluate l(s∗), update and repeat.

Comparison: dichotomous has linear convergence with β ≈
√

1/2 ≈ 0.71,
golden section and Fibonacci linear with β ≈ 0.618 and quadratic fit superlinear
with p ≈ 1.3 (under certain assumptions).

First-order methods

Assume that l(s) is differentiable, ps.convex, i.e. l′(s0) = 0 ⇒ s0 minimum.

• Bisection (Bolzano’s method): Choose sk = (a + b)/2. If l′(sk) < 0 then
s∗ > sk, or if l

′(sk) > 0 then s∗ < sk, otherwise sk = s∗.

• Cubic fit: Calculate and fit according to p(a) = l(a), p′(a) = l′(a), p(b) =
l(b), p′(b) = l′(b). Find the minimum for the third-degree polynomial p(s),
find the minimum s∗ for p(s), calculate l′(s∗) and update.

Second-order methods

The Newton’s method solves the quadratic approximation

min l(sk) + l′(sk)(s− sk) + 1/2l′′(sk)(s− sk)
2,

which gives an update
sk+1 = sk − l′(sk)/l

′′(sk).

This can also be seen as solving the necessary condition g(s) = l′(s) = 0 by using
the linear approximation g(s) ≈ g(sk) + g′(sk)(s− sk) = 0.

44

MS-E2139 Nonlinear Programming Kimmo Berg

Comparison: Bisection method converges linearly with β = 0.5, cubic poly-
nomial with quadratic convergence p = 2 (under certain assumptions) and Newton
by quadratic convergence p = 2 (sufficiently close to the optimum).

Inexact line search

When the line search is solved as a subproblem of some larger problem, it is not
necessary to find the minimum exactly but rather get fast some good enough
solution. In terms of total complexity, it is better to use less computation and
only few steps in each line search. The inexact line search methods define the
sufficient conditions that the good enough solutions satisfy.

Definition 8.7. Armijo’s rule: The step length s is accepted and it descends
enough if (draw a figure)

f(xk + sdk) ≤ f(xk) + ϵs∇f(xk)Tdk, ϵ ∈ (0, 1),

i.e., l(s) ≤ l(0)+ ϵsl′(0). Typically, ϵ is small ((10−5, 10−1), 0.2, 10−4 depending on
the source). Note that the course book adds an additional requirement to prevent
small step sizes: accept s if

l(αs) ≥ l(0) + αϵsl′(0), α > 1,

for example α = 2.

Definition 8.8. Goldstein rule: accept s if

l(0) + (1− c)sl′(0) ≤ l(s) ≤ l(0) + csl′(0), c ∈ (0, 1/2).

Note that this equals the Armijo’s rule when l(s) is convex.

Definition 8.9. Wolfe’s rule: accept s if

l(s) ≤ l(0) + ϵsl′(0), (Armijo)

l′(s) ≥ σl′(0), 0 < ϵ < σ < 1

|l′(s)| ≥ σ|l′(0)|. (strong Wolfe)

Multidimensional search

Two approaches are examined in solving multidimensional problems: line search
methods (gradient, Newton and their modification) and trust-region methods.
Typically, the line search methods generate a direction and do a search in this
direction. The methods differ in how the search direction is chosen. Trust-region
methods are also called as restricted step methods, where the objective is approxi-
mated often with a quadratic function that is minimized and the new point should

45

MS-E2139 Nonlinear Programming Kimmo Berg

be inside the current trust region. The region is expanded depending on how well
the quadratic function approximates the objective.

Zero-order methods

• Cyclic coordinate method: use coordinate axes as search directions and
search them in order. The method does not work well if the function is
sideways to the coordinate axes.

• Hooke-Jeeves: add an acceleration step to the previous method

• Nelder-Meade Simplex: update a simplex based on the function values
at the corners (amoeba search)

• Finite difference methods: use higher order methods by using difference
approximations

46

MS-E2139 Nonlinear Programming Kimmo Berg

Gradient method

The gradient method is a first-order method that was originally proposed by
Cauchy in 1847. When a function is differentiable then a direction d is a descent
direction when

f ′(x; d) = lim
s→0

f(x+ sd)− f(x)

s
= ∇f(x)Td < 0.

The gradient method uses the negative gradient as an update direction

x− xk = −∇f(xk).

Theorem (8.6.1). If ∇f(x) ̸= 0̄ then the steepest descent direction is

min
∥d∥≤1

f ′(x; d) ⇒ d̄ =
−∇f(x)
∥∇f(x)∥

.

Proof.
f ′(x; d) = ∇f(x)Td ≥ −∥∇f(x)∥∥d∥ ≥ −∥∇f(x)∥,

where the first is by Cauchy-Bunyakovsky-Schwarz inequality and the second hold
as equality only if d = d̄ = −∇f(x)

∥∇f(x)∥ . □

47

MS-E2139 Nonlinear Programming Kimmo Berg

The steepest descent method does a line search

xk+1 = xk − sk∇f(xk),

where sk ∈ argmins≥0 f(xk + s∇f(xk)) or some inexact line search, or simply
sk = 1 like in the gradient method. The stopping condition is for example when
∥∇f(xk)∥ < ϵ, for some ϵ > 0.

Properties:

• with exact line search, ∇f(xk + 1)T∇f(xk) = 0, and it means zigzagging

• easy to program and reliable

• affected by change of variables x′ =Mx

• example of convex problem where the method does not converge

• linear convergence that depends on condition number κ = λn/λ1, where λn
is the largest and λ1 the smallest eigenvalue. (κ−1

κ+1
)2 <converg. ratio< 1

• the eigenvectors, eigenvalues, and the condition number tells how the objec-
tive function is tilted and scaled in different directions

Theorem. When steepest descent method (exact line search) is applied to

f(x) = 1/2xTQx− bTx,

Q symmetric positive definite, then the error norm

1/2∥x− x∗∥2Q = f(x)− f(x∗),

satisfies

∥xk+1 − x∗∥2Q ≤
[
λn − λ1
λn + λ1

]2
∥xk − x∗∥2Q =

[
κ− 1

κ+ 1

]2
∥xk − x∗∥2Q,

where 0 < λ1 ≤ . . . ≤ λn are the eigenvalues of Q.

Definition 8.10. The weighted norm ∥x∥P = (xTPx)1/2 = ∥P 1/2x∥2, where P
symm. pos.def.

For quadratic function, the ratio is r = k−1
k+1

but in general larger than r2.

48

MS-E2139 Nonlinear Programming Kimmo Berg

49

MS-E2139 Nonlinear Programming Kimmo Berg

50

MS-E2139 Nonlinear Programming Kimmo Berg

Convergence of steepest descent

Definition 8.11. Function f is Lipschitz continuous with constant G if ∥f(x)−
f(y)∥ ≤ G∥x− y∥.

As a line search algorithm, it will converge as long as f is continuous and
differentiable and line search is exact.

A version of Armijo’s rule is also guaranteed to converge as long as ∇f(x) is
Lipschitz continuous with constant G > 0.

Newton and modified methods

Newton’s method can be interpreted in the following ways:

1. Linear approximation to equations:
Let us examine solving a nonlinear system of equations, g : Rn 7→ Rm,

51

MS-E2139 Nonlinear Programming Kimmo Berg

g(x) = 0̄. The linear approximation gives

g(x) ≈ g(xk) +H(xk)(x− xk) = 0̄,

xk+1 = xk −H−1
k g(xk).

We apply this to function g(x) = ∇f(x) and Hk is symmetric.

2. Minimize quadratic approximation:
The above are the same as the necessary conditions for

min q(x) = f(xk) +∇f(xk)T (x− xk) + 1/2(x− xk)
THk(x− xk).

The same equations can be interpreted as minimizing the quadratic (Taylor)
approximation or solving the linear approximation of the necessary condi-
tions.

The idea is to take a suitable step sk in the direction of dk = −H−1
k f(xk),

i.e., xk+1 = xk + skdk. In minimization the direction is

dk = −∇2f(xk)
−1∇f(xk),

and the update can be written

∇2f(xk)(x− xk) = −∇f(xk).

3. Steepest descent method in a local Hessian norm:
Using the negative gradient is the steepest descent method in Euclidean
norm. The Newton’s method can be seen as steepest descent method in
a norm induced by the local Hessian. In general, if we make a coordi-
nate change by matrix P , the corresponding norm is ∥z∥P = (zTPz)1/2 =
∥P 1/2z∥2, when P is symmetric and positive definite. The steepest descent
method in this norm is

∆xsd = −P−1∇f(x),

and ∥z∥∇2f(x) = (zT∇2f(x)z)1/2 which gives ∆xsd = −∇2f(x)−1∇f(x). This
is very good search direction when x ≈ x∗, it changes the condition by
decreasing the eccentricity and converges in one step for quadratic function
(like gradient method for function with condition κ = 1).

If the search direction is a descent direction, it is natural to use a line search.
When ∇2f(xk) is positive definite then dk is a descent direction. Note that if
sk = 1, ∀k then the method in general converges only locally. The problem is
when ∇2f(xk) is not invertible. Then modified Newton methods can be used,

52

MS-E2139 Nonlinear Programming Kimmo Berg

where we replace Hk = ∇2f(xk) + ϵkI, where ϵk is large enough so that Hk is
positive definite. The update can be written:

(∇2f(xk) + ϵkI)(x− xk) = −∇f(xk).

See the connection to Levenberg-Marguardt method.
It can be seen that when ϵk is large the method is close to the steepest descent

method, whereas when ϵk is small the method is close to the Newton’s method.
Properties of Newton’s method:

• quadratic convergence when started close enough to the optimum

• matrix inversion O(n3)

• needs Hessian and memory for the matrices

• affine invariant y = Px

• many convergence results, e.g., if ∇2f positive definite and the lower level
sets are bounded then exact, Armijo/Goldstein inexact methods converge to
the unique global minimum.

53

MS-E2139 Nonlinear Programming Kimmo Berg

9 Conjugate gradient methods

The gradient method has the problem of zigzagging and slow convergence. The
conjugate gradient methods try to solve this problem by using conjugate rather
than orthogonal directions. These methods are especially useful for solving large
problems. It is also an alternative to Gaussian elimination in solving linear systems.

Definition 9.1. Let H be symmetric n × n matrix. Directions d1, . . . , dk are H-
conjugate if dTi Hdj = 0, ∀i ̸= j and d1, . . . , dk linearly independent.

Note that if H is positive definite and dTi Hdj = 0 then d1, . . . , dk are linearly
independent. This means that it is advantageous to maintain positive definity
in order to produce conjugate directions, which we see later on in quasi-Newton
methods.

Theorem (8.8.3). Let f(x) = 1/2xTHx+ btx+ c, H symmetric, positive definite.
If f is minimized consecutively in n H-conjugate directions then the minimum is
found at most in n-th step.

Proof. The sufficient condition is ∇f(x∗) = Hx∗ + b = 0̄ (1). Since H is pos.def,
d1, . . . , dn are linearly independent. Thus, ∃βi, 1 ≤ i ≤ n s.t. x∗ = x0 +

∑n
i=1 βidi.

54

MS-E2139 Nonlinear Programming Kimmo Berg

From (1), Hx0+
∑
βiHdi+ b = 0̄. Let us multiply this equation by dTj and we get

dTj Hx0 +
∑
βid

T
j Hdi + dTj b = 0̄ and βj = − (Hx0+b)T dj

dTj Hdj
.

What do the line searches produce? s′j s.t. f
′(xj+sjdj) = 0⇒∇f(xj+1)

Tdj = 0
and xj+1 = xj + sj + dj, ∇f(xj+1) = Hxj+1 + b ⇒ (Hxj + sjHdj + b)Tdj = 0 ⇔
sj = − (Hxj+b)T dj

dTj Hdj
. Since xj = x0 +

∑j−1
i=1 sidi then

sj = −(Hx0 +
∑j

i=1 siHdi + b)Tdj
dTj Hdj

= −(Hx0 + b)Tdj
dTj Hdj

= βj.

□
Note the connection to Krylov subspaces {d0, Ad0, A2d0, . . . , A

i−1d0}. How do we
produce the conjugate directions?

The algorithm for conjugate gradient (CG) methods:

xk+1 = xk + skdk,

where sk is from exact or inexact line search. The search direction is

dk+1 = −∇f(xk+1) + akdk, (1)

where ak is given by some specific equation depending on which CG method is
used. There can also be a restart in every n rounds when dk = −∇f(xk) is set.
There are three main CG methods: Hestens-Stiefel (HS), Polak-Ribiere (PR) and
Fletcher-Reeves (FR), which can be derived by making certain assumptions on the
objective function.

Multiplying (1) by Hdk, we get d
T
k+1Hdk = −∇f(xk+1)

THdk + akd
T
kHdk, from

which

ak =
∇f(xk+1)

THdk
dTkHdk

,

since dk are H-conjugate directions. It is not efficient to determine H explicitly
and Hdk is often replaced with ∇f(xk+1)−∇f(xk)

sk
, which are equal when the function

is quadratic. With the substitution,

ak =
∇f(xk+1)(∇f(xk+1)−∇f(xk))

dTk (∇f(xk+1)−∇f(xk))
. (HS)

This is the Hestens-Stiefel (1952) update. This was used to solve linear equations
Ax = b when A is pos.def. If the linesearch is exact, then dTk∇f(xk+1) = 0 and
from (1): −dTk∇f(xk) = ∇f(xk)T∇f(xk) + ak−1d

T
k−1∇f(xk), where the last term

is then zero. Now,

ak =
∇f(xk+1)(∇f(xk+1)−∇f(xk))

∇f(xk)T∇f(xk)
. (PR)

55

MS-E2139 Nonlinear Programming Kimmo Berg

Polak-Ribiere (1969) method is said to be the correct formula when the objective
function is not quadratic. If f is quadratic then ∇f(xk+1)

Tdi = 0, ∀k, 0 ≤ k ≤
n−1, 0 ≤ i ≤ k. Thus, ∇f(xk+1)

Tdk = −∇f(xk+1)
T∇f(xk)+ak−1∇f(xk+1)

Tdk−1,
where the first and last terms are zero. We get

ak =
∇f(xk+1)

T∇f(xk+1)

∇f(xk)T∇f(xk)
=

∥∇f(xk+1)∥2

∥∇f(xk)∥2
. (FR)

Fletcher-Reeves (1964) was used in solving nonlinear equations.

Theorem. If H has only r distinct eigenvalues, then CG will terminate at the
solution x∗ in at most r iterations.

Theorem. If H has eigenvalues λ1 ≤ . . . ≤ λn,

∥xk+1 − x∗∥2H ≤
[
λn−k − λ1
λn−k + λ1

]2
∥x0 − x∗∥2H .

The eigenvalues and their clustering determine the speed of convergence.

Example. If the eigenvalues of H consist of m large values and the remaining
n − m smaller ones around 1. Then after m + 1 steps CG will produce a good
estimate of the solution after only m+ 1 steps.

56

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (8.8.8). If f is quadratic and (FR) is used then d1, . . . , dn are H-
conjugate and descent directions.

Properties:

• no need to store matrices, good for large problems

• exact line search critical for some methods

• if ∇f(x∗) pos.def. then superlinear convergence

• (
√
κ−1√
κ+1

)2 <convergence ratio< 1 (compare to the gradient method)

• eigenvalues can be changed by preconditioning x′ = Cx, C nonsingular

• if quadratic then quasi-Newton methods produce conjugate directions when
using exact line search, and then the Hessian is approximated precisely after
n steps.

Application: solve Ax = b, A ∈ Rn×n invertible. solve min 1/2xTATAx −
bTAx and its necessary condition ATAx− (bTA)T = 0̄. Solution in at most n steps
with CG method.

57

MS-E2139 Nonlinear Programming Kimmo Berg

Quasi-Newton methods

The Newton method inverts a matrix and it requires a lot of computation. This
can be improved by approximating the Hessian with the gradient information.
These methods are also called as variable metric methods. The idea is to build a
quadratic model which is sufficiently good to get superlinear convergence.

Definition 9.2. Hk satisfies the quasi-Newton condition if

Hk(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (H1 = I)

Example.

Hk+1 =
f ′(xk+1)− f ′(xk)

xk+1 − xk
,

f : R 7→ R, H1 = 1. This is the secant method, which has a superlinear conver-
gence (p ≈ 1.618 under certain assumptions).

Note that Hk+1 is n×n matrix and update Hk+1 = Hk +Mk, so quasi-Newton
condition does not determine Hk+1 uniquely. There are many quasi-Newton meth-
ods, and Broyden-Fletcher-Goldfarb-Shanno (BFGS) method can be derived by
making the following assumptions. See course website for the history of discover-
ing the method.

Denote sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk). Assume Hk+1 is symmetric
and positive definite ⇒ Hk+1 = Jk+1J

T
k+1, where J is non-singular and Hk = LkL

T
k

(Cholesky decomposition with lower triangular L). BFGS update solves

min ∥Jk+1 − Lk∥F
s.t. Jk+1J

T
k+1yk = sk,

where ∥A∥F =
√∑

i,j a
2
ij is the Fröbenius norm, and the constraint is the quasi-

Newton condition. This has a unique solution as the objective is strictly convex
and the constraint is affine.

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kHk

sTkHksk
,

and similar update equation for the inverse of H−1
k = Bk.

Davidon-Fletcher-Powell (DFP) method can be seen as a“dual”of BFGS where
sk and yk are interchanged and a similar equation to Bk:

Bk+1 = Bk +
sks

T
k

yTk sk
− Bkyky

T
kBk

yTkBkyk
.

These two give a family of Broyden methods: Bk+1 = αBBFGS
k+1 + (1− α)BDFP

k+1 .

58

MS-E2139 Nonlinear Programming Kimmo Berg

Properties:

• local superlinear convergence

• update in O(n2)

• if B1 symmetric, pos.def. and exact line search then Bk+1 symm. and pos.def.
and dk are descent directions

• it may happen that Bk ̸→ ∇2f(x∗)

• BFGS adapts better than DFP

• DFP is critical to exact line search

• same behavior for Broyden family for convex QP

Note the connection to Sherman-Morrison-Woodbury formula. If A−1 is known,
it is easy to compute rank-1 update:

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

59

MS-E2139 Nonlinear Programming Kimmo Berg

Quasi-Newton update consists of two rank-one matrices, and thus Hk undergoes a
rank-2 modification in each iteration.

Trust-region methods

Trust-region methods are good alternatives for line search methods. In these meth-
ods f is approximated with a quaratic function

q(xk + s) = f(xk) +∇f(xk)T s+ 1/2sTHks,

where Hk is the Hessian or some (quasi-Newton) approximation. This approxima-
tion is relied only inside some trust region

Ωk = {x, ∥x− xk∥ ≤ ∆k},

where ∆k is the radius. Depending on how well the quadratic function fits the
objective, the size of trust region is updated:

∆k+1 =


1/2∥xk+1 − xk∥, 0 ≤ Rk < 0.25

2∆k, Rk > 0.75, ∥s∥ = ∆k,
∆k, otherwise

where

Rk =
f(xk+1)− f(xk)

q(xk+1)− q(xk)
.

The method solves

min q(xk + s)

s.t. ∥s∥ ≤ ∥∆k∥2,

and its KKT conditions ∇f(xk) +Hks+ 2vs = 0̄. When v = 0̄, this gives (quasi-
)Newton step, and otherwise s = −(H + 2vI)−1∇f(xk). The advantage to the
earlier methods it thatHk need not be positive definite. There are many variations,
like dog-leg method.

Least squares application

One of the most important applications of unconstrained optimization are the least
squares problems:

min 1/2∥f(x)∥22, f : Rn 7→ Rm.

Example. Fit a model to some data. The data consists of measurements yi, zi,
i = 1, . . . ,m, and the model z = g(y, x) has parameters x ∈ Rn. This gives

f(x) =

 w1(z1 − g(y1, x))
...

wm(zm − g(ym, x))

 ,
where wi are weights.

60

MS-E2139 Nonlinear Programming Kimmo Berg

Let us calculate the gradients and Hessians:

∇(∥f(x)∥2) = 2∇f(x)Tf(x),
∇2(∥f(x)∥2) = 2∇f(x)T∇f(x) + 2S(x),

S(x) =
m∑
i=1

fi(x)∇2fi(x).

Newton: ∇2(∥f(xk)∥2)sk = −∇f(xk)Tf(xk)
Gauß-Newton: ∇f(xk)T∇f(xk)sk = −∇f(xk)Tf(xk)
Levenberg-Marquardt: ∇(f(xk)

T∇f(xk) + µkI)sk = −∇f(xk)Tf(xk), where
µk s.t. the matrix is positive definite

The methods have both line search and trust-region variants and with quasi-
Newton approximations.

Computation and accuracy*

Stability is related to an algorithm and a stable algorithm produces exact solutions
for well-conditioned problem even though there are some rounding and floating
point errors. Condition is related to the problem (or function if f(x) = 0 is to be
solved): well-conditioned problem is such that when there are small deviations in
x then there are small deviations in f(x).

Definition 9.3. The absolute condition number is

κ′ = lim
d→0

sup
∥δx∥≤d

∥δf∥
∥δx∥

,

where δf = f(x+ δx)− f(x).

Definition 9.4. The relative condition number is

κ = lim
d→0

sup
∥δx∥≤d

∥δf∥
∥f(x)∥

/
∥δx∥
∥x∥

=
∥J(x)∥∥x∥
∥f(x)∥

,

where the last holds if f is differentiable and δx infinite decimal small.

It is said that the problem/function is well-conditioned if κ small like κ =
1, 10, 102 and ill-conditioned if κ is large like κ = 106, 1016.

Example. f(x) = x/2, κ = ∥J∥∥x∥
∥f(x)∥ = 1/2·x

x/2
= 1,

f(x) =
√
x, κ = 1/2·x

√
x√

(x)
= 1/2,

f(x) = x1 − x2, in ∥ · ∥∞ norm, κ = 2max{x1,x2}
|x1−x2| , which is large if x1 ≈ x2 and

x1, x2 large.

61

MS-E2139 Nonlinear Programming Kimmo Berg

Example. Computing eigenvalues of non-symmetric matrices: if A =

(
1 1000
0 1

)
and B =

(
1 1000

0.001 1

)
, then λA = {1, 1} and λB = {0, 2}. If the matrices are

symmetric, then the problem is well-conditioned (κ′ = 1, κ = ∥A∥2
|λ|)

Example. Solving linear equations: f(x) = Ax, κ = ∥A∥ ∥x∥
∥Ax∥ . If the matrix is

non-singular and square, then κ ≤ ∥A∥∥A−1∥. Solving Ax = b, κ = ∥A−1∥ ∥b∥
∥x∥ ≤

∥A∥∥A−1∥ = κ(A), where κ(A) is the condition number of A. In this case the
condition expresses the eccentricity of hyperellipse (image of unit ball under map-
ping A), which is the ratio of λn/λ1, since ∥A∥ = λn the largest eigenvalue and
∥A−1∥ = 1/λ1, where λ1 is the smallest eigenvalue.

Solving linear equations*

Let A ∈ Rm×n. If m < n the problem is underdetermined and the solution is a
surface or larger dimensional set. If m > n the problem is overdetermined and it is
not necessarily possible to satisfy all equations and the problem is rather of least
squares form ∥Ax− b∥. If m = n and A is non-singular then the solution is unique
x = A−1b.

The Gaussian elimination solves the problem in approx. 2/3n3 operations in
two steps: forward elimination Lx = b and back substitution Ux = b, where L is
lower and U upper triangular matrix.

If A is symmetric positive definite, then Cholesky decomposition can be
used:

0. Precondition the problem by switching rows P TAP , where P =

 0 0 1
1 0 0
0 1 0

,

to improve sparsity and stability.

1. Form Cholesky decomposition A = LLT . (n3)

2. Forward elimination Lz = b. (n2)

3. Backward substitution LTx = z. (n2)

The total operations needed is 1/3n3 (mn2 + n3/3 if ATAx = AT b). If multiple
equations with the same A need to be solved, then the same decomposition can
be used and only n2 operations are needed.

If A is not positive definite then QR decomposition is more stable, where
QTQ = I is orthogonal as Q−1 = QT . There are different ways of computing the
decomposition, like Gram-Schmidt or Householder’s method. The steps are

62

MS-E2139 Nonlinear Programming Kimmo Berg

0. AP = QR,

1. z = QT b,

2. Rx = z, which reduces to triangular matrix.

This requires 4/3n3 operations. (2mn2 + 2/3n3)
Even more stable method is the singular value decomposition (SVD): A =

UΣV T , U ∈ Rm×m, V ∈ Rn×n orthogonal, Σ ∈ Rm×n non-negative diagonal.
Then compute

1. z = UT b,

2. Σw = z (diagonal),

3. x = V w.

It needs 11n3 operations. (2mn2 + 11n3 if m >> n)
Exploiting structure in optimization*

In the next section some constrained optimization methods convert the constrained
(difficult) problem into a series of easier problems. These can be QP problems
(in SQP method), or unconstrained problems (in penalty and barrier function
methods). Thus, it is important to have efficient methods to solve these easier
problems as the more difficult problems rely on solving multiple instance of them.
With some methods the structure of the problem is inherited to these easier prob-
lems and this may help dramatically. See for example Gondzio and Grothey for
the largest optimization problems solved. Their method relies on solving efficiently
linear equations that have a special structure. In solving linear equations the order
of columns and sparsity play a significant role. There are many special structures
that can be efficiently solved: arrowhead, bands, (tri)diagonals in O(n), Toeplitz
O(n2). Schur complement can be used when there is a subblock in the matrix
that is easy to invert. Woodbury inversion formula can be used when the matrix
is close to a matrix that is easy to invert (A + pqT)−1, where pqT is rank-1 term.
The matrix inversion is not the only operation that can be improved but also all
matrix products may require a lot of computation.

Minimal volume ellipsoid covering a set*

Definition 9.5. An ellipsoid has many representations, like

e = {x, xTAx+ bTx+ c ≤ 0, A symmetric pos.def.},

63

MS-E2139 Nonlinear Programming Kimmo Berg

where the eigenvectors of A give the axis, axis lengths are given by the eigenvalues
1/
√
λi. The ellipsoid can also be seen as a unit ball mapped with an affine function

e = {x, ∥Ax+ b∥2 ≤ 1} = {x, xTATAx+ 2(AT b)Tx+ bT b− 1 ≤ 0}.

The volume of an ellipsoid is proportional to the product of its axis and thus
V ∼

∏
i

1√
λi
. The determinant of a matrix A is also detA =

∏
i λi and detA−1 =∏

i λ
−1
i . Now, we can formulate a problem where a finite number of points need to

be convered with an ellipsoid such that the ellipsoid has minimal volume

min V

s.t. ∥Ax+ b∥ ≤ 1.

The objective can be simplified

V =
√
detA−1 ∼ detA−1 ∼ log detA−1,

since both
√
x and log(x) are monotone functions, and log detA is convex function.

10 Numerical methods for constrained problems

min f(x)

s.t. h(x) = 0̄ (l), g(x) ≤ 0̄ (m), x ∈ X

The algorithms can be roughly divided the following way:

• primal methods: find descent direction keeping inside the feasible set (re-
duced gradient, method of feasible directions, active set)

• barrier and penalty function methods: solve sequence of unconstrained
problems (augmented Lagrangian, primal-dual interior point method)

• Lagrange multiplier methods (augmented Lagrangian, dual methods)

• SQP: solve series of QP or solve KKT conditions with Newton’s method

Primal methods

The method of feasible directions:

0. Find a feasible initial point.

64

MS-E2139 Nonlinear Programming Kimmo Berg

1. Find a feasible descent direction, if not stop.

2. Determine the step length taking care of feasibility.

Zoutendijk method:

min z

s.t. ∇f(xk)Td− z ≤ 0

∇gi(xk)Td− z ≤ 0, i ∈ I

−1 ≤ dj ≤ 1, j = 1, . . . , n

Let (zk, dk) be an optimal solution. If zk = 0̄ stop and xk is FJ point. If zk < 0,
do a line search:

min f(xk + sdk)

s.t. 0 ≤ s ≤ s′,

where s′ = sup{s, gi(xk + sdk) ≤ 0, i = 1, . . . ,m}.
It may be difficult to find feasible direction, and the method may do zigzagging

when new constraints become active. See also the gradient projection method of
Rosen.

Active set method

The method is suitable for solving convex QP problems (used in SQP): f(x) =
1/2xTQx+cTx, where Q is symmetric and pos.def., S = {x, aTt x ≤ bi, 1 ≤ i ≤ m}.
The method lists the active constraints Wi = I(xi) and minimizes

min 1/2dTQd+ gTk d

s.t. aTi d = 0, i ∈ Wk.

This gives the search direction dk and the corresponding Lagrange multipliers vi,
i ∈ Wk.

• if dk = 0̄ and vq = min vi ≥ 0 then xk optimum, otherwise Wk+1 = Wk \ {q}.

• if dk ̸= 0̄ and xk + dk is feasible then take the step.

• if not feasible then find maximum step that is feasible and update Wk+1.

There may be a problem when the active set changes slowly and there are many
constraints.

65

MS-E2139 Nonlinear Programming Kimmo Berg

Reduced gradient methods (Frank-Wolfe)

Let S = {x,Ax = b, x ≥ 0̄}, A ∈ Rm×n, b ∈ Rm, m < n. Assume that A is of
rank m, i.e., any m columns are linearly independent. Then according to Theorem
2.6.4, every extreme point of S there are at least m strictly positive components
(at most n−m zeros). Let us reorder the variables and denote x = (xB, xN), where
xB > 0̄ are the basic (dependent) variables and xN ≥ 0̄ the nonbasic variables.
Similarly, we have A = (B,N), where B ∈ Rm×m, N ∈ Rm×(n−m), and ∇f(x) =
(∇Bf(x),∇Nf(x)).

The feasibility can be maintained by restricting the search direction to be
feasible, i.e., requiring that Ad = BdB + NdN = 0̄, where d = (dB, dN), and we
can solve dB = −B−1NdN since B is invertible by the rank assumption. We can
compute the reduced gradient

∇f(x)Td = ∇Bf(x)
TdB +∇Nf(x)

TdN = (∇Nf(x)
T −∇Bf(x)

TB−1N)dN
.
= rTN ,

where r = (0̄, rN) is the reduced gradient.
If dN is chosen s.t. rTNdN < 0, di ≥ 0, i ∈ I, then d is a feasible descent

direction. dN can, e.g., be chosen

dj =

{
−rj, rj ≤ 0,

−xjrj, rj > 0,

66

MS-E2139 Nonlinear Programming Kimmo Berg

and then dj ≥ 0 if xj = 0 and it avoids small steps when xj > 0. By Theorem
10.6.1. this choice means that dN = 0̄ ⇔ x KKT point.

Algorithm: Initialization: Find x1 satisfying Ax1 = b, x1 ≥ 0.

1. Find the basic variables: Ik is the index set of the m largest components of
xk. Then from the columns of A: B = {aj : j ∈ Ik} and N = {aj : j /∈ Ik}.
Compute rT = ∇f(xk)T −∇Bf(xk)

TB−1A. Form

dj =

{
−rj, rj ≤ 0,

−xjrj, rj > 0,

and compute dB = −B−1NdN . Let d
T
k = (dTB, d

T
N). If dk = 0, stop and xk is

a KKT point.

2. Solve the line search f(xk + λdk) s.t. 0 ≤ λ ≤ λmax, where λmax =
min1≤j≤n −xjk/djk for djk < 0, if dk ≱ 0, and λmax = ∞ if dk ≥ 0. Up-
date xk+1 = xk + λkdk. Goto step 1.

67

MS-E2139 Nonlinear Programming Kimmo Berg

68

MS-E2139 Nonlinear Programming Kimmo Berg

69

MS-E2139 Nonlinear Programming Kimmo Berg

70

MS-E2139 Nonlinear Programming Kimmo Berg

71

MS-E2139 Nonlinear Programming Kimmo Berg

Penalty function methods

The idea of penalty functions is to move the constraints into the objective function
and make it unconstrained problem.

Example. min f(x) s.t. h(x) = 0 ⇒ min f(x) + µh(x)2. when µ is big, then
h(x) ≈ 0. (max(0, g(x))2 for inequality constraints)

Definition 10.1. A penalty function is α(x) =
∑m

i=1 ϕ(gi(x))+
∑l

i=1 ψ(hi(x)),

ϕ(y) =

{
0, y ≤ 0

> 0, y > 0
, ψ(y) =

{
0, y = 0

> 0, y ̸= 0
.

Definition 10.2. A penalty function problem minx∈X f(x) + µα(x), µ > 0.

Algorithm:

1. Solve xk+1 ∈ argminx∈X f(x) + µkα(x).

2. If µkα(xk+1) < ϵ stop, otherwise µk+1 = βµk, β > 1.

Problems: may stop prematurely or converge slowly. ∇2(f(x) + µα(x)) is
almost singular when µ is large, and thus the convergence properties are poor.

72

MS-E2139 Nonlinear Programming Kimmo Berg

Theorem (9.2.2). Assume f,g,h continuous. θ(µ) = minx∈X f(x) + µα(x) =
f(xµ) + µα(xµ). Assume xµ belongs to a compact subset for all µ > 0. Then

inf{f(x), g(x) ≤ 0̄, h(x) = 0̄, x ∈ X} = lim
µ→∞

θ(µ),

and xµ → x∗, µα(xµ) → 0, when µ→ ∞.

How large µ is then needed?

73

MS-E2139 Nonlinear Programming Kimmo Berg

74

MS-E2139 Nonlinear Programming Kimmo Berg

Penalty function with nonconvex problem

Definition 10.3. A penalty function is exact when ∃µ̄ s.t. x∗ is achieved with
all µ ≥ µ̄.

Example. Absolute value (l1) penalty function α(x) = µ(
∑

max{0, gi(x)}+
∑

|hi(x)|)
is exact.

Theorem (9.3.1). If f, gi, i ∈ I, convex, h affine, then x∗ minimizes θ(µ) with
absolute value penalty function when µ ≥ max(ui, |v|j)

Note that this penalty function is not smooth.
Augmented Lagrangian method

Another exact penalty function is the augmented Lagrangian penalty func-
tion (ALAG):

fALAG(x, v) = f(x) + vTh(x) + µ

l∑
i=1

h2i (x).

The inequality constraints are not a problem and they can be handled with slack
variables. The penalty function convexifies the problem locally. If (x∗, v∗) is a KKT
point, then ∇xfALAG(x

∗, v∗) = ∇f(x∗)+v∗T∇h(x∗)+2µ
∑
hi(x

∗)∇hi(x∗) = 0̄ and
if µ > µ̄ then x∗ minimizes the penalty function problem.

Example. min x3 s.t. x+1 = 0. The solution is x∗ = −1, v∗ = 3. fALAG(x, v
∗) =

x3−3(x+1)+µ(x+1)2, f ′
ALAG(x, v

∗) = 3x2−3+2µx+1, f ′′
ALAG(x, v

∗) = 6x−2µ.
When µ ≥ v∗ then the penalty function is convex at x∗.

Algorithm:

• V IOL(x) = max(|hi(x)|, i = 1, . . . , l).

75

MS-E2139 Nonlinear Programming Kimmo Berg

• Inner loop: Solve min fALAG(x, v
′). If V IOL(xk) = 0 then stop and xk is

KKT point. If V IOL(xk) ≤ V IOL(xk−1)/4 then go to outer loop. Other-
wise, µi = βµi, β > 1, for all i that violate the above condition and repeat
the inner loop.

• Outer loop: Update v′i = v′i + 2µihi(xk). Return to the inner loop.

Note:

• xk → x∗ only if vk → v∗

• how do you know v∗? Guess?

• update of v affects the convergence

• problems when µ is too large or small

• what method is used in the inner loop?

Barrier function methods

Barrier function methods approach the optimum from inside of the feasible set.

Example. min f(x) s.t. g(x) ≤ 0 ⇒ min f(x)− µ log(−g(x)). when µ is small,
then g(x) can get close to zero.

Definition 10.4. A barrier function B(x) is a continuous function s.t. B(x) ≥
0 when g(x) < 0̄, and B(x) → ∞ when gi(x) → 0+.

Example. These condition are satisfied by B(x) = −
∑

ln(min(1,−gi(x))), and
Frisch barrier B(x) = −

∑
ln(−gi(x)).

Definition 10.5. A penalty function problem min θ(µ) = f(x) + µB(x),
µ > 0.

Algorithm: starting point x0 s.t. g(x0) < 0̄.

1. Solve min f(x) + µkB(x).

2. If µkB(xk+1) < ϵ stop and otherwise µk+1 = βµk, β ∈ (0, 1).

76

MS-E2139 Nonlinear Programming Kimmo Berg

Note:

• the method needs strictly feasible starting point

• maintaining feasibility may be difficult (slow convergence)

• numeric problems at the boundary

• convergence as with penalty function method

Theorem (9.4.3). Let f, g be continuous, {x ∈ X, g(x) ≤ 0} non-empty. Assume
that for any neighborhood N around x∗, there is x ∈ X ∩N s.t. g(x) < 0̄, then

min f(x), s.t. x ∈ X, g(x) ≤ 0̄ = lim
µ→0+

θ(µ) = inf
µ>0

θ(µ),

and µB(xµ) → 0 when µ→ 0+.

77

MS-E2139 Nonlinear Programming Kimmo Berg

11 Primal-dual interior point method

Primal-dual method is a barrier function method that is a linear-time algorithm
for LP problem. Let us develop the method for convex problem:

min f(x)

s.t. g(x) ≤ 0̄, (m)

Ax+ b = 0̄, (l)

where f, gi are convex and h is affine. The barrier problem is

min β(x;µ) = f(x)− µ
m∑
i=1

ln(−gi(x))

s.t. Ax+ b = 0̄

The idea is to solve xµ and have µ→ 0+. Does this approach x∗?

Definition 11.1. A sequence {xµ}, µ > 0 is the central path and as µ → ∞,
xµ → xA is the analytic center.

The barrier function satisfies the KKT conditions:

∇xβ(xµ;µ) + ATvµ = 0̄,

Axµ + b = 0̄,

78

MS-E2139 Nonlinear Programming Kimmo Berg

where ∇xβ(xµ, µ) = ∇f(x) + µ
∑

−∇gi(x)
gi(x)

= f(x) + ∇g(x)TD−1e, where D =

diag(−gj(x)), D−1 = diag(−1/gj(x)) and e = (1, . . . , 1)T . Let us denote uµ =
−µD−1e, i.e., uµi

= −µ/gi(x). This vector approximates the Lagrange multipliers
of the original problem.

Theorem. Duality gap: f(xµ)− θ(uµ, vµ) = mµ→ 0, when µ→ 0.

Proof. From KKT conditions, ∇xϕ(xµ, uµ, vµ) = 0̄, where ϕ(x, u, v) = f(x) +
(Ax+ b)Tv + g(x)Tu is convex, i.e., xµ minimizes ϕ(x, uµ, vµ). Thus,

θ(uµ, vµ) = min ϕ(x, uµ, vµ) = ϕ(xµ, uµ, vµ) =

= f(xµ) + (Axµ + b)Tvµ + g(xµ)
Tuµ) = f(xµ)−mµ,

since Axµ + b = 0̄ and g(xµ)
Tuµ =

∑ −gi(x)µ
gi(x)

. □

The algorithm for LP problem, where f(x) = cTx, g(x) = −x:
0. Choose x0, u0, µ0 > 0̄, v, t ∈ (0, 1), ϵ > 0.

1. Solve xk+1, vk+1, uk+1 from the KKT conditions of the barrier function prob-
lem with the Newton’s method. (these are derived in below)

2. If cTxk+1 − bTvk+1 = nµk < ϵ (duality gap for LP) then stop, otherwise
µk+1 = tµk and repeat.

3. Possible rounding to a feasible point.

The primal and dual prolems are

min cT s.t. Ax = b, x ≥ 0̄

max bT s.t. ATv + u = c, u ≥ 0̄

The KKT conditions:

ATv + u = c,

Ax = b,

x ≥ 0̄,

u ≥ 0̄,

XUe = 0̄,

where X = diag(x), U = diag(u), e = (1, . . . , 1)T . The first equation is the
Lagrange optimality, next two primal feasibility, then dual feasibility and finally
the complementary slacness condition. Let us denote the equality constraints

F (x, v, u) =

 ATv + u− c
Ax− b
XUe

 .
79

MS-E2139 Nonlinear Programming Kimmo Berg

The Newton update ∇F (x)∆x = −F (x) for this system is 0̄ AT I
A 0̄ 0̄
U 0̄ X

 ∆x
∆v
∆u

 =

 0̄
0̄

−XUe

 ,
if (xk, vk, uk) is primal-dual feasible, i.e., ATvk + uk = c and Axk = b. If not, then
the two terms on the right-hand side were not zero. This direction is called as the
affine scaling direction.

The logarithmic barrier function problem is

min cTx− µ
m∑
i=1

log(xi) s.t. Ax = b,

and its KKT conditions

ATv + µX−1e = c,

Ax = b,

and if we denote u = µX−1e then

ATv + u = c,

Ax = b,

XUe = µe.

Now, we can see that the logarithmic barrier function relaxes the only nonlinear
equation in the system, the complementary slackness condition, from zero to µ.
The Newton update is 0̄ AT I

A 0̄ 0̄
U 0̄ X

 ∆x
∆v
∆u

 =

 −rc
−rb

−XUe+ µe

 ,
where rc = ATv + u − c and rb = Ax − b. Sometimes, a centering parameter
σ ∈ (0, 1) is added: σµe. When σ = 1, the step is called centering step and when
σ = 0 the step is called Newton or affine scaling direction.

Note that the primal-dual infeasibility is not a problem for the initial solution
x0, v0, u0. If a full Newton step is taken then rc = rb = 0 after that step, since
these equations are linear.

There are many variants of the interior point method. Karmarkar’s algorithm
in 1984 was first practical polynomial time algorithm, following Khaciyan’s ellip-
soid algorithm which worked only in theory. Mehrotra presented the primal-dual

80

MS-E2139 Nonlinear Programming Kimmo Berg

predictor-corrector in 1989 that used the same Cholesky decomposition to find two
different directions.

Sequential quadratic programming (SQP) method

The sequential quadratic programming method can be seen as doing Newton step
to the KKT conditions, i.e., making a quadratic approximation with linearized
constraints.

Let us examine an equality constrained problem

min f(x) s.t. h(x) = 0̄ (l)

The Lagrange function is ϕ(x, v) = f(x) + h(x)Tv, L(x) = ϕ(x, vk) and the KKT
conditions:

∇xϕ(x, v) = ∇f(x) + h(x)Tv = 0̄, (n)

h(x) = 0̄, (l)

and this system is denoted by W (x, v) = 0̄. Appyling the Newton update

W (xk, vk) +∇x,vW (xk, vk)(x− xk, v − vk)
T = 0̄,

where the Jacobian is

∇x,vW (x, v) =

[
∇2

xxϕ(x, v) ∇h(x)T
∇h(x) 0̄

]
This gives so-called Newton-Lagrange equations

∇f(x) +∇h(x)Tvk +∇2
xxϕ(xk, vk)(x− xk) +∇h(xk)T (v − vk) = 0̄,

h(xk) +∇h(xk)T (x− xk) = 0̄.

Note that these are the same as the KKT conditions for the following problem

min 1/2dTk∇2
xxϕ(xk, vk)dk +∇f(xk)T (x− xk)

s.t. h(xk) +∇h(xk)(x− xk) = 0̄,

where dk = x − xk. So, the search direction for (x, v) is solved from a QP prob-
lem and if dk = 0̄ then xk is a KKT point. Otherwise, the point is updated or
a line search is performed in the search direction. If the problem has inequal-
ity constraints then they appear in the Lagrange function and the corresponding
linearized constraints are

g(xk) +∇g(xk)Tdk ≤ 0̄.

81

MS-E2139 Nonlinear Programming Kimmo Berg

There are many variants of the SQP method. Quasi-Newton approximation
Bk can be used to replace ∇2

xxϕ(xk, vk), which is updated. Then sk = xk+1 − xk,
yk = ∇L(xk+1) − ∇L(xk). Note that the QP problem is then strictly convex
because Bk is positive definite.

There is however problem that these methods only converge locally. Global
convergence can be achieved by using merit function m(x), f̂(x) = f(x)+m(x),
in the line search step. Examples of merit functions are absolute value merit
function µ(

∑
max(0, gi(x))+

∑
|hi(x)|) or augmented Lagrangian merit function.

The problem with a merit function is so calledMaratos effect, where the merit
function may decline a direction that takes towards the optimum, and this may
result in slow convergence. It can happen that even if ∥xk + dK − x∗∥ < ∥xk − x∗∥
then it may be that f̂(xk + dk) > f̂(xk). This can be solved by adding second
order correction terms or by choosing a suitable merit function.

Observations:

• QP may be infeasible

• solution to QP may go to infinity

• Lagrange multipliers need to be updated, so the method needs to give the
multipliers too. For example, active set method can be used

82

MS-E2139 Nonlinear Programming Kimmo Berg

One variant is SL1QP trust-region variant

min ∇f(xk)Td+ 1/2dTBkd+ µ(
∑

max(0, gi(x) +∇gi(xk)Td) +

+
∑

|hi(xk) +∇hi(xk)Td|)
s.t. −∆k ≤ d ≤ ∆k,

which can be converted into QP problem. The method has the benefit that it is
feasible and bounded, so it at least has a solution. However, the Maratos effect is
still possible for this variant.

83

