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MS-E2139 Nonlinear Programming Kimmo Berg

1 Introduction

Practicalities

e teaching: 4h lectures, 4h exercises per week

exam (24/30p), assignments (2x4p)

extra points from homework (3p) and exercises (2p)

(voluntary programming assignment)

textbook

History and Applications of optimization
(see the course website)

e Dido, Kepler, Newton, Gauss, Dantzig, Stigler, Karmarkar
e logistics, routing, shape and antenna design, pricing, scheduling
e Markowitz portfolio optimization, diet and Goddard rocket problem

Classes of optimization problems

Nonlinear optimization problem (NLP):

min  f(x)

zeX

e decision variables z € R"

e objective function f: X — R or R" — R (functional),
usually continuous and differentiable

e feasible set X C R"

e it can be defined by the constraints: g;(z) <0, i =1,...,m, hy(z) =0, i =
1,...,1, or in matrix form g(z) <0, g: R" — R™

e if X = R" then unconstrained problem

Example.

min (21 — 3)> + (22 — 2)* = f(21,32) = f(2)

1,20
s.t. x%—x2—3§0,
o —1 <0,
—x1 < 0.
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o cg. gi(x) =a— w2 -3

e draw the figure, feasible set, contours/level sets {(x1,x2) : f(x1,29) = ¢ € R}

— / .
g3 °
% :-_ . (3: 2)
7 ——r _,.-"'Comours of the
i &2 ////// \ ------ " objective function
/ Optimal
g1 [ /Feasible point

?}jon

Linear optimization problem (LP):

min e’

x
st. Ax=0b x>0.

linear objective function

feasible set X polyhedron, g, h linear, A € R™*"

MS-E2140 Linear programming

MS-E2143 Network optimization (usually LP, transportation)

Definition 1.1. Function f : R" — R is linear if

flax +by) = af(z) +bf(y), f=alz, or f= Ax.

Function f is affine if f(x) = L(x) + b, where L is linear.

Function f is additive if f(x +y) = f(x) + f(y).

Function f is homogenous of degree k if f(azx) = a*f(x), Vz,a # 0.

Convex optimization problem:

min  f(x)
st.  g(x) <0, Az =0.

4
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e objective f(z) and feasible set g(z) convex
e MS-E2144 Optimization theory
e convexity will be defined shortly

Quadratic programming problem (QP):

1
min §xTAI + bl
st. dz<d, elz="f.

e objective quadratic, feasible set polyhedron (constraints linear)
e if A positive semidefinite then convex QP

e Markowitz portfolio optimization

Definition 1.2. A matriz Q is positive semidefinite if 7 Qz > 0, V.
A matriz S is positive definite if 27 Sz > 0, Vz # 0.
(all eigenvalues are (strictly) positive)

More classes of optimization:

e stochastic or robust optimization if f,g.h are not exactly known

e integer programming if X discrete (MS-E2146 Integer optimization)

e dynamic optimization if dim X = co (MS-E2148 Dynamic optimization)

e multicriteria optimization if multiple objectives (MS-E2153 Multiobjec-
tive optimization)

Example
Resource allocation, portfolio, diet problem:

max CT[L‘

s.t. Axr <b, = >0.
e LP AcR™" xeR" be R™

e 1 resources, n activities, x; level of activity ¢
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e c;z; utility from activity i, f(z) = cTe =31 | ¢,
e activity j with level x; uses resource ¢ by a;;x;

S e
j=1 015
e total usage given by Az = e , available resources b
n
D j=1 OmjT;

Stochastic problem if ¢; stochastic variable, ¢ stochastic vector with expected
value ¢ and covariance V =V;; = E[(¢; — &)(¢; — &)].
we get portfolio problem: invest b so that Az < b and multiple objectives

max ¢z, expected profit

min 2z’ Vaz, variance (risk)

Assume that the decision maker has utility function for the profit z, u(z) = 1—e=*,

where k is the risk aversion parameter. Also, assume that the profit z = ¢’z is

normally distributed with variance o = 27 Vz, then max F [u(z)] is equivalent to
(under monotonic transformation)

1
max lx— §kxTVx
s.t. Ar <b, = >0.

QP problem, Markowitz
with different k different solutions (draw a figure)
Pareto efficient solutions

What optimization studies?

1. Modeling: assumptions, simplifications, choices for functions

2. Optimization theory: existence, uniqueness, characterization with optimality
conditions (local, global, necessary, sufficient, geometric), duality

3. Computation: methods, complexity

Optimality conditions

Definition 1.3. 2* € S is a global minimum if f(z) > f(z*), Vo € S. (strict
if f(x) > f(z*), YV € S, x # z*)



MS-E2139 Nonlinear Programming Kimmo Berg

Definition 1.4. 2* € S is a local minimum if 3¢ > 0 s.t. f(z) > f(z%),
Vo € Ne(z*)N S.

Definition 1.5.

e int S={x|3e>0,N(xr) CS},
o N(z)={yeR"| |z —y| <€}, e>0,
e ¢l S={x|Ve>0,5NN.x)# 0},

e 9S = {x | SN N(z) # 0,5° N N(x) # 0,Ye > 0}, where SC is the
complement of S,

Note: S is open if S =int S and S is closed if S = ¢l S.
Directional derivatives and differentiability

Definition 1.6. Let SC R", S#0, f: S— R, 29 € S and direction d # 0 s.t.
xo+ Ad € S, Y\ € [0, \o] for some A\g > 0. Gateaux derivative of f at zq in
direction d is (when the limit exists)

Definition 1.7. Function f : S — R, S C R" is Frechet differentiable at
xo € int S # 0 if IV f(x) € R" (gradient) and a function o : R" — R s.t.

f(x) = fzo) + Vf(20) (x — 20) + ||z — 20| x(0; 2 — 20), VI € S,
where a(xo;x — x9) — 0 when © — xq.

If a function if Frechet differentiable it has all Gateaux derivatives and they
equal (f'(zo;d) = Vf(z)'d). If a function is differentiable it is also continu-
ous. The gradient V f(x) is unique and Vf(z) = [0f(x)/0x1,...,0f(x)/0x,].
If f:R"— R f(x) = (f1,..., fi)T then the Jacobian is
V@) = [VA@T,..., V).

Example. V(2T Ax).

Definition 1.8. Function f : S € R, # () = R is twice differentiable at
zo € int S if AV f(z0) € R™, a symmetric n x n Hessian matriz V? f(xy) € R
and a: R" — R s.t. a(xg; o — x9) — 0 when x — xy and Vo € S

f(x) = f(20)+V f(20)  (2—20)+1/2(x—20) V2 f (20) (x—20)+||z—20]| |2t (0; T—20).

7
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Note that (V?f(xg))i; = %Zf%?)~

Unconstrained optimization

Definition 1.9. d € R" is a descent direction of f at 2’ if 30 > 0 s.t. f(2' +
Ad) < f(x'), VA € (0,9). The cone of descent directions is d € F.

Theorem (4.1.2). If f: R" — R differentiable at x’ then
Fo={d,Vf(z")"d <0} CF.

Proof. Diff.: (f(z' + M) — f(2'))/\ = Vf(2)Td + ||d||a(z'; \d) = 35 > 0 s.t.
f(@'+ Ad) — f(2') <0, VA(0,0) since a(z’; Ad) — 0 when taking the limit A — 0.
SodeF. O

Theorem (Fermat 1646, first order necessary). Let [ : R" — R diff. (S # 0 open
or z* €int S). If z* is a local optimum then V f(z*) = 0.

Proof. Assume Vf(z*) # 0. Choose d = —Vf(z*) = —||[Vf(z")|?* < 0, ie,
d € Fy. From Theorem 4.1.2., X\ > 0 and d € F s.t. f(z* + Ad) < f(z*), which
is a contradiction of local optimality. There cannot be descent directions at local
minima. U

Theorem (4.1.3, second order necessary). Let f : R" — R twice diff. If x* is a

local minimum then V2 f(x*) is positive semidefinite.

Proof. As before but use the second order Taylor explansion instead of the first.
O

Theorem (4.1.4, sufficient). Let f : R" — R twice diff. If Vf(z*) = 0 and

V2 f(z*) positive definite then x* is a strict local minimum.

2 Convex sets

Definition 2.1. A set S € R" is convex if for all x1,x5 € S holds that
Arp+ (1= Nzxg €5, VA € (0,1).

Example. The following sets are convex:
e hyperplanes S = {z € R" | p’x = a},

e open and closed half-spaces S = {x € R" | pTz < a} (L),
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e polyhedra P = {z | Az < b,Cz = d},

e norm balls B = {z | ||z — x| < r}, where ||z|| = Voo =/<z,0> =
e norm cones C = {(z,t) | ||z|| < ¢} € R,
o cllipsoids E = {z | 27Qxz +pTo+¢ <0, Q p.s.d.}

Definition 2.2. Set C' is a cone from origin if x € C = Ax € C, VA > 0.
The dual cone of C is C* = {y | y’= > 0 for all x € C}. The polar cone of C
is CO ={y | y'x <0 for all z € C}.

Definition 2.3. The weighted averages 25:1 Ajz; of points x1, ..., xy are called:
¢ linear combinations when A; € R,
e affine combinations when Z?:l Aj =1,
e conical combinations when \; > 0,
e convex combinations when Z;C:l Aj=1,>0.

e conv(S) is the set of its convex combinations

(shown in ezercises: conv(S) =({C C X : C conv.,S C C})

e Note S is convex if S = conv(S).

Theorem (2.1.6, Caratheodory). If S C R™ and z € conv(S) then
x € conv(xy, ..., Tny1).

Convexity preserving operations for sets

e Theorem 2.1.2: (), +
where A B={rty|zeAye B},

e affine functions f = Ax + b: scaling, translation, (image and inverse image)
e cartesian product x: Sy x Sy = {(x1,22) | 21 € S, 22 € So},
e perspective functions P(z,t) = £, ¢ > 0,

e linear-fractional functions g(z) = C‘?Z:Z, dom g ={z|c'z+d> 0},
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e interior int, closure cl, convex hull conv.

How to examine if a set is convex?

proof based on the definition

using earlier results and convexity preserving operations

draw a figure

simulation: numeric testing by choosing points in random and test convexity
(proving the set is not convex)

Existence

Definition 2.4. Infimum o = inf,cq f(2) if « < f(2) Vo € S and Pog > a s.t.
ap < f(z) Vr € S, and minimum « = mingeg f(z) if Jz* € S s.t. a = f(z*) <
f(z) Vo € S.

Note the axiom of real numbers: if A # () C R and M s.t. x < M Vr € A
then Jsup A.

Theorem (2.3.1, Weierstrass). If S # 0 C R™ compact (closed and bounded) and
f S = R (lower semi)continuous then Jz* € S s.t. f(a*) = minges f(z) =

inf:cES f(!lﬁ') .

Minimum distance from a convex set

Theorem (2.4.1). If S # 0 C R™ closed convex and y ¢ S then lz* € S s.t.
" =yl = min 2 = 1] = inf Jlo — .

and z* is the minimum < (y — z*)T(z —2*) <0, Vz € S.

Proof. Existence. S # 0 = 32’ € S, Sy = SN {z, [[x—y| < |ly—2'|} is compact.
f :So— R continuous, Weierstrass.

Uniqueness. Assume 3z’ € S s.t. ||y — z*|| = ||y — 2’| = . Since S is convex,
1/2(z* +2') € S. Now,

ly =1/2(z" +2')|| = [11/2(y — 27) +1/2(y — )| < 1/2|ly — ™| + 1/2[ly = 2"[| = v
by triangle inequality, and it is a contradiction.

10
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It part. ly—z|? = ly—a*+a* ]2 = Jly—a*]| +ll2* —|P+2a" ) (y—a*) >
Iy~ 2|

Only if part. z* is a minimum, i.e., ||[y—z||* > |ly—2*||* Vo € S. Since S convex,
reS=a*+ANz—z*) €S, VA0,1]. [|ly—x* =Nz —2%)]]* > ||y —z*||?, VA[0,1].
ly— 2"~ Mz~ 22 = g — [P + X — | — 2A(y — #°)7(x — 2°). Thus,
Nz — 2*]]2 > 2\ (y — 2*)T(x — z*), VA[0,1]. Assume A > 0 = M|z — 2*||*> = 0
when A — 0. When A — 0 then 2(y — )T (z — 2*) < 0. O

Application: Let zq,...,x,, € R" linearly independent and y € R".

m
min |y — 20@:&!\,
=

where S = {z | = > asz;, a; > 0} is closed and convex cone. Thus,
there is a unique minimizer and (y — > ofz;)" (3] xi(c; — o)) < 0. This implies
(y — > atx;)Tz; <0 and = when of > 0. We get so called normal equations

Aa* —b = z,
z > 0,
Tz = 0.
where b; = y?Tx; and Gram matrix
A=
T T
2ley ... 2lz,

Definition 2.5. Let S, S, # ) € R™. A hyperplane H separates sets S, and S
if Sy CH Y ={z|pTe>a} and Sy C H- ={z | p'z < a}.

If also S1 U Sy ¢ H then H separates properly.

Separation is strict if S; C int HT and Sy C int H—. If the sets are open then
the separation is strict.

Separation is strong if 3¢ > 0 s.t. Sy C {z | p’x > a+e€} and S, C H™.

Theorem (2.4.4, point and set). If S # OR" closed, convex and y ¢ S then
peR, pA£0anda € R s.t. ply>a, plo <a,Vores.

Proof. From Theorem 2.4.1, lz* € S st. (v —2%)(y —x) <0, Vo € S.

0<|ly—a**=9y"(y —a2*) — 2" (y — 2*) = p"y — a, where p = y — 2* # 0 and

plz* = a. Substituting p, p? (z —2*) <0 & plz < a. O
Note the connection to Hahn-Banach separation theorem.

Corollary. If S € R" closed, convex then S = (\g.- H~, where H~ half-
spaces.

11
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Theorem (2.4.5, Farkas). Let A € R™ " and ¢ € R". Ezactly one system has a
solution:

(1) Az <0, 'z > 0, for some x € R™,

(2) ATy = c, for somey >0, y € R™.

Proof. Assume (2) has a solution. Assume Az < 0= cfz = 2T ATy = (Az)Ty <
0, so (1) does not have a solution.

Assume (2) does not have a solution. Let S = {2/ = ATy, y > 0} closed, convex
and ¢ ¢ S. By Theorem 2.4.4, 3p € R" s.t. ple > a, plox < a, Vo € S. Especially,
0eS=a>0=plc>0. When z € S, plz = pT(ATy) =y (Ap) < a, Vy > 0.
y can be chosen arbitrarily large = Ap < 0. So p solves (1). O

Open half-space <« __

a3

aj

aj “4\

Closed conwex

cone “‘\..,_.t- .‘__.ay
<

System 1 has a solution System 2 has a solution

Theorem (2.4.9, Gordan). Let A € R™*". Ezactly one system has a solution:
(1) Az <0, for some v € R",

(2) ATy =0, for somey >0, y+#0€R™.

Proof. Ar < 0 & Ax +es < 0. Choose in Farkas A’ = [ f ], where e =

... 1]T € R" and s > 0. Farkas and Gordan systems are equal by choosing

12
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2 =zs]"and ¢ =1[0...01]:

(A e]{f]gﬁ , [o...m][
0

4

Theorem (Motzkin). Let A; € R™™ and Ay € R™". Ezactly one system has a
solution:

(1) Aid <0, Ayd =0, for some d € R", (Asd < 0),

(2) ATy, + ATya(+Azy3) =0, 41 >0, y1 Z0 € R™, yo € R (y3 > 0)

3

Convex functions and subgradients

Definition 3.1. A function f: S+— R, S CR" S # 0 convex set, is (strictly)
convex in set S if for all x1,25 € S, X € (0,1) holds that
fOz1+ (1= Nza) < Af(z1) + (1= A) f(22) (< when z1 # x2).

Example. The following functions are convex:

affine f(z) =p'z +a

norms ||z||

pos.sem.def. quadratic functions f(x) = 2T Az +bTw + ¢, A p.s.d
exp(ar), a € R

z*,x>0,a>10ra<0

—x% x>0,0<a<1

—log(z) or zlog(z), z > 0,

13
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Theorem (one dimensional property). f conver < g(t) = f(z +tv) convex Va €
dom f, v e R".

Convexity preserving operations for functions

e non-negative weighted sum g = wy f1 + ... + Wy frm, w; >0

e affine scaling g(z) = f(Az +0b), domg = {z | Az +b € dom f}

e pointwise maximum g(z) = max{ fi(z),..., fm(z)}, domg = () dom f;

e over infinite set g(r) = sup,c4 f(z,y)

composition g(z) = f(h(z)) if f convex, non-decreasing (non-increasing) and
h convex (concave)

e minimization g(z) = inf,cc f(z,y), C' # 0 convex

Example. These operations can for example be applied in
o f(z)=—=>_" log(b; —alx), when (b — alxz > 0) (sum, log, affine)

o f(x)=ap + ...+ (sum of k largets components)
=max{x;, +...+x;, | 1 <iy <...<ip <n} (n!/(kl(n—k)! combinations,
mazx of linear)

o f(X)=sup{y! Xy, ||yl =1} (mazimum eigenvalue, sup of linear)
Jensen inequality

feonvex & F(3F Nz) < 08 Nif(@), S =1, 0 >0,2,€ 8

Example. geometric mean is smaller than arithmetic mean:

(al-...-an)l/”g(a1+...+an)/n, a; >0

Example. If f conver then f(Exz) < Ef(x) (expectation of random variable)

You can derive other inequalities like Holder’s inequality by applying Jensen
inequality to some appropriate functions.
Connection between convex sets and functions

14
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Definition 3.2. Epigraph (hypograph, hyp) of a function is
epi f={(x,y)| v €S,y> f(x)} CR"™ ().

Theorem (3.2.2). If S CR", S # () conver, f: S+ R then
f conver < epi f convex (set)

Properties of convex functions

Definition 3.3. Lower-level-set (upper) S, = lev,f = {x € S, f(z) < a},
aeR (>).

Theorem (3.1.2). If S CR", S#10, f: S+~ R convez then
leva f is convex for all o € R.

Note that a function whose all lower-level-sets are convex need not be convex.
Definition 3.4. Function f is quasiconvex if f(Ax1+(1—\)zy) < max{f(x;), f(z2)},
for all x1,29 € S, A € (0,1).

Quasiconvexity is strict if (<) Vf(z1) # f(z2) and strong if (<) Va; # zs.
Theorem (3.5.2). f is quasiconver < lev,f convexr Vo € R.

Definition 3.5. Function f is pseudoconvex ifVry, x5 € S, Vf(x))! (2o —121) >
0= f(xo) > f(x1). Strict if f(x2) > f(x1) when x1 # To.

Continuity of convex functions

Definition 3.6. Limit x,, — T means V6 > 0,IN
s.t. ¥Yn > N, ||z, — Z|| <e.

Definition 3.7. Function f is continuous in = if Ve > 0, 30 > 0 s.t.
lo —Zl| <6 = |f(z) = f(@)] < e (Von =T = flan) = f2))

Theorem (3.1.3). If f : S — R convez then f continuous in int S.

Legendre-Fenchel conjugate function

Definition 3.8. Convex hull conv(f) = sup{g: S — R convez, g < f}.

Definition 3.9. Conjugate function f*(y) = sup,{y’x — f(z)} (conver, sup of
affine)

15
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Definition 3.10. Biconjugate f** = conv(f).

Directional derivatives of convex functions

Theorem (3.1.5). Let S € R", S # 0 convex, f : S — R convez, xy € S and
d#0 s.t. xg+Ad €S, VX € [0, ] for some \g > 0 then

Af'(xo; d) (possibly £00),

if ko € int S, then |f'(xo;d)| < oc.

The gradient is a global underestimator with local information and the gradient
is monotone.

Theorem (3.3.3 and 3.3.4). If S # () open, convez, f differentiable then

i) f(z) > f(zo) + Vf(xo)'(x —x0), Yz €S (> strictly)
ZZ) (Vf(l’g) — Vf(Il))T(.TQ — (L’l) Z O, \Vll’l, To € S

f conver &

Proof. Let us show i): Only if part. Let x,y € S. Since f is convex there is
0<A<1

+Vf(2)" (y — )

S V@) y—2) < fly) - flo),

IA

Iy — o LEF A =) = F@) — VI My = 2)
My~ ol

IA
=
N
|
=
=

where the first part — 0 when A — 0.
If part. Let 2/,¢/ € S,0 < A < 1land z = A2/’ +(1—\)y'. From the assumption
we get

f@) > fla)+ Vi) (@ —a),
> fla)+ V@) (y —=).

Multiplying the first by A and second by (1 — A) and summing
M @)+ 1 =Nf) 2 flo) + V@) '+ (1 =Ny = (' + (1= N)y)) = f(2).

n

Theorem (3.3.7). Let S # 0 open convex, [ : S — R twice differentiable on S.
Function f is convex if and only if Hessian is positive semidefinite at each point
n S.

16
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Theorem (3.3.8). Let S # 0 open convex, f : S +— R twice differentiable on S.
If Hessian is positive definite in S then f is strictly convex. If f is strictly convex
then Hessian is positive semidefinite in S. (p.s. if quadratic)

Note. Positive definite Hessian is sufficient for strictly convexity but not nec-
essary. f(x) = x* is strictly convex even though f”(0) =0 (p.s.d).
How to prove that a function is convex?

e use convex functions and convexity preserving operations
e convexity is one dimensional property

e [/ monotonic and non-decreasing

e [’ non-negative

o if f twice differentiable, V2f p.s.d. in int S

Supporting hyperplanes

Definition 3.11. Let S # () C R" and 2’ € S.
H is a supporting hyperplane of S at 2’ if either S C HY or S C H™. If also
S ¢ H then H is proper support.

Note. H supports S < p'z’ = inf,es p"x or pTa’ = sup,cqp’ 2.

Theorem (2.4.7). If S # 0 C R" convezr and x' € S then
Ip#0 st pl(x—2)<0,VredSs.

Proof. Let us separate the points in closure from the points in interior. When
xr € 0S = Jsequence yi, yx € ¢l S s.t. yr — x. Theorem 2.4.4 implies Yy, Ipx
st. ply, > pla, Vo € ¢l S. Since py is bounded, there is subsequence py, s.t.
Pr; — D, when i — oo, ||p|| = 1. This implies p”a’ > p’x, Vo € ¢l S. (= when
r=2a €clh) O

Corollary. S convex, 2’ ¢ int S = Ip # 0 s.t. pl(x —2') <0,Vz € cl S.
Proof. if z ¢ ¢l S Theorem 2.4.4 and if « € ¢l S Theorem 2.4.7.

Theorem (2.4.8, proper separation). If S1, Sy # 0 convex, S; NSy =0 then

Ip#0 s.t. inf pla > supple
zTESY TES2

17
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Proof. Let S = S; — S,, which is convex. S; NSy, =0 = 0 ¢ S. Let us
separate 0 and S by Theorem 2.4.7: Ip # 0s.t. pla >0, Ve € S < play > pla,,
V.Il S Sl, To € SQ. O

Theorem (2.4.10, strong separation). If Si,Sy closed convex, Sy bounded, Sy N
Sy =) then

Ip#0,e >0 s.t. inf pla > e+ supp’a.
zES) TES2

Proof. Let S =57 — S5, which is closed and convex. Use Theorem 2.4.4. O
Subgradients

Definition 3.12. A vector £ € R" is a subgradient of function f at 2’ € S if
flx)> f(@")+ €M (x —2'), Vo es.
¢ € Of(2') denotes the set of subgradients, i.e., the subdifferential, at x’.
It is shown in the exercises that the subdifferential is a convex and closed set.
Example. f(z) = |z|, 0f(0) ={& —1 <& < 1}. (unit square in R)

Note that f = max;—1._ fi(x) typically has solution at a corner.

77777

Theorem. If f convez, x¢ € intdom f then for all d € R"

f’(Io;d)Z sup §Td'
£€of(xo)

Theorem (3.2.5). If f: S +— R convex, 2’ € int S # (), then Of (z') # 0.
Proof. From Theorem 3.2.2; epi f is convex. From Theorem 2.4.7, 3(&y, u) #
(0,0), £ € R", p € R s.t.

Solx —a) + uly — f(a') <0, V(z,y) € epi f,

where y can be arbitrarily large, and thus p < 0. If 4 = 0 then & (x — 2) <0,
Ve e S. If 2/ €int S then I\ > 0s.t. 2/ + 2 € S, \l& < 0= & = 0. This
means that (&, x) = (0,0) which is a contradiction and it should be that u < 0.
Now, we can denote £ = —&y/p and we get

x—a)—y+ f(a') <0, V(z,y) €epi f.

So (—1,&) is a supporting hyperplane for epi f and the above equation means
¢ € df(x') when y = f(x). O
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Theorem (3.2.6). If f: S#0— R, df(x) #0, V& € int S then
fint S — R convez.

Proof. Let xi,25 € int S. Then y = Axy + (1 — Ny € int S, A € (0,1).
Especially,

fly) + Q= NE (@1 — 22),
Fly) + 2" (22 — 1),
(1 =X)f(z2) = f(y),

where the third equation is a sum of the first equation multiplied by A and the
second by (1 — A). O

=
&
+ IV IV

= A (1)

Theorem (3.3.2). if f: S # 0 +— R convex and differentiable at 2’ € int S then
Of (@) ={Vf()}.

Proof. From Theorem 3.2.5, 3¢ € 0f(z’). Let d # 0 € R™ and I\ > 0 s.t.
'+ Ad € S. From the definition of ¢ and differentiability

fl@'+Md) > f(a')+ 24,
fl@'+xd) = f(@) +AVf(")" + V|d|a(z; Ad),
=0 > ME—Vf@)Td— MN|d||a(z; \d).

Dividing by A and taking the limit A — 0, we get (£ —V f(2"))"d < 0. By choosing
d=¢—-Vf(2), weget £ =Vf(a). O

Theorem (Dubovitsky-Milyutin). If f(z) = max{fi(x),..., fm(x)} then
Of(z) = conv{J0fi(x), fi(z) = f(x)}, x € ) int dom f;.
Example. f = max{fi(z), fo(x)}, where fi(x), fo(x) conver and differentiable.

Example. Subdifferentials for norms: f(x) = ||zl = Yoy @il f(z) = |z|l2,
f@) =Nl = (L [aal?) V7 and f(z) = |2l = maxicicy |zi].

Example. No subgradients at zero even though convex function:

fo={ T iz

oo, x<0.

Theorem (3.4.3, corollary). Uncostrained optimization revisited:
z* global minimum < 0 € Of(z*).
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4 Optimality conditions

Theorem (3.4.2). min,es f(z), S convex, x* local minimum

i) if f convex then z* is a global minimum,

i) if f strictly convex then x* is the unique global optimum.

Proof. i) Assume z* is not a global minimum, which means that there is zo € S
s.t. f(zo) < f(x*). Since S is convex, we have f(Azg+ (1 —N)a*) < Af(zo) + (1 —
N f(a*) < Af(x*) 4+ (1 =N f(z*) = f(a*). Axg+ (1 = N)z* € N(z*) NS when A
small and thus it is a contradiction to local optimality.

ii) Assume Jdzg € S, zg # x* s.t. f(xg) = f(z*). Pick the middle point which
belongs to S. Due to strict convexity f((zo+ x*)/2) < (f(xo) + f(z*))/2 = f(z*),
which is a contradiction of optimality. U

Corollary. Let f be convex and diff. z* is global optimum iff V f(z*) = 0.

Corollary2. Let f twice differentiable and V2f(z) p.s.d Vo. z* is global
optimum iff V f(z*) = 0.

Theorem (4.1.5). Let [ be pseudoconvex. x* is global optimum iff
Vf(z*) =0.
Convex optimization

13

. in fact, the great watershed in optimization isn’t between linearity and non-
linearity, but convexity and nonconvexity.”
by R. Tyrell Rockafellar 1993

Theorem (3.4.3, necessary and sufficient). Let f : R" — R convex, S # () C R"
convex, min, _g f(x).

z* € S global optimum < &' (x —2*) >0, Vo € S, for some € € Of(z*).

Proof. If part. f(x) > f(z*) + & (x — x*) > f(z*), Vo € S, so z* optimum.
Only if part. Let us separate the following two sets:

S, = {(x—2%y),zeR"y> f(z) — f(z*) > 0} c R™™,
SZ = {(x—x*Jy%q;eS,ygo}CRnJrl’

where (z*,0) € Sy. 51, So are convex and S; NSy = (. From Thorem 2.4.8
3(&o, 1) # (0,0) and o € R s.t.

Gla—a)+py < oz eRy< f(z)— flzh),
x—a)+py > a,zeSy<o.
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Especially, (z*,0) € S; = a < 0 from the second equation. Also, Ve > 0, (z*¢) €
S1 and from the first equation pue < o < 0 = p < 0. When € is arbitrarily small
then o« > 0 and thus o = 0.

Assume g = 0. From the first equation &I (z — 2*) < 0, Vo € R™ and especially
with z = z* + & [|&]|? < 0 and thus & = 0 is a contradiction. So it must be that
i < 0 and we can define & = —&/p.

From the first equation: f(z) > f(z*) + &7 (x — 2*), Vo € R", i.e. £ € Of (z¥).
From the second equation: &f(x —2*) —y >0,z € S,y < 0. Wheny = 0
Mz —2*)>0,Vz e s, O

Corollary. With same assumptions and S open, then z* global optimum iff
0 € df(x*). Proof. Since S is open z = z* — X\ € S for some A > 0, V€ € Of (x*).
Thus, —\||¢]2 > 0= £ =0.

Corollary2. With same assumptions and f differentiable, then x* global op-
timum iff Vf(z*)T(z —2*) > 0,Vz € S.

Contour of f

y

Hyperplane V/(X)'(x—-X)=0

V(@) (x-%)20

Note. In general variational inequality problem:
find g s.t. f:S—R"”

f(zo)(x — 29) >0, Vz € S.

This problem class includes e.g. the complementary problem:
find g > 0 s.t.
Vf(l’o) Z 0, Vf(fl,’())TJ]() =0.

For example, finding a Nash equilibrium in game theory.
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The result allows a simple numerical method to find a minimum. At nonoptimal
point 2/ where V f(2/)T(x — 2’) < 0 for some z € S, it is easy to find an improving
solution. Direction d = x — 2’ can be used and the step size can be solved using
some one-dimensional line search method. The update can be written as z,,1 =
Tp+ M (z—1x3) € S, where )\ is the step size. It can be repeated until V f (z;,)? (2 —
x) > 0, Vo € S. This is called the method of feasible direction.

The result could also be derived the following way with more strict assumptions.

Theorem (Moreau-Rockafellar). If f, g are convex then Of + g C I(f + g) and
if int dom fdom g # 0 then O(f + g) C Of + 0g.

0, z€S8,

Definition 4.1. The indicator function of set S is xs = { o, x¢S

Definition 4.2. The extension of f: S+ R is f=f+xs f:R"— R, where
R=RUoc.

Let S # 0 convex, f convex. inf,cg f(x) & infyern f(2) + xs. x* is a global
minimum iff

0€d(f + xs)(z") = 0f (") + Ixs(z")

S0=¢+¢, cedf(x?), & € Oxs(a*

& —§ € Oxs(a7) & xs(x) = xs(a7) +
s (x—2")>0, Vo es.

)7
(=T (x — 2¥), Yz € R,

We need to assume either int dom f NS # () or dom fNint S # ().
Maximizing convex function

Theorem (3.4.6). max,cs f(z), f,S convez. If 2’ is a local maximum then
x—2)<0, Vo e, VEecaf(d).
Note that it is not a sufficient condition.

Example. f(z) =22, S={z,-1 <z <2}, 2* =2, f(z*) =4,
f'(2)(x —2) <0, Ve e S but also f'(0)(x —0)=0<0,Vres.

Theorem (3.4.7). If S is polyhedron then x* is an extreme point of S.
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Applications: Risk management in portfolio optimization

max TTZE

st.  1/227Qx <V,
Ar <b, ez =1, >0,

where rTx expected profit, 1/227Qx variance, e = (1,...,1). Covariance ma-

trix () is always symmetric positive semidefinite and thus it is a convex problem.
The variance, however, measures both downside and upside risks, when typically
downside risk should be considered.

where RM (z) is a risk measure, e.g., value at risk
VaR,(§) =min v, s.t. P(§v) > «,

where « is the confidence level (e.g. 95%). The measure tells that the loss is
at most VaR, with probability a. This measure is a popular measure in finance
industry, even though it is not convex nor coherent (sub-additive). These are
properties that good risk measures should satisfy. VaR has many local minima
and finding the best solution can be difficult.

The following measure is convex and coherent

CVaR(§) = E(§,§ = VaRa(S)).

See slides in the course website and Uryasev and Rockafellar. The constraints
can be linearized, which allows very large problems to be solved with fast and
stable algorithms. This shows that the modeling part may have great effect on
how difficult optimization problem needs to be solved.

Robust optimization
(slides from the course website)

min lor+d
s.t. Az < b,

where ¢, d, A, b are in uncertainty set U due to data uncertainty, which can be from
forecasts, prediction, measurement and implementation errors.
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5 Optimality for inequality constrained problem

min f(z), §={re X, g(r) <0,1<i<m},
S

g1
where g; : R" — R, X C R" open, g =

Im

Definition 5.1. d € R" is a descent direction of f at 2’ if 30 > 0 s.t. f(2' +
Ad) < f(z'), VA € (0,9). The cone of descent directions is d € F.

Definition 5.2. Let S C R", 2/ € ¢l S. The cone of feasible directions of S at
2 isD={deR",d#0,2/+ X d €S, VA€ (0,d), for some § > 0}.

Theorem (geometric optimality). z* is a local minimum iff there are no feasible
descent directions DN F = ().

Theorem (4.2.2). Let f diff. at x* € S. If x* is a local minimum then FyND = ().
Proof. Fy C F = FyN D = () by geometric optimality. O

Note. the condition is sufficient if f pseudoconvex and Vr € S N N (z*) =
r—z*eD.

Definition 5.3. The index set of active constraints at 2’ is denoted by I =
{i,9:(2") = 0} and the corresponding cone

Go = {d,Vgi(z")Td <0, Vi € I}.

Theorem (4.2.4). If g;, i ¢ I, continuous at ' and g;, i € I, differentiable at x’
then Go C D.

Proof. Since 2’ € X open, 36; > 0 st. 2/ + Md € X, VA € (0,0;). Since
gi(2") < 0,14 ¢ I, are continuous, g;(z' + Ad) < 0,7 ¢ I, VA € (0,92). If d € Gy
then Vg;(2')Td < 0, i € I. By Theorem 4.1.2 g;(z' + \d) < g;(z’) = 0, VA € (0, d3).
Thus, ' + Ad € S when A € (0, min(dy, 2, d3)). O

Note that Gy € D C Gy, where G = {d # 0,Vgi(2')Td < 0,3 € I}. Also,
D = Gy if g;, i € I, are strictly ps.convex. D = G if they are strictly ps.concave.

Theorem (4.2.5, road to FJ). Let x* € S, g;, i ¢ I, continuous in z*, g;, i € I,
diff. at x*. If x* is local minimum then Fy NGy = 0.

Proof. By Theorem 4.2.2 F; N D = () and by Theorem 4.2.4 we have Fy NGy C
KN D. 0

Note that the condition is sufficient if f ps.convex at x*, g;, ¢+ € I, strictly
ps.convex at N(z*) for some e > 0.
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Example (4.2.6).
min (27 — 3)% + (7 — 2)?
st. wl+ax5 <5,
T1+x2 <3, 11 >0, 19> 0.

= (2,1), 1 = {12}, Vf(r) = —(2.2), Vai(e*) = (4,2), Vga(a*) = (L 1).
As should be Fy N Gy = 0, which in general does not imply that Fo N D = 0. The
problem does not satisfy the sufficient conditions since go 1s not strictly ps. conver,
and thus it cannot be said that x* is a local optimum only by having Fy N Gy = (.
However, Fy NGy =0 = FoN D =0 and with this we can say that * is a local
minimum. The feasible set is convex and the objective is strictly convex, and thus
x* is actually a unique global minimum.

The idea is to use the separation theorems (Gordan and Motzkin) with the
geometric optimality to prove the algebraic conditions: the Fritz-John (FJ) and
finally the Karush-Kuhn-Tucker (KKT) conditions. FJ conditions are more general
but there are typically too many (nonoptimal) points that satisfy them. By making
more assumptions to the problem and its constraints with so called constraint
qualification (CQ) conditions, we can get rid of these nonoptimal points, and we
get the KKT from the FJ conditions.

Note that we cannot use the same technique to the equality constraints with
the following simple trick. We could define h(x) = 0 by h(z) < 0 and —h(xz) <0
but then the geometric optimality would not work since Gy = ) for all points.

Theorem (4.2.8, FJ necessary). If z* is a local minimum then 3 ug, u;, i € I, s.t.

(FJ1) upV f(z*) + >, uiVgi(z*) =0,
up,u; >0, 1 €1, u; #0 for somej=0o0rj=1i€l,
where the last one could be written as (ug,ur) # (0,0). If also g;, i & I differen-
tiable at x* then
(FJ2) ¢ wgi(x*) =0, Vi=1,...,m,
Ug, U > 07 (UO,'LL) 7& (076)

Proof. Since z* is a local minimum, Theorem 4.2.5 implies Fy N Gy = 0. Let
m’ < m be the number of indexes in I, A € R(™ V" with rows of V f(2*)” and
Vgi(z*)T, i € I. Geometric optimality now means that #d € R™ s.t. Ad < 0.
Theorem 2.4.9 (Gordan) implies that Ip > 0, p # 0, s.t. ATp =0, p € R™ 1,
Let us denote p = (ug, U1, ..., Uy ). Thus, we have (F'J1). The second equation
in (F'J2), the complementary slackness condition, means that u; = 0, i ¢ I, and
it gives (FJ2). O

Note that if ug = 0 then the conditions have no information about the objective.
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Example. min f(z) s.t. gi(z) < 0 and go(z) < 0. Now, any feasible x’' with
Vg (z') = =Vga(2') = Go =0 and 2’ is an FJ point.

There are too many FJ points and more assumptions are needed.

Theorem (4.2.13, KKT necessary). Assume Vg;(z*) are linearly independent. If

*

r* is a local minimum then Ju; € R, i € [ s.t.

Vf(x*) + Zie] u;Vgi(z*) = 0,
(KKT1) { u; >0, 1€ 1.

If also g;, i ¢ I differentiable at x* then

Vf(x*) +Vg(x*)Tu =0, (Lagrange optimality)
(KKT2) < wu;gi(x*) =0, Yi=1,...,m, (complementary slackness)
u > 0. (dual feasibility)
The scalars u; are called the Lagrange multipliers or dual variables.

Example.

min (2 — 3)? + (29 — 2)?
st. ai+a5 <5,
x1+ 212 <4, 11 >0, x3 > 0.
= (2,1), I = {1,2}. Vai(z*) = (4,2), Vga(z*) = (1,2). We can choose the

multipliers, e.g., ug =3 > 0, uy =1 >0, up =2 > 0 and ug = uqy = 0. These
satisfy both F.J and KKT conditions (Lagrange multipliers (1/3,2/3)).

Example.
min —I
s.t. zy — (1 —121)% <0,
) < 0.

¥ = (1,0), I = {1,2}. Vgi(2*) = (0,1), Vgo(2*) = (0,—1). The constraints
gradients are linearly dependent. We can choose ug = 0 and u; = ug arbitrarily so
that FJ conditions hold. Note that the optimum does not satisfy KKT conditions
and there are no Lagrange multipliers.

Sufficient conditions

Theorem (4.2.16, KKT sufficient). Assume f and g; are convex. If z* is a KKT
point then x* is a global minimum. If the convexities hold in N (x*) for some e > 0
then x* is a local minimum.
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Extension: Production planning in continuous time*

This example is dynamic optimization and it is from Luenberger: optimization by
vector space methods p.234. Let us examine a production planning problem where
the decision variable is the production rate r(t) = 2(t), t € (0,1) and z(¢) is the
amount of products manufactured. It is assumed that there are no inventory costs
and the demand rate d(t) = $(t) is known, where s(t) is the amount of sold units.
It is assumed that the demand must be met

0+ )y > / dly)dy < (1) > s().

This means that the products available at time 0 plus production should be greater
than demand at all time instances.

min  1/2 /1 r2(t)dt
st.  Z(t)=r(t), 2(t) > s(t), 2(0) >0,

<t<
For example, z(0) = 1/2, s(t) = { ?t 1(;2 <t ; <1/12 . The sales rate is constant

up to t = 1/2 and after that there is no sales. The space where the problem is
solved is chosen as X = Z = C [O 1] the space of continuous functions between 0
and 1, i.e., it is assumed that z(¢ )+ fo k)dE is continuous. Note that the
minimum may not be in this space 1f there could be jumps in the function. The
dual space of continuous functions is NBV [0, 1], normalized bounded variation
functions, which may have finite number of finite jumps. The Lagrange multiplier
will belong to this space.
The Lagrange function is defined

o(r,u) = 1/2/0 rQ(t)diH—/O (s(t) — 2(t))du(t),

where v € NBV [0, 1] and u is nondecreasing. We can simplify the equation by
Leibniz integration rule and integration by parts

[ [ rtisaaty = s [ rate) - [ o

Now, we get

S(ru) — 1/2/017“2(t)dt+/01(3(t) // y)du(du(t

= 12 [ s [ 60— o + [ o - u) /Olmm,
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since u(0) = 0 from normalization. The optimality conditions give

99

= e —w () 20, W,

(t) +
(O (@) +ur(t) — (1)) =0, Vi,

r
u*(t) varies only when z(t) = s(t),
u”(

)
t) is nondecreasing.

The economic interpretation of Lagrange multiplier is the same. Let J be the
total cost then

AJ = /01 As(t)du(t) = — /01 As(t)u(t)dt + As(t)u(l) — As(0)u(0).

Since As(0) =0, u(1) = 0, we have

_ / C Ad(t)u(t)t

i.e., —u(t) is the unit cost or the shadow price of extra demand. Now, this price
is zero when t > 1/2.

6 Equality and inequality constrained problem

For geometric optimality and feasible directions, we need more restrictive assump-
tions on the equality constraints and more mathematical machinery. The next
theorem gives the conditions that guarantee regularity in the constraints.

min  f(x)
st. gx)<0eR™
h(r) =0 ¢ R.

Definition 6.1. Hy = {d, Vhy(z)Td=0, i=1,...,1}.

Theorem (implicit function). If i) f(z1,79) =0, 71 € R", 25 € R,
it) f continuous,

iii) Va, [ continuous,

iv) YV, f (21, x2) nonsingular, i.e.

Ofi(z1,22) Ofi(z1,22)
oz e ox;
) #0,
Ofi(x1,22) 0fi(x1,22)
ox1 Tt ox;
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then
39 : Ne(w1) = R, g(21) = 22 and f(x1, g(21)) = 0.

If 3V,, f then g is differentiable. If p > 0, f p-times continuously differentiable
then g is also p-times continuously differentiable and

V(1) = =Vaf (1, 9(20))(Vao f (21, 9(21))) 7, Va1 € Ne(a).

Theorem (geometric optimality). Let X € R™ open, f,g;,h; : R*" = R, 1 <
i <m, 1 <j<I fig, 1€l diff atz*, g;, 1 ¢ I, contmuous at x*, h;
continuously differentiable at N(z*) for some € > 0. Assume that Vh;(z*) are
linearly independent. If x* is a local minimum then Fy N Gy N Hy = ().

Proof. Assume Jy € Fy N Gy N Hy. Let us denote the Jacobian by Vh(x) =
Vhl (l’)T

: . Since y € Hy, Vh(z*)y = 0. Let us check the conditions of implicit
Vhl(QT)T

function theorem: i) h(xz*) = 0, ii) h(z) is continuous, iii) VA(z) is continuous and

iv) Vh(z) is nonsingular since Vh;(x) are linearly independent. Thus, we get 3z :

[—a, a] — R™ which is continuously differentiable s.t. z(0) = z*, £(0) = 2/(0) = y

and h;(z(t)) = 0, V¢t € [—a,a]. This means that we can move along h(z) = 0 at

least for small distance. The feasibility and descent in objective goes as earlier.

Feasibility: i € I: Lg,(x(t)) = Vgi(z(t))Ta(t). at t =0 Vg;(*)Ty < 0 (y € Go)

i ¢ I from continuity g;(z(t)) <0, t € (0,t;)

X open: z(t) € X, t € (0,t2)

x(t) feasible when ¢ € (0,t') where ¢’ = min(ty, {3, a).

Decrease: Vf(z*)Ty <0 (y € Fy) = f(z(t)) < f(z*), Vt € (0,t3).

This contradicts the local optimality and we get the result. U

Theorem (4.3.2, FJ necessary). g;, i € I continuous at x*, f,g;, i € I differen-
tiable at x*, h; continuously differentiable at N.(x*) for some e > 0. If z* is a
local minimum then Jug,w;, 1 € I and vy, 1 < j <1 s.t.

UV (@) + Vi uiV0i(a™) + X5y v;Vhy(a®) =0,
(FJ1) { ug, u; > 0, vzef, (uo, ur,v) # ( 0,0,0).

If also g;, i ¢ I differentiable at x* then
upV f(z*) + u'Vg(a*) + v Vh(z*) = 0,

(FJ2) < wugi(x*) =0, Yi=1,...,m,
ug,u > 0, (ug,u,v) # (0,0,0).
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Proof. Assume Vh;(z*) are linearly dependent then Jv; s.t. Zézl v;Vhi(z*) =0
and some v; # 0. Choose ug =u; =0, 7 € I, and we get (FJ1).
Assume Vh;(z*) are linearly independent then

V f(x* T .
e Vi ()"

denote A; € R +hn — ) and Ay = : . By Theorem
Vg (a%)7 Vi@t

431, 3d € R™ sit. Ayd < 0, Asd = 0. By Motzkin’s theorem, Jp; € R™ 1,
pp€RLpy >0, pp #0s.t. Al'py + Alpy = 0, denote p; = (ug vy ... u;)? and
pa = v and we have (FJ1). O

Theorem (4.3.7, KKT necessary). Assume Vg;(x*), i € I and Vh;(z*), 1 <j <l
are linearly independent. If * is a local minimum then Ju;, i € I, v;, 1 < j <
S.1.

Vf(x*) +ufVg(z*) + v Vh(z*) =0,
(KKT1) { u; >0, Vi el

If also g;, i ¢ I differentiable at x* then

Vf(x*) +ul'Vg(x*) +vTVh(z*) =0,
(KKT2) < w;g;(z*) =0, Vi=1,...,m,
u > 0.
Proof. From FJ, Jug, u}, v, # (0,0,0). If ug = 0 then (u},v]) # (0,0) and this
contradicts the assumption of linear independence. Thus, ug > 0 and we can
denote u; = u}/ug and v; = v} /ug, and we have (KKT1). O
Note that there are other constraint qualification (CQ) or regularity conditions
beside linear independence that guarantee that uy > 0.

Example.
min  z] + 23
st. a3+ a5 <5,
Ty + 2wy =4, 11 >0, 79 > 0.

z* = (4/5,8/5), I = 0. Vf(z*) = (8/5,16/5), Vh(z*) = (1,2). The multiplier
v = —8/5 solves the KKT conditions.

Sufficient conditions

Theorem (4.3.8, KKT sufficient). Assume f, g; convex, h;, j € {j,v; > 0} convexz,
h;, 5 € {j,v; <0} concave. If x* is a KKT point then x* is a global minimum. If
the convezities hold in N (x*) for some € > 0 then x* is a local minimum.
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Proof. Shown in exercises by relating KKT to the variational inequality of the
convex problem. KKT equals V f(z)"(xz — z*) > 0, for all feasible x. O

Note that the requirement for the convexity/concavity of h; is not known before
the KK'T conditions are solved. One way to get around this is to assume that
h(z) = Az + b, i.e., the equality constraints are affine.

Definition 6.2. The Lagrange function is ¢(z,u,v) = f(z)+ug(x) +vTh(z).
The restricted Lagrangian is L(x) = ¢(x,u*,v*), where (u*,v*) are the Lagrange
multipliers that solve the KK'T conditions (with x*).

Theorem (4.4.1, second order sufficient). i) If V2L(z) is p.s.d. Vx € S then KKT
x* is a global minimum.

i) If V2L(x) p.s.d. Yx € SN N.(x*) for some ¢ > 0 then KKT z* is a local
minimum.

i) If V2L(x*) p.d. then KKT x* is a unique local minimum.

Proof. i) KKT = VL(z*) =0. V2L(z) p.s.d. then L(x) convex in S = f(z*) =
L(z*) < L(z) < f(z),Vx € S.

iii) VL(2*) = 0 and p.d. = strict minimum for L(z) = f(z*) = L(z*) < L(x) =
f(z), Vo # 2" € {SN N(z*)}. O

Definition 6.3. Let I = {i, gi(a*) =0}, [T ={i € [,u; > 0} and I° = {i €
I,uf =0},

Theorem (4.4.2, second order sufficient). Let C' = {d # 0 : Vg;(z*)Td = 0, for

i€ IT, Vg (z)Td < 0, fori € I°, and Vhi(z*)'d = 0, fori = 1,...,1}. If
d'V2L(z*)d > 0 for all d € C, then x* is a strict local minimum.

Theorem (4.4.3, second order necessary). Assume CQ. If x* is a local minimum,
then x* is a KKT point and d"V*L(x*)d > 0 for all d € C.

Example (4.4.4).

min (2, — 1)? + 23
s.t. 2kx, — x% <0,

where k > 0. The objective is conver but the feasible set is not convexr. The
unconstrained minimum s not feasible, so the constraint must be binding. There
are three KK'T points depending on k: z* = (0,0),u' = 1/k for any k > 0, and for
O0<k<l,2?=(1—k/2k(l—Fk)),u>=1and 2> = (1—k,—/2k(1 — k)),u? =
1. The constraint is not quasiconvex, so we cannot use the necessary conditions

4.2.16.
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X2
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Optimal solutions
for k =k;

N

—> x]
(1, 0)

Optimal solutions
fork =k

L(z) = (z; — 1)* + 23 + u(2kxy — 23) and V2L(z) = [ g 2(10_ ) } C =

{d # 0 : kd; = zods}. Let us examine the necessary condition 4.4.3 first. For x!,
we have d'V L(z)d = 2d? +2(1 — 1/k)d% and d € C means d; = 0. d'VL(z)d >0
holds when £ > 1 but is violated when 0 < £ < 1. We can conclude by 4.4.3 that
z! is not a local minimum when 0 < k < 1. V2L(x) are positive semidefinite at z?
and 23, and satisfy 2nd order necessary condition.

Now, we examine the sufficient condition 4.4.2. V2L(z') is p.d. when k > 1, so
x! is then strict local minimum. For k = 1, we don’t get this since d! VL(z')d =
2d2 = 0. However, V2L(z?) is not positive definite but C' = {d # 0 : kd; =
V2k(1 — k)dy} and d"V L(2*)d = 2d3 > 0 for any d € C. Thus, z? is strict local
minimum for 0 < £ < 1 by 4.4.2. So, 4.4.1 didn’t work and 4.4.2 was needed.
Similarly, for z3.

0 B

Definition 6.4. The bordered Hessian is HL(x) = { BT V2L(z)

} , where B
contains the constraints’ gradients.

Let us examine a two-dimensional problem with one equality constraint. We

0 g gy
have HL(x) = | g» Lauz Lauy
Gy Lys Ly
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Theorem (second order sufficient). If * is a KKT point and det(HL(z*)) < 0,
then x* is a local minimum.

Sensitivity analysis

Theorem (Bertsekas, Nonlinear Prog.). Consider the family of problems
min f(x)

h(zx)=t

parameterized byt € R™. Assume that fort = 0, this problem has a local minimum
x*, which is reqular (satisfies some CQ) and together with its unique Lagrange mul-
tiplier v* satisfies the sufficient second order KK'T conditions for local minimum.
Then there exists an open sphere S centered at t = 0 such that for every
t €S, there is an x(t) and a v(t), which are a local minimum-Lagrange multiplier
pair of the parameterized problem. Furthermore, x(t) and v(t) are continuously
differentiable within S and we have x(0) = x*, v(0) = v*. In addition,

Vp(t) = —ov(t), Vte S,
where p(t) is the primal function p(t) = f(x(t)).
Proof. Apply the implicit function theorem to the system
Vf(z)+ Vh(z)v =0, h(z)=

Let us check the conditions: i) for ¢ = 0 the system has the solution (z*,v*),
ii-iii) first and second derivatives need to be continuous for f(x) and h(x), iv) the

Jacobian
V2 f(x*) + vIV2h(z*) Vh(z*)
J = VA N
Vh(z*) 0

is nonsingular (Vh(z)Vh(z)T nonsingular since the constraints are linearly inde-
pendent). Thus, for all ¢ € S for some open sphere S centered at ¢t = 0, there
exist z(t) and v(¢) such that z(0) = z*, v(0) = v*, the functions x(¢) and v(t) are
continuously differentiable, and

Vf(z(t) + Vh(z(t))v(t) =0, h(z(t) =w.

For ¢ close to t = 0, using sufficiency conditions, x(t) and v(¢) are a local minimum-
Lagrange multiplier pair for the parameterized problem.

To derive Vp(t), we i) differentiate h(z(t)) = t = Va(t)Vh(x(t)
ii) differentiate the system = Vx(t)V f(z(t)) + Va(t)Vh(x(t))v(t) =

have

) = I, and
0. Now, we

Vp(t) = Vif(z(t)) =V
= —W‘(t)V (z ())v()
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O

Summary

The optimality conditions were derived using the geometric optimality and suitable
separation theorems. In inequality constrained problem, the geometric optimality
was [y NGy = (. The Gordan theorem was applied to this condition, and it
gave the more general FJ conditions. There are some special cases when the
optimum satisfies FJ but not KKT conditions. By assuming the linear independece
constraint qualification condition, in F'J conditions we can guarantee that ug > 0
and we get the KKT conditions.

In equality constrained problem, we need to assume linear independence for
h;(z) even in the geometric optimality Fy N Gy N Hy = (). The suitable separation
theorem is Motzkin and the theory goes like in the inequality constrained problem.

Note that there are no convexity assumptions in the necessary conditions. They
appear only in the sufficient conditions. When the problem is convex and the
constraint qualification holds, the KKT conditions turn out to be the same as
the optimality conditions for the convex problem (variational inequality). Note
also that the complementary slackness condition u;g;(z*) = 0 does not mean that
when g;(z*) = 0 = u; > 0. When both uw; = g;(z*) = 0 it is said the the
constraint is weakly active, and it means that removing the constraint does not
alter the minimum. The constraint just happens to be active without restricting
the optimal value.

Non-differentiable convex problem*

inf  f(x)

s.t. x €S,
g(z) <0,
Ar —b=0,

where f,g;, 1 <i <m:R" +— (—00,00| convex, S C R™ convex, b € RP. Also,
define L = {z, Ax = b}.

Theorem (convex KKT, Eric Balder). Let =* be a feasible point of the problem.
i) * is a global minimum if Ju € R, v € R? and n € R™ s.1.

wigi(x*) =0, i=1,...,m, (complementary slackness)
0€df(z*)+ Z w;0g;(x*) + ATv +n, (normal Lagrange inclusion)
el (z*)

n*(x —x*) <0, VaeS. (obtuse angle property)
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i) If o is a global minimum and if x* € int dom f N Nicreryint dom g; and
int SNL # 0 (regularity condition), then Jug € {0,1}, u € R, (ug,u) # (0,0),
veRP, neR" st CS, obtuse angle and

0 € ugdf(z*) + Z u;0g;(x*) + ATv +n. (Lagrange inclusion)

1€l(z*)
When ug = 1 it is said that the normal Lagrange inclusion occurs and the
abnormal when uy = 0. The abnormal case is impossible with the regularity

or constraint qualification conditions, like when A is of rank p and the Slater’s
condition holds: 32’ € SN L s.t. g;(2') <0, fori=1,...,m.

7 Duality

There are many kinds of duality in mathematics; see polyhedral duality, where
the role of vertices and faces is interchanged. Even in optimization, some classes
of problems have much stronger duality theorems than others. A dual problem
is another problem formulated with the data of the original problem that tells
something about the original problem. In nonlinear optimization the dual gives
lower (or upper) bounds for the original problem. This can be used in evaluation
of how far the current solution is from the optimum. This will be especially useful
in integer optimization, and this is demonstrated in the exercises.

For convex and linear problems, the results are much stronger. The dual may be
faster to solve (or not, see Boyd: convex optimization), it may give some properties
of optimal solution, or the dual can be used in proving the existence of a solution.
For example, duality is used in solving large LP problems.

The primal problem P is

min f(x) min sup ¢z, u,v) = L,(x),
zeX u>0,v
st. g(x) <0, &
h(z) =0,
r e X,

where ¢(x,u,v) = f(x) +ulg(x) + v h(z) is the Lagrange function,

| f(z), x feasible,
Ly(x) _{ 00, otherwise.

The Lagrange dual problem D is

max inf ¢(z, u,v) = 0(u, v),
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where (u,v) is the dual function. We can see that the primal and dual are taking
the minimization over z and maximization over (u,v) in different order over the
Lagrange function ¢(x,u,v).

Geometric interpretation

Let us study a problem with one inequality constraint g(x) < 0. We can
examine the points € X in two-dimensional set G = {(y, z) = (g(x), f(x)),x €
X}. When we have u > 0 then 0(u) = inf,cx f(z) + ug(z) = minz + uy, (y,z) €
G, and it is a line. The minimization moves this line as much down until it
supports G from below. #(u) is the intersection point with z axis. Now, we have
the interpretation of the dual problem: find a slope u > 0 s.t. the supporting
hyperplane of G intersects z axis as high as possible. (draw a figure)

z

et x), fixi]

Optimal primal objective
Optimal dual objective

v(y)

Example. Linear programming (LP) problem

min x
s.t Axr = b,
x>0,

and we choose X = {x,x > 0}. The dual function is

v’b, ¢ — ATv >0,

zeX zeX —00, otherwise.

9(’1}) = inf CT$+UT(b—Ax) — inf{(C—ATU)T$}+UTb _ {
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The dual is another LP problem:

max L
s.t. ATy <e.

Also, the dual of QP problem is another QP (exercises) and there are other
duals beside Lagrange dual problem. For example, Fenchel (defined soon) and
Wolfe dual max ¢(z,u,v) s.t. Vyd(z,u,v) =0, u > 0.

Duality theorems

Theorem (6.2.1, weak duality). If x is feasible for P and (u,v) feasible for D
then f(x) > 0(u,v).

Proof.
0(u,0) = inf f(y) +u'gly) + 0 hly) < flo) +u'g(2) + v"h(z) < f(2).

4

The dual function gives lower bound estimates for the primal problem. This
also raises a question whether f(z) = 6(u,v) for some (x,u,v). We also have the
following corollaries:

i) If inf f(x) s.t. z feasible is strictly larger than sup 6(u,v) s.t. u > 0, then it is
said that the problem has a duality gap, which is the difference of these two values.
ii) If we find feasible (z/,u/,v") s.t. f(z') = 0(u',v’) then 2’ solves p and (v, ")
solves D.

iii) If sup,>g, 0(u, v) = co then P does not have a feasible point.

When is the duality gap zero?

Theorem (6.2.4, strong duality). If X open, convez, f,g;, i € I convex, h(x) =
Az — b (affine), Slater’s CQ holds: 3z’ € X s.t. g(z') < 0, h(2') = 0 and 2’
regular, i.e., 0 € int h(X) = int{h(z),r € X}, then

inf{f(z),z € X, g(x) <0,h(z) =0} = sup{f(u,v),u > 0}.

If inf is finite then Ju > 0,v s.t. sup is achieved.
If inf is achieved at xo with Lagrange multipliers (ug,vo) then ul g(xo) = 0.

Proof. Proofs by separation theorems. l

There is no duality gap for convex problems.
Definition 7.1. (zg, ug, vo) is a saddle point of ¢ if zo € X, ug > 0 and

(xo,u,v) < @(xg, ug, v0) < P, u9,v9), Vo € X,V(u,v),u > 0.
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See zero-sum games for an application of saddle point results.

Theorem (6.2.5). (xg, ug, vo) s a saddle point for ¢ < xy solves P, (ug,vo) solves
D and there is no duality gap <

i) ¢(o, Uo,?io) = Milgex ¢(, uo, vo),
i) g(xo) <0, h(zo) =0,
i) ud g(zo) = 0.

Corollary. With the assumptions of strong duality, there is no duality gap =
xg solves P= Jug > 0,v s.t. (xg,up, vo) is a saddle point for ¢.

Theorem (6.2.6, KKT and saddle). Ifzg is a KKT point with Lagrange multipliers
(uo,v0), f,9i, @ € I convex, h; affine for v; # 0, then (xo, ug,vo) is a saddle point
for ¢. Conversely, if (xg,up,vo) is a saddle point of ¢ with xy € int X, uy > 0,
then zo is a KKT point with Lagrange multipliers (ug, v).

Properties of dual function

Theorem (6.3.1). Define § = (g,h) and w = (u,v). If X # 0 compact, f,[
continuous then

O(w) = m)f(f(x) +w' B(x), is concave in w.
s

Since 6 is concave, from Theorem 3.4.2 we have that all local optimum are also
global optimum.

Theorem (6.3.4). If also
7o € C(wy) = {y € argmin f(z) + wy ()},

then B(xg) € 00(wy). If C(wo) = {0} is a singleton then VO(wy) = [(z0).

Thus, the primal constraints §(xg) give a subgradient to the dual function,
which could be used in generating ascent directions in numerical methods. In
general, (Ruszezynski: Nonlinear optimization, p. 165)

89('[[}0) = Conv(um()GC’(wo)ﬁ(xO))a
where C'(wg) = {x € X, ¢(x0, wo) = 0(wo)}-

Theorem (6.3.11). The steepest ascent direction of 0 is & with the smallest Fu-
clidian norm:

d:{ 67 52(?7
¢/l & #0.
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Interpretations of Lagrange multipliers

The Lagrange multipliers have different interpretations in applications. In elec-
tric circuits, the decision variables can be currents in primal problem and the dual
variables can then be voltages (exercises). In economics, if the primal variables are
levels of consumption, then the dual variables can be prices of different products
or services. In mechanics of materials, the primal variables can be stress levels
(strain) of some elements (in bridges or buildings) and the dual variables are dis-
placement of the element. The following gives an interpretation in mechanical
spring system.

Example. Let us examine three spring system with two blocks between two walls.
The spring constants are ky, ko, ks > 0 and the distance between the walls is [. The
blocks have width w and they are centered at locations x1 and xo. The system will
be in equilibrium at point where the potential energy is at minimum:

min J = 1/2ky2? + 1/2ky (20 — 21)* + 1/2ks(l — ),

s.t. the blocks and walls are rigid: w/2—x; <0, w+x1—x9 <0, W/2—1+x9 < 0.

So we have a QP problem with convex objective (check!) and linear constraints.
A suitable CQ condition in this case is the Slater’s CQ) which says that 2w < I,
which means that the blocks must fit between the walls. Now, the sufficient KKT
conditions are

I U R Rl T B B R

u(w/2 —x1) =0, ug(w — 2+ 1) =0, ug(w/2 — 1+ x2) =0, and uy,us,uz > 0.
The interpretation of Lagrange optimality is that the forces are in equilibrium:

k’ll'l — kQ(ZEQ — l’l) — U + Uy = 0.

The complementary slackness conditions mean that the contact forces are active
only when the blocks touch each other or the walls. The dual feasibility means that
the contact forces are away from the contact surface.

We can see that the minimum potential solution equals the force balance equa-
tions (KKT), and this result has been used in the basic physics courses. We can
now see the meaning of convexity for getting this result.

Fenchel conjugate duality

Conjugate function is the basic tool in convex analysis.
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Definition 7.2. A conjugate function is

f*(u) = sup 2¥u — f(z), u € R"™
zeR™

b, u=a,
00, U F# a.

Example. if f(z) = ax — b then f*(u) = {

5@ = b then o) = {2 il S

if f(x) = (c/2)2? then f*(u) = u?/(2c).

Let us derive the dual for the following problem
min_ fi(z) — fo(x),

rzeX1NXo

max - fy(u) — f7(u),

ueN1 NN

where 0y = {u, ff(u) < oo} and Qy = {u, f5(u) > —oc}. This can be shown for
example using Lagrange duality:

Izﬂzigfl(y) — f2(2),

and the Lagrange dual function of this problem is

Ou) = inf  fily) = fo(2) + (2 — )",
yinX1,ze Xo
o T . T
= Z1€n)£22 u— fo(2) +y1€n)£l fily) =y u,

= Ja(u) = fi(u).

This is the classical interpretation of duality. (draw a figure)

8 Numerical methods for unconstrained prob-
lems

Optimization is one of the important fields in numerical computation, beside solv-
ing differential equations and linear systems. We can see that these fields are not
independent and they share the algorithms and the ideas: solving (large) linear
optimization problems equals to solving general linear equations (Ax = b), solving
nonlinear unconstrained problems equals to solving a set of nonlinear equations
(f(z) = 0), and solving dynamic optimization problems equals solving (partial)
differential equations.
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Next, we examine how to solve different types of optimization problems. What
methods work in certain class of problems and why? Different approaches are pre-
sented for unconstrained and constrained, one-dimensional and multidimensional
problems. The focus is on methods for finding local minimum, and the global
methods or heuristics (simulated annealing, genetic algorithms etc.) are not pre-
sented on this course. Numerical methods are iterative algorithms that try to solve
the problem using finite number of operations. The algorithms produce a sequence
{z}, where the next solution is given by some rule and the information up to that
point:

Tip1 = Xt+1(]0, L, ... 7]t)7

where I; is the information from iteration t.

Definition 8.1. Algorithmic map A : X — 2% maps each point to a set of
possible next iterates: xpi1 € A(xy).

A final iterate z* is called solution and €2 is the solution set. Solution is
acceptable if

e z* is local optimum or FJ/KKT point
e f(z*) < b acceptable value

o f(2*) < LB+ ¢, LB some lower bound
o f(z*) <OPT +¢

Closed maps

Definition 8.2. A map A is closed at v € X if v, € X, {xx} — = and y;, €
A(zg), {yrx} — y implies that y € A(x). The map A is closed on Z C X if it is
closed at each point in Z.

Definition 8.3. A function a : X — R is a descent function if a(y) < a(x)
when x ¢ § is not a solution and y € A(x).

Theorem (7.2.3). If map A is closed over the complement of Q2 and « is continuous
descent function, then either the algorithm stops in a finite number of steps or it
generates an infinite sequence {xy} such that

e cuvery convergent subsequence of {xx} has a limit in Q

o a(xy) = a(z) for some x € Q
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Note that the sequence must converge to the single value if €2 is a singleton.
Stopping condition

Typical stopping conditions are
o [|mpyn —anl <e
o ||lzpr — zill/llzill < e
o a(zy) —axpyin) <€
o (a(zr) — alzren))/|o(zr)| <€
Criteria to compare the methods

We can classify and compare the methods using the following criteria:

1. The required information:
— The zero-order methods use only the values of objective and constraint
functions.
— The first-order use also gradients of objective and constraints.
— The second-order use also the Hessians.

2. The convergence properties:
Let {sr} be a sequence and s — ¢, when k — oc.

Definition 8.4. The order of convergence is

|3k+1 - 3/|

P < oo},

p =sup{q € R", lim sup
k—o00

where limy_, oo SUp Sg = limg_, o SUp{s,,, m > k}.
Definition 8.5. The convergence ratio is

’Sk—H - 3/|

= lim su .
5 p 5r — 57

sublinear convergence: p=1,3 =1,
— linear convergence: p=1,5 < 1,
— superlinear convergence: p > 1,5=0, (p=1and =0, or p > 1)

— quadratic convergence: p = 2,3 < oo.
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Example. Series sy = 1/k converges sublinearly as f = limk/k+ 1 = 1.
Series s, = 1/k* converges at least superlinearly since
Sk+1 kk kk

1
Si (k+ DA = kRl | —0

The higher convergence order and the smaller ratio is faster. Convergence is
rather theoretical notion and it may be difficult to determine exactly for an
algorithm.

3. The computational complexity:
The required computational effort can be measured by the number of basic
operations, like additions and multiplications.

Definition 8.6. A function f(z) is O(g(z)) iff e, ng s.t. |f(x)] < c|g(z)],

when T > nyg.

4. The need for memory: does it need vectors or matrices to be stored?

5. The generality: does it solve all problems in certain class or just some specific
cases?

6. Stability: how do the rounding errors during computation and inaccuracies
in the original data affect the algorithm?

Line search methods

Difficult optimization problems are typically reduced to a set of easier problems.
Constrained problems can be converted to a series of unconstrained problems with
penalty and barrier functions. Multidimensional unconstrained problems can be
solved by line search methods that generate a series of one-dimensional problems.
Thus, solving line search problems efficiently is important for large class of opti-
mization problems.

We examine a problem min [(s) = f(zg + sdy), where s is the parameter to be
optimized, which can be from some multidimensional minimization problem with
objective f(z), where xy is the current iteration, dj the descent (search) direction
and s the step length. Typically, the step length is restricted to s € S = {s,s > 0}
or s € [a,b] that is called the interval of uncertainty where the optimum lies.

Zero-order methods

Assume that I(s) is strictly quasiconvex in s. The minimum can then be found
with the following result. Let A < p then

i) 1A) > 1(p) = Uz)

> U(p), V2 <A,
i) I <l(p) = I(z)> z

L),
1), V2 > A,

43



MS-E2139 Nonlinear Programming Kimmo Berg

This means that in case i) the minimum cannot be between a < z < X and in case
ii) between p < z < b, and the interval of uncertainty can be updated. This gives
the following methods:

e Uniform search: choose points uniformly between [a, b].

e Dichotomous search: choose § > 0, pick A = (a+b)/2—0, p)(a+0b)/2+0,
evaluate [(\), () and update.

e Golden section: choose A =a+ (1 —a)(b—a), p =a+ alb—a), a =
(V5 —1)/2 ~ 0.618.

e Fibonacci: Fy=F, =1, F;;1 = F;+F,_1,choose A = a+F,,_y_1/F,_41(b—
a), p=a+ F_/Fy_ri1(b—a).

e Quadratic fit: Using three points s; < so < s3, I(s1) > I(s2), I(s3) > I(s2),
fit a second order polynomial (parable) p(s) s.t. p(s;) = I(s;) and find the
minimum s* for the parable. Evaluate {(s*), update and repeat.

Comparison: dichotomous has linear convergence with § =~ \/1/_2 ~ 0.71,
golden section and Fibonacci linear with f =~ 0.618 and quadratic fit superlinear
with p ~ 1.3 (under certain assumptions).

First-order methods

Assume that [(s) is differentiable, ps.convex, i.e. I'(sg) = 0 = 5o minimum.

e Bisection (Bolzano’s method): Choose s = (a + b)/2. If I'(sg) < 0 then
s* > sy, or if I'(sg) > 0 then s* < sy, otherwise s = s*.

e Cubic fit: Calculate and fit according to p(a) = l(a), p'(a) = l'(a), p(b) =
[(b), p'(b) = U'(b). Find the minimum for the third-degree polynomial p(s),
find the minimum s* for p(s), calculate I'(s*) and update.

Second-order methods
The Newton’s method solves the quadratic approximation
min 1(sg) + '(s5)(s — sx) + 1/20" (s5) (s — s1)%,

which gives an update
Sk+1 = Sk — l/(Sk)/l//(Sk).

This can also be seen as solving the necessary condition g(s) = 1'(s) = 0 by using
the linear approximation g(s) ~ g(sx) + ¢'(sx)(s — sx) = 0.
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Comparison: Bisection method converges linearly with 5 = 0.5, cubic poly-
nomial with quadratic convergence p = 2 (under certain assumptions) and Newton
by quadratic convergence p = 2 (sufficiently close to the optimum).

Inexact line search

When the line search is solved as a subproblem of some larger problem, it is not
necessary to find the minimum exactly but rather get fast some good enough
solution. In terms of total complexity, it is better to use less computation and
only few steps in each line search. The inexact line search methods define the
sufficient conditions that the good enough solutions satisfy.

Definition 8.7. Armijo’s rule: The step length s is accepted and it descends
enough if (draw a figure)

flxy + sdy) < f(ag) + esVf(xp) dy, €€ (0,1),

i.e., 1(s) < 1(0)+esl’(0). Typically, € is small ((107°,1071),0.2,10~* depending on
the source). Note that the course book adds an additional requirement to prevent
small step sizes: accept s if

l(as) > 1(0) + aesl'(0), a > 1,
for example o = 2.

Definition 8.8. Goldstein rule: accept s if
1(0) + (1 —¢)sl'(0) < I(s) <1(0) + esl'(0), c€(0,1/2).
Note that this equals the Armijo’s rule when I(s) is convex.

Definition 8.9. Wolfe’s rule: accept s if

I(s) 1(0) + esl'(0), (Armijo)
al'(0), 0<e<o<l
|

l'(s
! a|l'(0)]. (strong Wolfe)

(s)

Multidimensional search

IV IV IA

Two approaches are examined in solving multidimensional problems: line search
methods (gradient, Newton and their modification) and trust-region methods.
Typically, the line search methods generate a direction and do a search in this
direction. The methods differ in how the search direction is chosen. Trust-region
methods are also called as restricted step methods, where the objective is approxi-
mated often with a quadratic function that is minimized and the new point should
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be inside the current trust region. The region is expanded depending on how well
the quadratic function approximates the objective.
Zero-order methods

e Cyclic coordinate method: use coordinate axes as search directions and
search them in order. The method does not work well if the function is
sideways to the coordinate axes.

e Hooke-Jeeves: add an acceleration step to the previous method

e Nelder-Meade Simplex: update a simplex based on the function values
at the corners (amoeba search)

e Finite difference methods: use higher order methods by using difference
approximations

X]

0

Figure 8.7 Cyclic coordinate method.
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X]

40

25

0

0

Figure 8.10 Method of Hooke and Jeeves using line searches. Method of
Hooke and Jeeves with Discrete Steps

Gradient method

The gradient method is a first-order method that was originally proposed by
Cauchy in 1847. When a function is differentiable then a direction d is a descent
direction when

f(x;d) = lim

s—0

= Vf(z)7d < 0.

flz+ sd) — f(x)

The gradient method uses the negative gradient as an update direction
r—x, ==V [f(xg).
Theorem (8.6.1). If Vf(z) # 0 then the steepest descent direction is
—Vf(x)

in flad) = d = 15T

Proof.
fllayd) =V f(@)'d >~V (@)lld] =~V f(@)],
where the first is by Cauchy-Bunyakovsky-Schwarz inequality and the second hold

as equality only if d = d = ”—VVfJE ;x)l)l -
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The steepest descent method does a line search

Tpe1 = T — SV f(2k),

where s, € argmingso f(xx + sV f(x)) or some inexact line search, or simply
sp = 1 like in the gradient method. The stopping condition is for example when
|V f(x)|| < e, for some € > 0.

Properties:

e with exact line search, V f(z; + 1)TV f(x;) = 0, and it means zigzagging
e casy to program and reliable

e affected by change of variables ©/ = Mx

e example of convex problem where the method does not converge

e linear convergence that depends on condition number k = A, /Ay, where A,

is the largest and \; the smallest eigenvalue. (:—;})2 <converg. ratio< 1

e the eigenvectors, eigenvalues, and the condition number tells how the objec-
tive function is tilted and scaled in different directions

Theorem. When steepest descent method (exact line search) is applied to
f(z) =1/227Qx — b"x,
Q) symmetric positive definite, then the error norm
1/2||lx — 2™ = f(x) — f(z"),
satisfies

Ao — M7 K —117
%112 n 1 *(12 * (12
o =2 < |25 o= ol = |5 | o= o'l

where 0 < \y < ... <\, are the eigenvalues of Q.

Definition 8.10. The weighted norm ||z||p = (27 Px)Y/? = |P'%x||y, where P
symm. pos.def.

k—1

7= but in general larger than 2.

For quadratic function, the ratio is r =
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Figure 8.16 Method of steepest descent.

49



MS-E2139 Nonlinear Programming Kimmo Berg

4.1. Twisted Function. We now describe the twisted function, whose
level curves are shown in Fig. 2. The figure also shows the sequence gener-
ated by the Cauchy algorithm, to be described below. In the concluding
remarks, we shall explain how the function was designed.

The twisted function is defined in B>, denoted (x, y) — f(x. y). Let ae
(0,0.25) be a constant, say &= 1/8, and let

Q={zeR|zll= < 1/a}.

'f's -4 -2 0 2 4 6

X

Fig. 2. Behavior of the Cauchy algorithm on the twisted function.
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Given a constant b>0, we define. for Ac R,

HA)=A+h, if A<—h,
FA)=10, if Ae[-h. b].
rA)=A-b. ifA=h
Note that, if =0,
rA)=A.
Let us fix b= 0.5, and define
flx w)=filx. y)+ fx p).

where

£l vy = {r(x /11 + ey sign(r(o)]} .
folx, yy = {r(¥)/11 - eex sign(r( p )1

This function is clearly defined in €. because by definition of  the denomi-

nators above are always positive. Its value is null in the set

Q*={z= (.\1_1')E|R2|r(\') =0.r(y)=0}

= {zeRY|)z||, =0.5}.

and is positive out of it. It follows that (* is the optimal set.
The gradients of f; and f; at z = (x. y) are

Vilz) = [

Vfalz)= [

4r(x)/[1 + ey sign(r(x)]

=2atr(x)* sign(r(x))/[1 + ety sign(rx)]
2aer( y)* sign(r( 1))/[1 — cex sign(e{ )P
4r( y) /1 — oex sign(rl ¥ ’

Note that f; and f5 are very similar. These gradients are obviously null

n %,

The Hessian matrix for f; is given by

) [12;-(\-13/(1 tayy

T8ar(x) /(1 +ay)
FRar(x) /(1 +ay) 6o’ r(x)/(1+ay)

where the signs depend on sign(r(x)). The Hessian of f> is similar. and the

Hessian determinants are
det(Hi(2)) = Set’r(x)"/(1 £ oy ).
det(Ha(2)) = 8a’r( ¥ )°/(1 F o).

Convergence of steepest descent

Definition 8.11. Function f is Lipschitz continuous with constant G if || f(x)—

fWII < Gllz =yl

As a line search algorithm, it will converge as long as f is continuous and

differentiable and line search is exact.

A version of Armijo’s rule is also guaranteed to converge as long as Vf(zx) is

Lipschitz continuous with constant G > 0.

Newton and modified methods

Newton’s method can be interpreted in the following ways:

1. Linear approximation to equations:

Let us examine solving a nonlinear system of equations, g : R" — R™,

51



MS-E2139 Nonlinear Programming Kimmo Berg

g(z) = 0. The linear approximation gives

g(z) =~ g(xy) + H(zp)(x — 21) = 0,

Tpy1 =z, — Hy tg(ay).

We apply this to function g(z) = V f(z) and Hj, is symmetric.

2. Minimize quadratic approximation:
The above are the same as the necessary conditions for

min g(z) = f(zx) + V()" (= 23) +1/2(x — 2)" Hy(x — ).

The same equations can be interpreted as minimizing the quadratic (Taylor)
approximation or solving the linear approximation of the necessary condi-
tions.

The idea is to take a suitable step s, in the direction of dy = —H,_ " f(zy,),
i.e., tpyr1 = X + Spdi. In minimization the direction is

dk = —V2f<$k)_1Vf<$k),
and the update can be written

V2 f(zp)(x — 1) = =V f(2).

3. Steepest descent method in a local Hessian norm:
Using the negative gradient is the steepest descent method in Euclidean
norm. The Newton’s method can be seen as steepest descent method in
a norm induced by the local Hessian. In general, if we make a coordi-
nate change by matrix P, the corresponding norm is ||z||p = (27 Pz2)Y/? =
|PY/2%||5, when P is symmetric and positive definite. The steepest descent
method in this norm is

Az = —P_IVf(x),

and || 2] vz = (2T V2f(2)2)"/? which gives Azgy = —V2f(2) "'V f(z). This
is very good search direction when x ~ x*, it changes the condition by
decreasing the eccentricity and converges in one step for quadratic function
(like gradient method for function with condition x = 1).

If the search direction is a descent direction, it is natural to use a line search.
When V?2f(z;) is positive definite then dj is a descent direction. Note that if
s = 1, Vk then the method in general converges only locally. The problem is
when V?2f(z;) is not invertible. Then modified Newton methods can be used,
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where we replace Hy, = V2f(xx) + e, where € is large enough so that Hy is
positive definite. The update can be written:

(V2 f(xr) + enl) (@ — x) = =V f(a5).

See the connection to Levenberg-Marguardt method.
It can be seen that when ¢ is large the method is close to the steepest descent
method, whereas when ¢ is small the method is close to the Newton’s method.
Properties of Newton’s method:

e quadratic convergence when started close enough to the optimum
e matrix inversion O(n?)

e needs Hessian and memory for the matrices

e affine invariant y = Px

e many convergence results, e.g., if V2f positive definite and the lower level
sets are bounded then exact, Armijo/Goldstein inexact methods converge to
the unique global minimum.
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Figure 8.18 Method of Newton.

9 Conjugate gradient methods

The gradient method has the problem of zigzagging and slow convergence. The
conjugate gradient methods try to solve this problem by using conjugate rather
than orthogonal directions. These methods are especially useful for solving large
problems. It is also an alternative to Gaussian elimination in solving linear systems.

Definition 9.1. Let H be symmetric n x n matrix. Directions dy, . ..,d, are H-
conjugate if d] Hd; =0, Vi # j and di, ..., dy, linearly independent.

Note that if H is positive definite and df Hd; = 0 then dy, ..., dj are linearly
independent. This means that it is advantageous to maintain positive definity
in order to produce conjugate directions, which we see later on in quasi-Newton
methods.

Theorem (8.8.3). Let f(z) = 1/22T Hx + b'z + ¢, H symmetric, positive definite.
If f is minimized consecutively in n H-conjugate directions then the minimum is
found at most in n-th step.

Proof. The sufficient condition is V f(z*) = Hxz* 4+ b =0 (1). Since H is pos.def,
dy,...,d, are linearly independent. Thus, 35;, 1 <i <mns.t. 2* =z0+> ., Bid;.

54



MS-E2139 Nonlinear Programming Kimmo Berg

From (1), Hxo+ Y. B;Hd; +b = 0. Let us multiply this equation by d]T and we get

_ - Ty,
dIHzo+ Y Bidl Hd; + dTb = 0 and 8; = —%

What do the line searches produce? s s.t. f'(z;+s;d;) = 0=V f(2;01)"d; =0
and Tjp1 =25+ 85+ dj, Vf(xjH) = Hﬂfj_H +b= (HZ'] + Sdej + b)de =0«

S5 = _%Tb;j% Since T; = To + Zi;ll Sidi then
(Hwo+ 31, siHd; + b)"d, (Hzo +b)"d, B

dTHd, dTHd,
O

Note the connection to Krylov subspaces {dy, Ady, A%dy, ..., A *dy}. How do we
produce the conjugate directions?
The algorithm for conjugate gradient (CG) methods:

Try1 = T + Sedp,
where s;, is from exact or inexact line search. The search direction is

dk+1 = —Vf(flkarl) + akdka (1)

where ay is given by some specific equation depending on which CG method is
used. There can also be a restart in every n rounds when dp = —V f(xy) is set.
There are three main CG methods: Hestens-Stiefel (HS), Polak-Ribiere (PR) and
Fletcher-Reeves (FR), which can be derived by making certain assumptions on the
objective function.

Multiplying (1) by Hdy, we get diHdy = =V f(zy1)" Hdy, + apdi Hdy, from
which
_ Vf(xpe)" Hdy
~ dfHa,
since dj are H-conjugate directions. It is not efficient to determine H explicitly
and Hdy, is often replaced with vf (Ik“s)k_vf (x’“), which are equal when the function
is quadratic. With the substitution,

0 = V@) (VS (@) = V()
di(V f(xrg1) — V()

This is the Hestens-Stiefel (1952) update. This was used to solve linear equations
Az = b when A is pos.def. If the linesearch is exact, then d} V f(x),1) = 0 and
from (1): —=di Vf(zr) = Vf(xp)'Vf(xr) + ag—1d]_,V f(xr), where the last term
is then zero. Now,

g

. (HS)

Vf(@ry)(Vf(p41) = V(ap))
Vf(xe)TV f(xr)

95

. (PR)

ap —
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Polak-Ribiere (1969) method is said to be the correct formula when the objective
function is not quadratic. If f is quadratic then V f(zyy1)7d; =0, Vk, 0 < k <
n—1,0 <i<k. Thus, Vf(xp11)"dr = =V f(24+1)" V(@) + a1V f(xp1) di-1,
where the first and last terms are zero. We get

w = V@) 'V (@pn) IV (@)
C V)V f () IV f ()12

Fletcher-Reeves (1964) was used in solving nonlinear equations.

. (FR)

Theorem. If H has only r distinct eigenvalues, then CG will terminate at the
solution x* in at most r iterations.

Theorem. If H has eigenvalues \y < ... < A\,

)\nfk - )\1

2
* (12
Xo— X .
)\n—k+)\1:| || 0 ||H

s — 2% < [

The eigenvalues and their clustering determine the speed of convergence.

Example. If the eigenvalues of H consist of m large values and the remaining
n — m smaller ones around 1. Then after m + 1 steps CG will produce a good
estimate of the solution after only m + 1 steps.
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Figure 8.23 Method of Fletcher and Reeves.
Theorem (8.8.8). If f is quadratic and (FR) is used then di,...,d, are H-
conjugate and descent directions.
Properties:
e 10 need to store matrices, good for large problems
e exact line search critical for some methods
e if Vf(z*) pos.def. then superlinear convergence

° (%)2 <convergence ratio< 1 (compare to the gradient method)

e cigenvalues can be changed by preconditioning ' = C'xz, C' nonsingular

e if quadratic then quasi-Newton methods produce conjugate directions when
using exact line search, and then the Hessian is approximated precisely after
n steps.

Application: solve Az = b, A € R™" invertible. solve min1/2z7 AT Az —
b" Az and its necessary condition AT Az — (b7 A)T = 0. Solution in at most n steps
with CG method.
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Quasi-Newton methods

The Newton method inverts a matrix and it requires a lot of computation. This
can be improved by approximating the Hessian with the gradient information.
These methods are also called as variable metric methods. The idea is to build a
quadratic model which is sufficiently good to get superlinear convergence.

Definition 9.2. Hj satisfies the quasi-Newton condition if

Hy(zp1 — xp) = Vf(ha) = Vf(ze). (Hi=1)

Example.

. f'(rra) = f'(2x)
k+1 — )
Tp+1 — Tk
f:Rw—= R, H = 1. This is the secant method, which has a superlinear conver-

gence (p =~ 1.618 under certain assumptions).

Note that Hy, 1 is n X n matrix and update Hy 1 = Hj + My, so quasi-Newton
condition does not determine Hj 1 uniquely. There are many quasi-Newton meth-
ods, and Broyden-Fletcher-Goldfarb-Shanno (BFGS) method can be derived by
making the following assumptions. See course website for the history of discover-
ing the method.

Denote sx = xx11 — @k, Yy = Vf(xpr1) — Vf(xg). Assume Hyyq is symmetric
and positive definite = Hyy1 = Jy1J, |, where J is non-singular and Hy, = Ly L
(Cholesky decomposition with lower triangular L). BFGS update solves

min || Jp41 — Lillp

T
st Jkrdp Yk = Sk

where [|Al[r = /3, ; aj; is the Frobenius norm, and the constraint is the quasi-

Newton condition. This has a unique solution as the objective is strictly convex
and the constraint is affine.
Ui Heswst Hg

Hy = Hy + -
+ ylsy, st Hysy,

and similar update equation for the inverse of H, = B,.
Davidon-Fletcher-Powell (DFP) method can be seen as a “dual” of BEGS where
s and y; are interchanged and a similar equation to By:
sksk  Buyryi By

Bk 1 = Bk + -
" Yp Sk Yi By

These two give a family of Broyden methods: By = aBP[ % + (1 — a)BPLE.
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Figure 8.22 Davidon—Fletcher—Powell method.

Properties:
e local superlinear convergence
e update in O(n?)

e if By symmetric, pos.def. and exact line search then By ; symm. and pos.def.
and d;, are descent directions

e it may happen that By /4 V2f(z*)

e BFGS adapts better than DFP

e DE'P is critical to exact line search

e same behavior for Broyden family for convex QP

Note the connection to Sherman-Morrison-Woodbury formula. If A~ is known,
it is easy to compute rank-1 update:
AT AL

A L I [
(A+uv?) 1+ 0T A1y
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Quasi-Newton update consists of two rank-one matrices, and thus Hy undergoes a
rank-2 modification in each iteration.
Trust-region methods

Trust-region methods are good alternatives for line search methods. In these meth-
ods f is approximated with a quaratic function

q(zp +5) = f(ar) + V(er)'s 4+ 1/2s" Hys,

where Hy, is the Hessian or some (quasi-Newton) approximation. This approxima-
tion is relied only inside some trust region

U = {z, ||z — 2| < Ax},

where Aj is the radius. Depending on how well the quadratic function fits the
objective, the size of trust region is updated:

1/2H~Tk+1 — .Z'kH, 0< R, <0.25
Ak—f—l = 2Ak, Ry > 075, ||8H = Ak,
Ay, otherwise

where

f(xria) — f(an)

M= ) — (o)

The method solves

min  g(xk + s)

st sl < NAP,
and its KKT conditions V f(z) + Hys + 2vs = 0. When v = 0, this gives (quasi-
)Newton step, and otherwise s = —(H + 2vI) 'V f(z;). The advantage to the
earlier methods it that Hy need not be positive definite. There are many variations,

like dog-leg method.
Least squares application

One of the most important applications of unconstrained optimization are the least
squares problems:

min 1/2|f(z)||3, f:R"~ R™.

Example. Fit a model to some data. The data consists of measurements y;, z;,
i=1,...,m, and the model z = g(y,x) has parameters x € R™. This gives

wi (21 — g(y1, 7))
flz) = : :
an(zm - g<ymv {E))

where w; are weights.
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Let us calculate the gradients and Hessians:

VAIf@)IP) = 2Vf(2)" f(z),
VEF @17 = 2Vf(l’)T fx) +25(),

S(x) = Zfz v2fz

Newton: V(|| f(zx)|*)sy = =V f(zx)" f (1)
GauB3-Newton: Vf(x)"V f(zy)sr = =V f(z)T f(xr)
Levenberg-Marquardt: V(f(zx)"Vf(zr) + pel)s = —V f(zx)? f(zx), where
1y s.t. the matrix is positive definite

The methods have both line search and trust-region variants and with quasi-
Newton approximations.

Computation and accuracy*

Stability is related to an algorithm and a stable algorithm produces exact solutions
for well-conditioned problem even though there are some rounding and floating
point errors. Condition is related to the problem (or function if f(x) = 0 is to be
solved): well-conditioned problem is such that when there are small deviations in
x then there are small deviations in f(z).

Definition 9.3. The absolute condition number is

= lim sup iy f”,
d=0 | 5z)|<d |||

where 0 f = f(x + dz) — f(z).
Definition 9.4. The relative condition number s

X I B e
li —
" e @ Tl T @I

where the last holds if f is differentiable and dx infinite decimal small.

It is said that the problem/function is well-conditioned if x small like k =
1,10,10% and ill-conditioned if & is large like x = 10°, 10'6.

— — W=l _ 1/2-z _
Example. f(z) =12/2, k = ol = 22 = b

flo) = VE k= 2 =1,

f(x) = 21 — 29, in || - [|oc nOTYM, K =
x1, Xy large.

2max{z1,x2}

P which s large if x1 ~ x5 and
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1 1000 )

Example. Computing eigenvalues of non-symmetric matrices: if A = < 0 1

1 1000
0.001 1

symmetric, then the problem is well-conditioned (k' =1, kK = %)

and B = ( ), then Aga = {1,1} and A\g = {0,2}. If the matrices are

Example. Solving linear equations: f(x) = Az, k = ||A]| HEC:‘B‘H' If the matriz is

non-singular and square, then r < ||A||||A7Y||. Solving Ax = b, k = HA‘lH% <
IANATY = &(A), where k(A) is the condition number of A. In this case the
condition expresses the eccentricity of hyperellipse (image of unit ball under map-
ping A), which is the ratio of M\,/\1, since ||Al| = N\, the largest eigenvalue and

|A7Y| = 1/A1, where N, is the smallest eigenvalue.
Solving linear equations™®

Let A € R™ ™. If m < n the problem is underdetermined and the solution is a
surface or larger dimensional set. If m > n the problem is overdetermined and it is
not necessarily possible to satisfy all equations and the problem is rather of least
squares form || Az —bl|. If m = n and A is non-singular then the solution is unique
x = A"1h.

The Gaussian elimination solves the problem in approx. 2/3n?® operations in
two steps: forward elimination Lx = b and back substitution Ux = b, where L is
lower and U upper triangular matrix.

If A is symmetric positive definite, then Cholesky decomposition can be
used:

0. Precondition the problem by switching rows PT AP, where P =

o = O
—_ o O

to improve sparsity and stability.
1. Form Cholesky decomposition A = LLT. (n?)
2. Forward elimination Lz = b. (n?)
3. Backward substitution LTz = 2. (n?)

The total operations needed is 1/3n% (mn? + n3/3 if AT Az = ATb). If multiple
equations with the same A need to be solved, then the same decomposition can
be used and only n? operations are needed.

If A is not positive definite then QR decomposition is more stable, where
QTQ = I is orthogonal as Q! = Q7. There are different ways of computing the
decomposition, like Gram-Schmidt or Householder’s method. The steps are
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0. AP = QR,
1. z=Q7p,
2. Rx = z, which reduces to triangular matrix.

This requires 4/3n® operations. (2mn? + 2/3n?)

Even more stable method is the singular value decomposition (SVD): A =
USVT, U € R™™ V € R™" orthogonal, ¥ € R™*™ non-negative diagonal.
Then compute

1. z=UTy,
2. Yw = z (diagonal),
3. x=Vuw.

It needs 11n® operations. (2mn? 4+ 11n3 if m >> n)
Exploiting structure in optimization*

In the next section some constrained optimization methods convert the constrained
(difficult) problem into a series of easier problems. These can be QP problems
(in SQP method), or unconstrained problems (in penalty and barrier function
methods). Thus, it is important to have efficient methods to solve these easier
problems as the more difficult problems rely on solving multiple instance of them.
With some methods the structure of the problem is inherited to these easier prob-
lems and this may help dramatically. See for example Gondzio and Grothey for
the largest optimization problems solved. Their method relies on solving efficiently
linear equations that have a special structure. In solving linear equations the order
of columns and sparsity play a significant role. There are many special structures
that can be efficiently solved: arrowhead, bands, (tri)diagonals in O(n), Toeplitz
O(n?). Schur complement can be used when there is a subblock in the matrix
that is easy to invert. Woodbury inversion formula can be used when the matrix
is close to a matrix that is easy to invert (A + pg?)~!, where pg’ is rank-1 term.
The matrix inversion is not the only operation that can be improved but also all
matrix products may require a lot of computation.

Minimal volume ellipsoid covering a set™®

Definition 9.5. An ellipsoid has many representations, like

e={x, 2" Ar +b"x +c <0, A symmetric pos.def.},
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where the eigenvectors of A give the axis, axis lengths are given by the eigenvalues
1/v/Ai. The ellipsoid can also be seen as a unit ball mapped with an affine function

e = {x, ||Az + by <1} = {x, 2T AT Az + 2(AT0) "z +b"b — 1 < 0}.

The volume of an ellipsoid is proportional to the product of its axis and thus
V~Tl \/%T The determinant of a matrix A is also det A = [, A; and det A™! =

ILA . Now, we can formulate a problem where a finite number of points need to
be convered with an ellipsoid such that the ellipsoid has minimal volume

min %4
st.  JJAz+b|| < 1.

The objective can be simplified
V =+Vdet A=t ~ det A™' ~ logdet A7,

since both y/z and log(z) are monotone functions, and log det A is convex function.
10 Numerical methods for constrained problems

min  f(x)
st.  h(x)=0(), g(x) <0 (m), z€ X

The algorithms can be roughly divided the following way:

e primal methods: find descent direction keeping inside the feasible set (re-
duced gradient, method of feasible directions, active set)

e barrier and penalty function methods: solve sequence of unconstrained
problems (augmented Lagrangian, primal-dual interior point method)

e Lagrange multiplier methods (augmented Lagrangian, dual methods)
e SQP: solve series of QP or solve KKT conditions with Newton’s method

Primal methods

The method of feasible directions:

0. Find a feasible initial point.
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1. Find a feasible descent direction, if not stop.
2. Determine the step length taking care of feasibility.

Zoutendijk method:

min 2

s.t. Vf(xk)Td—z <0
Vgi(rp)'d—2<0,i€l
-1<d; <1, 5=1,...,n

Let (2x,dy) be an optimal solution. If z;, = 0 stop and wxy, is FJ point. If z, < 0,
do a line search:

min f(a;k -+ Sdk)
st. 0<s<¥d,

where ' = sup{s, g;(x + sd) <0, i=1,...,m}.

It may be difficult to find feasible direction, and the method may do zigzagging
when new constraints become active. See also the gradient projection method of
Rosen.

Active set method

The method is suitable for solving convex QP problems (used in SQP): f(z) =
1/227Qx + 'z, where Q is symmetric and pos.def., S = {z,alz < b;,1 <i < m}.
The method lists the active constraints W; = I(z;) and minimizes

min  1/2d7Qd + gl'd
st. ald=0,iecW,.

This gives the search direction dj and the corresponding Lagrange multipliers v;,

1€ Wi
e if di = 0 and v, = minv; > 0 then x;, optimum, otherwise Wy = Wi \ {¢}.
o if d;, # 0 and x;, + d, is feasible then take the step.
e if not feasible then find maximum step that is feasible and update Wy, ;.

There may be a problem when the active set changes slowly and there are many
constraints.
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Figure 16.3 Iterates of the active-set method.

Reduced gradient methods (Frank-Wolfe)

Let S = {z,Az = b,z > 0}, A € R™", b € R™, m < n. Assume that A is of
rank m, i.e., any m columns are linearly independent. Then according to Theorem
2.6.4, every extreme point of S there are at least m strictly positive components
(at most n—m zeros). Let us reorder the variables and denote x = (xp, zy), where
rp > 0 are the basic (dependent) variables and xx > 0 the nonbasic variables.
Similarly, we have A = (B, N), where B € R™™, N € R™ ™) and Vf(z) =
(Vi (), Vaf(x)).

The feasibility can be maintained by restricting the search direction to be
feasible, i.e., requiring that Ad = Bdg + Ndy = 0, where d = (dp,dy), and we
can solve dg = —B~ ! Ndy since B is invertible by the rank assumption. We can
compute the reduced gradient

Vfi(x)'d=Vgf(x)'dsg+Vnf(x)dy = (Vnf(z)! —Vpf(x)' B 'N)dy =y,

where 7 = (0,7y) is the reduced gradient.
If dy is chosen s.t. rkdy < 0, d; > 0,4 € I, then d is a feasible descent
direction. dy can, e.g., be chosen

dj — { _Tja Tj S 07

—x;rj, 17 >0,
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and then d; > 0 if ; = 0 and it avoids small steps when z; > 0. By Theorem
10.6.1. this choice means that dy = 0 < x KKT point.
Algorithm: Initialization: Find x; satisfying Ax; = b, x; > 0.

1. Find the basic variables: I is the index set of the m largest components of
xj. Then from the columns of A: B ={a; :j € I} and N = {a; : j ¢ I;}.
Compute 1 = V f(z4)" — Vpf(zy)" B~ A. Form

d. — —7“]', TjSO,
Tl —xyry, ;>0
it T =Y

and compute dg = —B ' Ndy. Let d} = (d%,d%). If di = 0, stop and zy, is
a KKT point.

2. Solve the line search f(xx + Ady) s.t. 0 < X < Apaw, Where A\ =
ming<j<, —2;i/dj, for dj, < 0, if d, # 0, and A\pep = o0 if d, > 0. Up-
date zy1 = T + A\kdg. Goto step 1.
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Summary of the Reduced Gradient Algorithm
We summarize below Wolfe’s reduced gradient algorithm for solving a problem
of the form to minimize f(x) subject to Ax = b, x > 0. It is assumed that all m
columns of A are linearly independent and that every extreme point of the
feasible region has m strictly positive components. As we show shortly, the
algorithm converges to a KKT point, provided that the basic variables are
chosen to be the m most positive variables, where a tie is broken arbitrarily.
Initialization Step Choose a point x, satisfying Ax; =b, x; 2 0. Let k=
1 and go to the Main Step.

Main Step

1. Let d} = (d%,d’y) where dy and dp are obtained as below from
(10.43) and (10.44), respectively. If d; = 0, stop; x; is a KKT point.
[The Lagrange multipliers associated with Ax = b and x > 0 are,
respectively, V g f(x; ) B! and r.] Otherwise, go to Step 2.

I, = index set of the m largest components of x (10.40)
B ={a;:jel}, N={a;:jel} (10.41)
r' =Vf(x;) -Vpf(x;)BA (10.42)
-r; if jel,andr; <0
d; ={ o7 / (10.43)
—Xjrj lf_]elk andrj >0
dp =-B7'Ndy. (10.44)
2. Solve the following line search problem:
Minimize f(x; + Ady)
subjectto 0< A< A,
where
Tk .
min § ——:d <0p ifd; 20
Amax ={1sjsn | dj (10.45)

e o] lfdk >0
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10.6.2 Example

Consider the following problem:

Minimize 2x12 + Zx% —2xx) —4x —6xy
subjectto x;+ xp+ x3 =2
X+ 5xp + x4 =35
X1,%y,%3,%X4 20.

We solve this problem using Wolfe’s reduced gradient method starting from the
point x, =(0, 0, 2, 5)". Note that

Vf(x) = (4x, —2x; —4,4x, —2x; —6,0,0)".

We shall exhibit the information needed at each iteration in tableau form similar
to the simplex tableau of Section 2.7. However, since the gradient vector
changes at each iteration, and since the nonbasic variables could be positive, we
explicitly give the gradient vector and the complete solution at the top of each
tableau. The reduced gradient vector ry, is shown as the last row of each tableau.

Iteration 1:

Search Direction At the point x; = (0, 0, 2, 5)', we have Vf (x;) =(4,-6,0,
0). By (10.40), we have I; = {3, 4}, so that B =[a3,a4] and N = [a;, a5]. From
(10.42), the reduced gradient is given by

! =(-4,-6,0,0)-(0,0
r =(-4,-6, )(,)1501

1 o}
=(-4,-6,0,0).
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By (10.16) we have d y = (4, dz)' = (4, 6)'. We now compute d g using

(10.44) to get
11](4
-B7'Ndy =- =(-10,-34)".
S W

Note that B™'N is recorded under the variables corresponding to N: namely, x,

dp =(d3,dy)’

and x,. The direction vector is, then, d; = (4, 6, -10, -34)".

Line Search Starting from x; = (0, 0, 2, 5), we now wish to minimize the

objective function along the direction d; = (4, 6, —10, —34)’. The maximum
value of 4 such that x; + Ad, is feasible is computed using (10.45), and we get

. [2 5] 5
=min{—, —jr=—.
Fmax {10 34} 34

The reader can verify that f(x; + Ad;) =564%—524, so that 4 is the
solution to the following problem:

Minimize 5642 —524

subjectto 0<A< —5—
34

This yields 4; = 5/34, so that x, = x; + 4d; = (10/17, 15/17, 9/17,0)".

Iteration 2:

Search Direction At x, = (10/17, 15/17, 9/17, 0)’, from (10.40) we have I =
{1, 2}, B=[a|,a,], and N = [a3,a4]. We also have Vf(x,) = (-58/17, —62/17,

0, 0)'. The current information is recorded in the following tableau, where the

1o 31
v =[-2,-2 00)- —3—2) ¢ 4foo X L),
17 17 17 17 01 _}_ l 1717
4 4

Kimmo Berg

From (10.43), then, d; = «(9/17)(57/17) = ~513/289 and d4 = 0, so that dy =
(-513/289, 0). From (10.44), we get

5 1 2565

4 4l - 1156
dp=(d,d,) =- 2 .
g =(d),dy) 1 02'19 53

4 4 1156

The new search direction is therefore given by d,

-513/289, 0)'.

= (2565/1156, —513/1156,
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Line Search  Starting from x, = (10/17, 15/17, 9/17, 0)°, we wish to minimize
the objective function along the direction d, = (2565/1156,-513/1156, — 513/289,

0)’. The maximum value of A such that X, + Ad, is feasible is computed using
(10.45), and we get

Amax = min{

-15/17 —9/17} 17

513/1156° —513/289] 57

The reader can verify that f(x, + Ady) = 12.214% - 5.954 - 6.436, so that Ay is
obtained by solving the following problem:
Minimize 12.214% —-5.94-6.436
subjectto 0<A< 1—7
57

This can be verified to yield 4, = 68/279, so that x3 = x5 + A,d, = (35/31,
24/31, 3/31, 0)'.

Iteration 3:

Search Direction Now I3 = {1, 2}, so that B =[a;,a;] and N = [a5,a,]. Since
I3 = I, the tableau at Iteration 2 can be retained. However, we now have Vf(x3)

= (=32/31,-160/31, 0, 0)".
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xl X X3 X4
. 4 3
Solution x3 » Ead — 0
31 31 31
32 160
Vi(x - - 0 0
’f(x3) 31 ™
\v/ =
Bf(x3) 160 | i
- X 0 1 - —
31 4 4
32
0 0 0 —
r 31
From (10.42) we get
1o 2 -1
o o[ 32 160 o) (32 260 4 4 =(o,0,0,2).
31 31 31 31 1 1 31
01 -—- =
4 4

From (10.43), dy = (d3,d4)' = (0,0)'; and from (10.44) we also get dg =

(d|,d2)’ = (0,0). Hence, d = 0, and the solution x3 is a KKT solution and
therefore optimal for this problem. The optimal Lagrange multipliers associated
with the equality constraints are V 5 f(x3 )'B-l = (0, -32/31)', and those associ-

ated with the nonnegativity constraints are (0, 0, 0, 1)/. Table 10.5 gives a

summary of the computations, and the progress of the algorithm is shown in
Figure 10.19.

Penalty function methods

The idea of penalty functions is to move the constraints into the objective function
and make it unconstrained problem.

Example. min f(z) s.t. h(z) = 0 = min f(x) + ph(z)?. when p is big, then
h(x) ~ 0. (max(0, g(x))?* for inequality constraints)

Definition 10.1. A penalty function is a(z) = 37, é(gi(x)) + S\, ¥ (hi(x)),

_ 0, ¥y<0 _ 0, ¥y=0
o ={ .0 S0 vw={ 0 120

Definition 10.2. A penalty function problem min,cx f(z) + pa(z), p > 0.
Algorithm:

1. Solve zy4; € argmingex f(x) + ppa(x).

2. If ppa(zpaq) < € stop, otherwise py1 = Bug, > 1.

Problems: may stop prematurely or converge slowly. V2(f(z) + pa(z)) is
almost singular when g is large, and thus the convergence properties are poor.
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Figure 9.5 Penalty function method.

Theorem (9.2.2). Assume f,g,h continuous. 0(p) = mingex f(z) + pa(z) =
f(x,) + pa(x,). Assume x, belongs to a compact subset for all yp > 0. Then

inf{f(z),g(x) <0,h(z) =0,2 € X} = lim O(p),

H—00
and x, — z*, pa(z,) = 0, when p — oco.

How large p is then needed?

73



MS-E2139 Nonlinear Programming Kimmo Berg
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Figure 9.4 lll-conditioning effect of a large u value.
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Penalty function with nonconvex problem

Definition 10.3. A penalty function is exact when pu s.t. x* is achieved with
all p > ji.

Example. Absolute value (11) penalty function a(z) = p(d_ max{0, g;(x) }+>_ |hi(x)])
18 exact.

Theorem (9.3.1). If f,qg;, i € I, convex, h affine, then z* minimizes 0(u) with
absolute value penalty function when p > max(u;, |v|;)

Note that this penalty function is not smooth.
Augmented Lagrangian method

Another exact penalty function is the augmented Lagrangian penalty func-
tion (ALAG):

favac(z,v) = f(x) + v h(z) + Y _ hi(x).

The inequality constraints are not a problem and they can be handled with slack
variables. The penalty function convexifies the problem locally. If (z*,v*) is a KKT
point, then V, fapac(z*,v*) = Vf(a*) +0* T Vh(z*)+2u > hi(z*)Vhi(z*) = 0 and

if 4 > 1 then * minimizes the penalty function problem.

Example. min 23 s.t. x+1 = 0. The solution is z* = —1, v* = 3. fapag(z,v*) =
22 =3(x+1)+pu(z+1)% fipac(r,v*) =32 =3+2ux+1, fi;10(z,v*) = 62 —2pu.
When p > v* then the penalty function is convexr at x*.

Algorithm:
e VIOL(x) = max(|h;(z)|,i =1,...,1).
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e Inner loop: Solve min fapac(z,v’). If VIOL(zy) = 0 then stop and zy is
KKT point. If VIOL(xy) < VIOL(xy_1)/4 then go to outer loop. Other-
wise, u; = Bu;, B > 1, for all ¢ that violate the above condition and repeat
the inner loop.

e Outer loop: Update v] = v} + 2u;h;(x)). Return to the inner loop.
Note:
o 1 — x* only if v, — v*

e how do you know v*? Guess?

update of v affects the convergence

problems when p is too large or small

what method is used in the inner loop?

Barrier function methods
Barrier function methods approach the optimum from inside of the feasible set.

Example. min f(x) s.t. g(x) <0 = min f(z) — plog(—g(x)). when p is small,
then g(x) can get close to zero.

Definition 10.4. A barrier function B(z) is a continuous function s.t. B(x) >
0 when g(x) <0, and B(z) — oo when g;(x) — 0.

Example. These condition are satisfied by B(x) = — > In(min(1, —g;(x))), and
Frisch barrier B(z) = — > In(—g;(x)).

Definition 10.5. A penalty function problem min 6(u) = f(x) + puB(x),
w>0.

Algorithm: starting point zg s.t. g(xg) < 0.

1. Solve min f(x) + upB(x).

2. If upB(xp11) < € stop and otherwise ug 1 = By, 8 € (0,1).
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Figure 9.9 Barrier function method.

Note:

e the method needs strictly feasible starting point

e maintaining feasibility may be difficult (slow convergence)
e numeric problems at the boundary

e convergence as with penalty function method

Theorem (9.4.3). Let f,g be continuous, {z € X, g(z) < 0} non-empty. Assume
that for any neighborhood N around x*, there is x € X N N s.t. g(x) <0, then

min f(z), s.t. 2 € X,g(x) <0= lim O(u) = inf O(p),
u—0t n>0

and pB(x,) — 0 when p — 0%,
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11 Primal-dual interior point method

Primal-dual method is a barrier function method that is a linear-time algorithm
for LP problem. Let us develop the method for convex problem:

min  f(z)
st.  g(x) <0, (m)
Az +b=0, (I)

where f, g; are convex and h is affine. The barrier problem is

min B(z;p) = flx) —p Y In(—gi(z))
i=1
st. Ar +b=0
The idea is to solve z,, and have yr — 0. Does this approach z*?

Definition 11.1. A sequence {x,}, i > 0 is the central path and as y — oo,
z, — x is the analytic center.

central
path

analytic center

The barrier function satisfies the KKT conditions:

V:pﬁ(xu; N) + ATUM =
Az, +b =

jen] N e]
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where V,5(x,, 1) = Vf(z)+pd — ng(x = f(z) + Vg(z)" D 'e, where D =
diag(—g;(x)), D™' = diag(—1/g;(x)) and e = (1,...,1)T. Let us denote u, =
—uDile, i.e., w,, = —p/g;(x). This vector approximates the Lagrange multipliers
of the original problem.

Theorem. Duality gap: f(x,) — 0(u,,v,) =mp — 0, when @ — 0.
Proof. From KKT conditions, V,¢(x,,u,,v,) = 0, where ¢(z,u,v) = f(z) +
(Az + b)"v + g(x)"u is convex, i.e., r, minimizes ¢(x,u,,v,). Thus,
0(uy, v) = min Gz, wy, v,) = Gy, Uy, V) =
= fl@u) + (A + ) v, + g(@) w) = f () —mp,
)Tu, = 3 =24, O
The algorithm for LP problem, where f(z) = ¢z, g(z) = —a:

since Az, +b =0 and g(z,

0. Choose xg,ug, 1o > 0, v, t € (0,1), € > 0.

1. Solve xpy1, Vg1, ugyq from the KKT conditions of the barrier function prob-
lem with the Newton’s method. (these are derived in below)

2. If cTapyy — bTopy = nup < e (duality gap for LP) then stop, otherwise
W1 = tug and repeat.

3. Possible rounding to a feasible point.
The primal and dual prolems are
min ¢ st. Az =0b, >0
max b st. ATv4+u=c, u>0
The KKT conditions:
ATv +u
Ax =

T

(AVARAY

u
XUe
where X = diag(z), U = diag(u), e = (1,...,1)T. The first equation is the

Lagrange optimality, next two primal feasibility, then dual feasibility and finally
the complementary slacness condition. Let us denote the equality constraints

ol o o o8O

ATv+u—c
F(z,v,u) = Az —b
XUe
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The Newton update VF(x)Ax = —F(z) for this system is

0 AT T Az 0
A 0 0 Av | = 0 ,
U 0 X Au —XUe

if (2, vy, uy) is primal-dual feasible, i.e., ATvj, + up = ¢ and Az, = b. If not, then
the two terms on the right-hand side were not zero. This direction is called as the
affine scaling direction.

The logarithmic barrier function problem is

min ¢’z — uZlog(azi) s.t. Az = b,

i=1

and its KKT conditions

ATy +uXe = ¢

Axr = b,
and if we denote u = uX e then
Aty +u = ¢
Ar = b,
XUe = pe.

Now, we can see that the logarithmic barrier function relaxes the only nonlinear
equation in the system, the complementary slackness condition, from zero to pu.
The Newton update is

0 AT I Ax -7
A 0 0 Av | = -7y ,
U 0 X Au —XUe + pe

where 7. = ATv +u — ¢ and r, = Ax — b. Sometimes, a centering parameter
o € (0,1) is added: opue. When o = 1, the step is called centering step and when
o = 0 the step is called Newton or affine scaling direction.

Note that the primal-dual infeasibility is not a problem for the initial solution
Zo, Vo, ug. If a full Newton step is taken then r. = r, = 0 after that step, since
these equations are linear.

There are many variants of the interior point method. Karmarkar’s algorithm
in 1984 was first practical polynomial time algorithm, following Khaciyan’s ellip-
soid algorithm which worked only in theory. Mehrotra presented the primal-dual
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predictor-corrector in 1989 that used the same Cholesky decomposition to find two
different directions.
Sequential quadratic programming (SQP) method

The sequential quadratic programming method can be seen as doing Newton step
to the KKT conditions, i.e., making a quadratic approximation with linearized
constraints.

Let us examine an equality constrained problem

min f(z) s.t. h(z) =0 (1)

The Lagrange function is ¢(z,v) = f(x) + h(z)Tv, L(z) = ¢(z,v;) and the KKT
conditions:

and this system is denoted by W (z,v) = 0. Appyling the Newton update

where the Jacobian is

2 T
vx,vW(x,U) = V%fl((i,)v) Vh(%:ﬂ)

This gives so-called Newton-Lagrange equations

Vf(z)+ Vh(z) v, + V2 o(ar, vp)(x — 21) + Vh(zr)" (v — )
h(zy) + Vh(zp) (2 — 2p) =

jen] ]

Note that these are the same as the KK'T conditions for the following problem

min  1/2d{ V2, d(xk, vp)d + V f (21)" (x — x1)
st h(zg) + Vi(zy)(z — 2) =0,

where d = x — xy. So, the search direction for (z,v) is solved from a QP prob-

lem and if d; = 0 then z;, is a KKT point. Otherwise, the point is updated or

a line search is performed in the search direction. If the problem has inequal-

ity constraints then they appear in the Lagrange function and the corresponding
linearized constraints are

g(zk) + Vg(zp) " dy, <0.
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There are many variants of the SQP method. Quasi-Newton approximation
By can be used to replace V2, é(xy, vx), which is updated. Then s, = x4 1 — %,
yp = VIL(xpy1) — VL(zg). Note that the QP problem is then strictly convex
because By, is positive definite.

There is however problem that these methods only converge locally. Global
convergence can be achieved by using merit function m(z), f(z) = f(x)+m(z),
in the line search step. Examples of merit functions are absolute value merit
function (> max(0, g;(z)) +>_ |hi(x)|) or augmented Lagrangian merit function.

The problem with a merit function is so called Maratos effect, where the merit
function may decline a direction that takes towards the optimum, and this may
result in slow convergence. It can happen that even if ||z + dx — 2*|| < ||xx — =¥
then it may be that f(x + d) > f(2x). This can be solved by adding second
order correction terms or by choosing a suitable merit function.
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Observations:

e QP may be infeasible

e solution to QP may go to infinity

e Lagrange multipliers need to be updated, so the method needs to give the

Figure 15.8

Maratos Effect: Example 15.4.
Note that the constraint is no
longer satisfied after the step
from x; to x; + py, and the
objective value has increased.

multipliers too. For example, active set method can be used

82



MS-E2139 Nonlinear Programming Kimmo Berg

One variant is SL;Q P trust-region variant

min  Vf(xx)"d+1/2d" Byd + p(d>_ max(0, g;(z) + Vgi(ar)"d) +
+ 3 [hilw) + Vhi(a) " d])
s.t. —Ak S d S Ak,

which can be converted into QP problem. The method has the benefit that it is
feasible and bounded, so it at least has a solution. However, the Maratos effect is
still possible for this variant.
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