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Abstract1

Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational2

bottleneck in the process of analyzing microbial communities. Although this has been an active3

area of research, it has been difficult to overcome the time and memory demands while improving4

the quality of the OTU assignments. Here we developed a new OTU assignment algorithm that5

iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient6

(MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust,7

we compared it to ten other algorithms using 16S rRNA gene sequences from two simulated and8

four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and9

16.5% higher than the OTUs generated when we used the average neighbor and distance-based10

greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6-times11

faster than the average neighbor algorithm and just as fast as distance-based greedy clustering12

with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time13

and memory required to perform the algorithm scaled quadratically with the number of unique14

sequences in the dataset. The significant improvement in the quality of the OTU assignments over15

previously existing methods will significantly enhance downstream analysis by limiting the splitting16

of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU.17

The development of the OptiClust algorithm represents a significant advance that is likely to have18

numerous other applications.19

Importance20

The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing21

has expanded our knowledge of the biogeography of microorganisms. An important step in22

this analysis is the assignment of sequences into taxonomic groups based on their similarity to23

sequences in a database or based on their similarity to each other, irrespective of a database. In24

this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks25

to optimize a metric of assignment quality by shuffling sequences between taxonomic groups.26
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We found that OptiClust produces more robust assignments and does so in a rapid and memory27

efficient manner. This advance will allow for a more robust analysis of microbial communities and28

the factors that shape them.29
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Introduction30

Amplicon-based sequencing has provided incredible insights into Earth’s microbial biodiversity (1,31

2). It has become common for studies to include sequencing millions of 16S rRNA gene sequences32

across hundreds of samples (3, 4). This is three to four orders of magnitude greater sequencing33

depth than was previously achieved using Sanger sequencing (5, 6). The increased sequencing34

depth has revealed novel taxonomic diversity that is not adequately represented in reference35

databases (1, 3). However, the advance has forced re-engineering of methods to overcome the36

rate and memory limiting steps in computational pipelines that process raw sequences through37

the generation of tables containing the number of sequences in different taxa for each sample38

(7–10). A critical component to these pipelines has been the assignment of amplicon sequences to39

taxonomic units that are ether defined based on similarity to a reference or operationally based on40

the similarity of the sequences to each other within the dataset (11, 12).41

A growing number of algorithms have been developed to cluster sequences into OTUs. These42

algorithms can be classified into three general categories. The first category of algorithms has43

been termed closed-reference or phylotyping (13, 14). Sequences are compared to a reference44

collection and clustered based on the reference sequences that they are similar to. This approach45

is fast; however, the method struggles when a sequence is similar to multiple reference sequences46

that may have different taxonomies and when it is not similar to sequences in the reference
::::
(15).47

The second category of algorithms has been called de novo because they assign sequences to48

OTUs without the use of a reference (14). These include hierarchical algorithms such as nearest,49

furthest, and average neighbor (15
::
16) and algorithms that employ heuristics such as abundance50

or distance-based greedy clustering as implemented in USEARCH (16
:::
17) or VSEARCH (17

:::
18),51

Sumaclust, OTUCLUST (18
:::
19), and Swarm (19

::
20). De novo methods

::::
are

::::::::::::::
agglomerative

::::
and

:
tend52

to be more computationally intenseand it
:
.
::
It has proven difficult to know which method generates53

the best assignments. A third category of algorithm is open-reference
:::::
open

:::::::::
reference

:
clustering,54

which is a hybrid approach (3, 14). Here sequences are assigned to OTUs using closed-reference55

clustering and sequences that are not within a threshold of a reference sequence are then clustered56

using a de novo approach. This category blends the strengths and weaknesses of the other57
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method and adds the complication that closed-reference and de novo clustering use different58

OTU definitions. These
:::::
three

:::::::::::
categories

::
of

:
algorithms take different approaches to handling large59

datasets to minimize the time and memory requirements while attempting to assign sequences to60

meaningful OTUs.61

Several metrics have emerged for assessing the quality of OTU assignment algorithms. These have62

included the time and memory required to run the algorithm (3, 19–21
::::::
20–22), agreement between63

OTU assignments and the sequences’ taxonomy (19, 21–31
:::
20,

:::::::
22–32), sensitivity of an algorithm64

to stochastic processes (32
:::
33), the number of OTUs generated by the algorithm (22, 33

:::
23,

:::
34),65

and the ability to regenerate the assignments made by other algorithms (3, 34
:::
35). Unfortunately,66

these methods fail to directly quantify the quality of the OTU assignments. An algorithm may67

complete with minimal time and memory requirements or generate an idealized number of OTUs,68

but the composition of the OTUs could be incorrect. These metrics also tend to be subjective. For69

instance, a method may appear to be recapitulate the taxonomy of a synthetic community with70

known taxonomic structure, but do a poor job when applied to real communities with poorly defined71

taxonomic structure or for sequences that are prone to misclassification. As an alternative, we72

developed an approach to objectively benchmark the clustering quality of OTU assignments (13,73

35
:::
15, 36). This approach counts the number of true positives (TP), true negatives (TN), false74

positives (FP), and false negatives (FN) based on the pairwise distances. Sequence pairs that75

are within the user-specified threshold and are clustered together represent TPs and those in76

different OTUs are FNs. Those sequence pairs that have a distance larger than the threshold and77

are not clustered in the same OTU are TNs and those in the same OTU are FPs. These values78

can be synthesized into a single correlation coefficient, the Matthews ’ Correlation Coefficient79

::::::::::
correlation

:::::::::::
coefficient

:
(MCC), which measures the correlation between observed and predicted80

classifications and is robust to cases where there is an uneven distribution across the confusion81

matrix (37). Consistently, the average neighbor algorithm was identified as among the best or82

the best algorithm.
:::::
Other

::::::::::::
hierarchical

:::::::::::
algorithms

:::::
such

:::
as

::::::::
furthest

::::
and

::::::::
nearest

::::::::::
neighbor,

::::::
which

:::
do83

:::
not

:::::::
permit

:::
the

::::::::::
formation

::
of

:::::
FPs

::
or

::::::
FNs,

::::::::::::
respectively,

::::::
fared

:::::::::::
significantly

:::::::
worse.

:
The distance-based84

greedy clustering as implemented in VSEARCH has also performed well. The computational85

resources required to complete the average neighbor algorithm can be significant for large datasets86
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and so there is a need for an algorithm that efficiently produces consistently high quality OTU87

assignments.88

These previous
::::::::::::::
benchmarking

:
efforts have assessed the quality of the clusters after the completion89

of the algorithm. In the current study we developed and benchmarked a new de novo clustering90

algorithm that uses real time calculation of the MCC to direct the progress of the clustering. The91

result is the OptiClust algorithm, which produces significantly better sequence assignments while92

making efficient use of computational resources.93

Results94

OptiClust algorithm. The OptiClust algorithm uses the pairs of sequences that are within a desired95

threshold of each other (e.g. 0.03), a list of all sequence names in the dataset, and the metric that96

should be used to assess clustering quality. A detailed description of the algorithm is provided for a97

toy dataset in the Supplementary Material. Briefly, the algorithm starts by placing each sequence98

either within its own OTU or into a single OTU. The algorithm proceeds by interrogating each99

sequence and re-calculating the metric for the cases where the sequence stays in its current OTU,100

is moved to each of the other OTUs, or is moved into a new OTU. The location that results in the101

best clustering quality indicates whether the sequence should remain in its current OTU or be102

moved to a different or new OTU. Each iteration consists of interrogating every sequence in the103

dataset. Although numerous options are available
::
for

:::::::::::
optimizing

::::
the

::::::::
clusters

::::
and

:::
for

:::::::::::
assessing104

:::
the

:::::::
quality

::
of

::::
the

::::::::
clusters

:
within the mothur-based implementation of the algorithm (e.g. sensitivity,105

specificity, accuracy, F1 score
:::::::::
F1-score, etc.), the default metric

::
for

::::::::::::
optimization

:::::
and

::::::::::::
assessment is106

MCC because it includes all four parameters from the confusion matrix
:::::::
(Figure

::::
S1;

::::::
Table

::::
S1). The107

algorithm continues until the optimization metric stabilizes or until it reaches a defined stopping108

criteria.109

OptiClust-generated OTUs are more robust than those from other methods. To evaluate the110

OptiClust algorithm and compare its performance to other algorithms, we utilized six datasets111

including two synthetic communities and four previously published large datasets generated from112

6



soil, marine, human, and murine samples (Table 1). When we seeded the OptiClust algorithm with113

each sequence in a separate OTU and ran the algorithm until complete convergence, the MCC114

values averaged 15.2 and 16.5% higher than the OTUs using average neighbor and distance-based115

greedy clustering (DGC) with VSEARCH, respectively (Figure 1;
::::::
Table

:::
S1). The number of OTUs116

formed by the various methods was negatively correlated with their MCC value (ρ=-0.47; p=0
:::::::
<0.001).117

The OptiClust algorithm was considerably faster than the hierarchical algorithms and somewhat118

slower than the heuristic-based algorithms. Across the six datasets, the OptiClust algorithm was119

94.6-times faster than average neighbor and just as fast as DGC with VSEARCH. The human120

dataset was a challenge for a number of the algorithms. OTUCLUST and SumaClust were unable121

to cluster the human dataset in less than 50 hours and the average neighbor algorithm required122

more than 45 GB of RAM. The USEARCH-based methods were unable to cluster the human data123

using the 32-bit free version of the software that limits the amount of RAM to approximately 3.5 GB.124

These data demonstrate that OptiClust generated significantly more robust OTU assignments than125

existing methods across a diverse collection of datasets with performance that was comparable to126

popular methods.127

OptiClust stopping criteria. By default, the mothur-based implementation of the algorithm stops128

when the optimization metric changes by less than 0.0001; however, this can be altered by the129

user. This implementation also allows the user to stop the algorithm if a maximum number of130

iterations is exceeded. By default mothur uses a maximum value of 100 iterations. The justification131

for allowing incomplete convergence was based on the observation that numerous iterations are132

performed that extend the time required to complete the clustering with minimal improvement in133

clustering
:::::::
(Figure

::::
S2). We evaluated the results of clustering to partial convergence (i.e. a change134

in the MCC value that was less than 0.0001) or until complete convergence of the MCC value135

(i.e. until it did not change between iterations) when seeding the algorithm with each sequence in a136

separate OTU (Figure 1). The small difference in MCC values between the output from partial and137

complete convergence resulted in a difference in the median number of OTUs that ranged between138

1.5 and 17.0 OTUs. This represented a difference of less than 0.15%. Among the four natural139

datasets, between 3 and 6 were needed to achieve partial convergence and between 8 and 12.50140

::
12

:
iterations were needed to reach full convergence. The additional steps required between 1.4 and141
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1.7 times longer to complete the algorithm. These results suggest that achieving full convergence142

of the optimization metric adds computational effort; however, considering full convergence took143

between 2 and 17 minutes the extra effort was relatively small. Although the mothur’s default144

setting is partial convergence, the remainder of our analysis used complete convergence to be145

more conservative.146

Effect of seeding OTUs on OptiClust performance. By default the mothur implementation of147

the OptiClust algorithm starts with each sequence in a separate OTU. An alternative approach148

is to start with all of the sequences in a single OTU. We found that the MCC values for clusters149

generated seeding OptiClust with the sequences as a single OTU were between 0 and 11.5% lower150

than when seeding the algorithm with sequences in separate OTUs (Figure 1). Interestingly, with151

the exception of the human dataset (0.2% more OTUs), the number of OTUs was as much as 7.0%152

lower (mice) than when the algorithm was seeded with sequence in separate OTUs. Finally, the153

amount of time required to cluster the data when the algorithm was seeded with a single OTU was154

between 1.5 and 2.9-times longer than if sequences were seeded as separate OTUs. This analysis155

demonstrates that seeding the algorithm with sequences as separate OTUs resulted in the best156

OTU assignments in the shortest amount of time.157

OptiClust-generated OTUs are as stable as those from other algorithms. One concern that158

many have with de novo clustering algorithms is that their output is sensitive to the initial order of159

the sequences
:::::::::
because

:::::
each

::::::::::
algorithm

:::::
must

::::::
break

::::
ties

:::::::
where

::
a

::::::::::
sequence

::::::
could

:::
be

:::::::::
assigned

:::
to160

::::::::
multiple

::::::
OTUs. An additional concern with

:::::::
specific

:::
to the OptiClust algorithm is that it may stabilize161

at a local optimum. To evaluate these concerns we compared the results obtained using ten162

randomizations of the order that sequences were given to the algorithm. The median the coefficient163

of variation across the six datasets for MCC values obtained from the replicate clusterings using164

OptiClust was 0.1% (Figure 1). We also measured the coefficient of variation for the number of165

OTUs across the six datasets for each method. The median coefficient of variation for the number of166

OTUs generated using OptiClust was 0.1%. Confirming our previous results
::::
(15), all of the methods167

we tested were stable to stochastic processes. Of the methods that involved randomization, the168

coefficient of variation for MCC values
::::
was

:
considerably smaller with OptiClust than the other169

methods and the coefficient of variation for the number of OTUs was comparable to the other170
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methods. The variation observed in clustering quality suggested that the algorithm does not appear171

to converge to a locally optimum MCC value. More importantly, the random variation does yield172

output of a similarly high quality.173

Time and memory required to complete Optimization-based clustering scales efficiently.174

Although not as important as the quality of clustering, the amount of time and memory required175

to assign sequences to OTUs is a legitimate concern. To
:::
We

::::::::::
observed

::::
that

::::
the

:::::
time

:::::::::
required176

::
to

:::::::::
complete

::::
the

::::::::::
OptiClust

::::::::::
algorithm

:::::::
(Figure

::::
1C)

:::::::::::
paralleled

:::
the

::::::::
number

:::
of

:::::::::
pairwise

::::::::::
distances

::::
that177

:::::
were

:::::::
smaller

:::::
than

:::::
0.03

:::::::
(Table

:::
1).

:::
To

::::::::
further evaluate how the speed and memory usage scaled178

with the number of sequences in the dataset, we measured the time required and maximum RAM179

usage to cluster 20, 40, 60, 80, and 100% of the unique sequences from each of the natural180

datasets using the OptiClust algorithm (Figure 2). Within each iteration of the algorithm, each181

sequence is compared to every other sequence and each comparison requires a recalculation of182

the confusion matrix. This would result in a worst case algorithmic complexity on the order of N3
:

3,183

where N is the number of unique sequences. Because the algorithm only needs to keep track of184

the sequence pairs that are within the threshold of each other, it is likely that the implementation of185

the algorithm is more efficient. To empirically determine the algorithmic complexity, we fit a power186

law function to the data in Figure 2A. We observed power coefficients between 1.7 and 2.5 for the187

marine and human datasets, respectively. The algorithm requires storing a matrix that contains the188

pairs of sequences that are close to each other as well as a matrix that indicates which sequences189

are clustered together. The memory required to store these matrices is on the order of N2
:

2, where190

N is the number of unique sequences. In fact, when we fit a power law function to the data in Figure191

2B, the power coefficients were 1.9. This analysis suggests that
::::::
Using

:::
the

:::::
four

:::::::
natural

:::::::::::
community192

:::::::::
datasets,

:
doubling the number of sequences in a dataset would increase the time required to193

cluster the data by 4 to 8-fold and increase the RAM required by 4-fold. It is possible that future194

improvements to the implementation of the algorithm could improve this performance.195

Cluster splitting heuristic generates OTUs that are as good as non-split approach. We196

previously described a heuristic to accelerate OTU assignments where sequences were first197

classified to taxonomic groups and within each taxon sequences were assigned to OTUs198

using the average neighbor clustering algorithm (13). This
:::::::
method

:::
is

:::::::
similar

::
to

::::::
open

::::::::::
reference199
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:::::::::
clustering

:::::::
except

:::::
that

::
in

::::
our

:::::::::
approach

:::
all

:::::::::::
sequences

::::
are

::::::::::
subjected

:::
to

:::
de

:::::
novo

:::::::::
clustering

:::::::::
following200

::::::::::::
classification

:::::::::
whereas

::
in

::::::
open

::::::::::
reference

::::::::::
clustering

::::
only

::::::
those

:::::::::::
sequences

::::
that

:::::::
cannot

:::
be

::::::::::
classified201

:::
are

::::::::::
subjected

:::
to

::::
de

:::::
novo

::::::::::
clustering.

:::::
Our

::::::::
cluster

::::::::
splitting

::::::::::
approach

:
accelerated the clustering202

and reduce
::::::::
reduced

:
the memory requirements because the number of unique sequences is203

::::
was effectively reduced by splitting sequences across taxonomic groups. Furthermore, because204

sequences in different taxonomic groups are assumed to belong to different OTUs they are205

independent, which permits parallelization and additional reduction in computation time. Reduction206

in clustering quality are
::
is encountered in this approach if there are errors in classification or if two207

sequences within the desired threshold belong to different taxonomic groups. It is expected that208

these errors would increase as the taxonomic level goes from kingdom to genus. To characterize209

the clustering quality, we
:::::::::
classified

:::::
each

:::::::::::
sequence

::
at

::::::
each

:::::::::::
taxonomic

:::::
level

::::
and

:
calculated the210

MCC values using OptiClust, average neighbor, and DGC with VSEARCH when splitting at each211

taxonomic level (Figure 3). For each method, the MCC values decreased as the taxonomic212

resolution increased; however, the decrease in MCC as
::::
was

:
not as large as the difference between213

clustering methods. As the resolution of the taxonomic levels increased, the clustering quality214

remained high, relative to clusters formed from the entire dataset (i.e. kingdom-level). The MCC215

values when splitting the datasets at the class and genus levels were within 98.0 and 93.0%,216

respectively, of the MCC values obtained from the entire dataset. These decreases in MCC217

value resulted in the formation of as many as 4.7 and 22.5% more OTUs, respectively, than were218

observed from the entire dataset.
::::::
These

:::::::
errors

:::::
were

:::::
due

:::
to

:::
the

::::::::::::
generation

::
of

:::::::::::
additional

:::::
false219

:::::::::
negatives

:::::
due

:::
to

::::::::
splitting

:::::::
similar

::::::::::::
sequences

::::
into

:::::::::
different

:::::::::::
taxonomic

::::::::
groups.

:
For the datasets220

included in the current analysis, the use of the cluster splitting heuristic was probably not worth the221

loss in clustering quality. However, as datasets become larger, it may be necessary to use the222

heuristic to clustering the data into OTUs.223

Discussion224

Myriad methods have been proposed for assigning 16S rRNA gene sequences to OTUsthat each .225

:::::
Each

:
claim improved performance based on speed, memory usage, representation of taxonomic226
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information, and number of OTUs. Each of these metrics is subjective and do not actually indicate227

the quality of the clustering. This led us to propose using the MCC as a metric for assessing228

the quality of clustering, post hoc. Here, we described a new clustering method that seeks to229

optimize clustering based on an objective criterion that measures clustering quality in real time.230

In the OptiClust algorithm
:
, clustering is driven by optimizing a metric that assesses whether any231

two sequences should be grouped into the same OTU. The result is clusters that are significantly232

more robust and is efficient in the time and memory required to cluster the sequences into OTUs.233

This makes it more tractable to analyze large datasets without sacrificing clustering quality as was234

previously necessary using heuristic methods.235

The cluster optimization procedure is dependent on the metric that is chosen for optimization.236

We employed the MCC because it includes the four values from a confusion matrix. Other237

algorithms such as the furthest neighbor and nearest neighbor algorithms minimize the number238

of FP and FN, respectively; however, these suffer because the number of FN and FP are not239

controlled,
:::::::::::::

respectively
:
(13, 15

::
16). Alternatively, one could optimize based on the sensitivity,240

specificity, or accuracy, which are each based on two values from the confusion matrix or they could241

optimize based on the F1 score
:::::::::
F1-score, which is based on three values from the confusion matrix.242

Because these metrics do not balance all four parameters equally, it is likely that one parameter243

will dominate in the optimization procedure. For example, optimizing for sensitivity could lead to244

a large number of FPs. Since we would like to minimize both FPs and FNs and not just the total245

number of false assignments,
:::::
More

::::
FPs

::::::::::
increases

::::
the

::::::::
number

::
of

:::::::
OTUs

:::::
while

::::::
more

::::
FNs

::::::::::
collapses246

::::::
OTUs

:::::::::
together.

:::
It
:::

is
::::::::
difficult

::
to

:::::::
know

::::::
which

:::
is

:::::::
worse

::::::
since

:::::::::::
community

:::::::::
richness

:::::
and

:::::::::
diversity247

:::
are

:::::::
linked

::
to

::::
the

:::::::::
number

::
of

:::::::
OTUs.

::::
In

:::::::::
addition,

:::::::::::
increasing

::::
the

::::::::
number

:::
of

:::::
FNs

::::::
would

::::::::::
overstate248

:::
the

::::::::::::
differences

:::::::::
between

:::::::::::::
communities

:::::
while

:::::::::::
increasing

::::
the

::::::::
number

:::
of

:::::
FPs

::::::
would

::::::::::
overstate

:::::
their249

:::::::::
similarity.

:::::::::::
Therefore,

::
it
::
is
::::::::::
important

:::
to

::::::
jointly

::::::::::
minimize

::::
the

::::::::
number

::
of

:::::
FPs

::::
and

::::::
FNs.

:::::
With

::::
this

:::
in250

:::::
mind,

:
we decided to optimize utilizing the MCC. It is possible that other metrics

::::
that

::::::::
balance

::::
the251

::::
four

:::::::::::
parameters

:
could be developed and employed for optimization of the clustering.252

The OptiClust algorithm is relatively simple. For each sequence it effectively ask
::::
asks

:
whether253

the MCC value will increase if the sequence is moved to a different OTU including creating a new254

OTU. If the value does not change, it remains in the current OTU. The algorithm repeats until the255

11



MCC value stabilizes. Assuming that the algorithm is seeded with each sequence in a separate256

OTU, it does not appear that the algorithm converges to a local optimum. Furthermore, execution257

of the algorithm with different random number generator seeds produces OTU assignments of258

consistently high quality. Future improvements to the implementation of the algorithm could provide259

optimization to further improve its speed and susceptibility to find a local optimum. Users are260

encourage
:::::::::::
encouraged

:
to repeat the OTU assignment several times to confirm that they have found261

the best OTU assignments.262

Our previous MCC-based analysis of clustering algorithms indicated that the average neighbor263

algorithm consistently produced the best OTU assignments with the DGC-based method using264

USEARCH also producing robust OTU assignments. The challenge in using the average neighbor265

algorithm is that it requires a large amount of RAM and is computationally demanding. This led to266

the development of a splitting approach that divides the clustering across distinct taxonomic groups267

(13). The improved performance provided by the OptiClust algorithm likely makes such splitting268

unnecessary for most current datasets. We have demonstrated that although the OTU assignments269

made at the genus level are still better than that of other methods, the quality is not as good as that270

found without splitting. The loss of quality is likely due to misclassification because of limitations271

in the clustering algorithms and reference databases. The practical significance of such small272

differences in clustering quality remain to be determined; however, based on the current analysis, it273

does appear that the number of OTUs is artificially inflated. Regardless, the best clustering quality274

should be pursued given the available computer resources.275

The time and memory required to execute the OptiClust algorithm scaled proportionally to the276

number of unique sequences raised to the second power. The power for the time requirement is277

affected by the similarity of the sequences in the dataset with datasets containing more similar278

sequences having a higher power. Also, the number of unique sequences is the basis for both the279

amount of time and memory required to complete the algorithm. Both the similarity of sequences280

and number of unique sequences can be driven by the sequencing error since any errors will281

increase the number of unique sequences and these sequences will be closely related to the282

perfect sequence. This underscores the importance of reducing the noise in the sequence data (7).283

If sequencing errors are not remediated and are relatively randomly distributed, then it is likely that284
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the algorithm will require an unnecessary amount of time and RAM to complete.285

The rapid expansion in sequencing capacity has demanded that the algorithms used to assign286

16S rRNA gene sequences to OTUs be efficient while maintaining robust assignments. Although287

database-based approaches have been proposed to facilitate this analysis, they are limited by288

their limited coverage of bacterial taxonomy and by the inconsistent process used to name taxa.289

The ability to assign sequences to OTUs using an algorithm that optimizes clustering by directly290

measuring quality will significantly enhance downstream analysis. The development of the OptiClust291

algorithm represents a significant advance that is likely to have numerous other applications.292

Materials and Methods293

Sequence data and processing steps. To evaluate the OptiClust and the other algorithms we294

created two synthetic sequence collections and four sequence collections generated from previously295

published studies. The V4 region of the 16S rRNA gene was used from all datasets because it296

is a popular region that can be fully sequenced with two-fold coverage using the commonly used297

MiSeq sequencer from Illumina (7). The method for generating the simulated datasets followed298

the approach used by Kopylova et al. (33
::
34) and Schloss (35

:::
36). Briefly, we randomly selected299

10,000 uniques V4 fragments from 16S rRNA gene sequences that were unique from the SILVA300

non-redundant database (38). A community with an even relative abundance profile was generated301

by specifying that each sequence had a frequency of 100 reads. A community with a staggered302

relative abundance profile was generated by specifying that the abundance of each sequence was303

a randomly drawn integer sampled from a uniform distribution between 1 and 200. Sequence304

collections collected from human feces (39), murine feces (40), soil (41), and seawater (42) were305

used to characterize the algorithms’ performance with natural communities. These sequence306

collections were all generated using paired 150 or 250 nt reads of the V4 region. We re-processed307

all of the reads using a common analysis pipeline that included quality score-based error correction308

(7), alignment against a SILVA reference database (38, 43), screening for chimeras using UCHIME309

(9), and classification using a naive Bayesian classifier with the RDP training set requiring an 80%310

confidence score (10).311
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Implementation of clustering algorithms. In addition to the OptiClust algorithm we evaluated312

ten different de novo clustering algorithms. These included three hierarchical algorithms, average313

neighbor, nearest neighbor, and furthest neighbor, which are implemented in mothur (v.1.39.0)314

(11). Seven heuristic methods were also used including abundance-based greedy clustering (AGC)315

and (distance-based greedy clustering) DGC as implemented in USEARCH (v.6.1) (16
:::
17) and316

VSEARCH (v.2.3.3) ((17
::
18)], OTUCLUST (v.0.1) (18

::
19), SumaClust (v.1.0.20), and Swarm (v.2.1.9)317

(19
:::
20). With the exception of Swarm each of these methods uses distance-based thresholds to318

report OTU assignments.
:::
We

:::::
also

::::::::::
evalauted

::::
the

::::::
ability

:::
of

::::::::::
OptiClust

::
to

:::::::::
optimize

::
to

::::::::
metrics

::::::
other319

::::
than

::::::
MCC.

:::::::
These

:::::::::
included

:::::::::
accuracy,

::::::::::
F1-score,

:::::::::
negative

::::::::::
predictive

::::::
value,

::::::::
positive

::::::::::
predictive

::::::
value,320

:::::
false

:::::::::
discovery

:::::
rate,

::::::::::
senitivity,

::::::::::
specificity,

::::
the

:::::
sum

::
of

:::::
TPs

::::
and

::::::
TNs,

:::
the

:::::
sum

:::
of

::::
FPs

::::
and

::::::
FNs,

::::
and321

:::
the

::::::::
number

::
of

::::::
FNs,

:::::
FPs,

:::::
TNs,

::::
and

:::::
TPs

:::::::
(Figure

::::
S1;

::::::
Table

:::::
S1).322

Benchmarking. We evaluated the quality of the sequence clustering, reproducibility of the323

clustering, the speed of clustering, and the amount of memory required to complete the clustering.324

To assess the quality of the clusters generated by each method, we counted the cells within a325

confusion matrix that indicated how well the clusterings represented the distances between the pair326

of sequences (13). Pairs of sequences that were in the same OTU and had a distance less than327

3% were true positives (TPs), those that were in different OTUs and had a distance greater than328

3% were true negatives (TNs), those that were in the same OTU and had a distance greater than329

3% were false positives (FPs), and those that were in different OTUs and had a distance less than330

3% were false negatives (FNs). To synthesize the matrix into a single metric we used the Matthews331

Correlation Coefficient
:::::::::::
correlation

::::::::::
coefficient

:
using the sens.spec command in mothur using the332

following equations.333

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

To assess the reproducibility of the algorithms we randomized the starting order of each sequence334

collection ten times and ran each algorithm on each randomized collection. We then measured the335

MCC for each randomization and quantified their percent coefficient of variation (% CV; 100 times336

the ratio of the standard deviation to the mean).337
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To assess how the the memory and time requirements scaled with the number of sequences338

included in each sequence collection, we randomly subsampled 20, 40, 60, or 80% of the unique339

sequences in each collection. We obtained 10 subsamples at each depth for each dataset and340

ran each collection (N= 50 = 5 sequencing depths x 10 replicates) through each of the algorithms.341

We used the timeout
::::::::
timeout script to quantify the maximum RAM used and the amount of time342

required to process each sequence collection (https://github.com/pshved/timeout). We limited each343

algorithm to 45 GB of RAM and 50 hours using a single processor.344

Data and code availability. The workflow utilized commands in GNU make (v.3.81), GNU bash345

(v.4.1.2), mothur (v.1.39.0) (11), and R (v.3.3.2) (44). Within R we utilized the wesanderson (v.0.3.2)346

(45), dplyr (v.0.5.0) (46), tidyr (v.0.6.0) (47), cowplot (v.0.6.3) (48), and ggplot2 (v.2.2.0.9000) (49)347

packages. A reproducible version of this manuscript and analysis is available at https://github.com/348

SchlossLab/Westcott_OptiClust_mSphere_2017.349
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Table 1. Description of datasets used to evaluate the OptiClust algorithm and compare its354

performance to other algorithms. Each dataset contains sequences from the V4 region of355

the 16S rRNA gene. The
:::::::
number

:::
of

::::::::::
distances

:::
for

:::::
each

::::::::
dataset

::::
are

::::::
those

::::
that

::::::
were

::::
less

:::::
than

:::
or356

:::::
equal

:::
to

::::::
0.03.

:::::
The

::::::::
number

:::
of

::::::
OTUs

:::::
were

::::::::::::
determined

::::::
using

::::
the

::::::::::
OptiClust

::::::::::
algorithm.

:::::
The

:
even357

and staggered datasets were generated by extracting the V4 region from full length reference358

sequences and the datasets from the natural communities were generated by sequencing the V4359

region using a Illumina MiSeq with either paired 150 or 250 nt reads.360

Dataset (Ref.) Read Length Samples Total Seqs. Unique Seqs.
::::::::::
Distances

:::::
OTUs

Soil (41) 150 18 948,243 143,677
:::::::::::
11,775,167

: :::::::
40,216

Marine (42) 250 7 1,384,988 75,923
:::::::::::
12,908,857

: :::::::
25,787

Mice (40) 250 360 2,825,495 32,447
::::::::::
6,988,306

:::::
2,658

Human (39) 250 489 20,951,841 121,281
:::::::::::
38,544,315

: :::::::
11,648

Even (33, 35
:::
34,

:::
36) NA NA 1,155,800 11,558

:::::::
29,694

: :::::
7,651

Staggered (33, 35
:::
34,

:::
36) NA NA 1,156,550 11,558

:::::::
29,694

: :::::
7,653
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361

Figure 1. Comparison of de novo clustering algorithms. Plot of MCC (A), number of OTUs362

(B), and execution times (C) for the comparison of de novo clustering algorithms when applied to363

four natural and two synthetic datasets. The first three columns of each figure contain the results364

of clustering the datasets (i) seeding the algorithm with one sequence per OTU and allowing the365

algorithm to proceed until the MCC value no longer changed; (ii) seeding the algorithm with one366

sequence per OTU and allowing the algorithm to proceed until the MCC changed by less than367

0.0001; (iii) seeding the algorithm with all of the sequences in one OTU and allowing the algorithm368

to proceed until the MCC value no longer changed. The human dataset could not be clustered by369

the average neighbor, Sumaclust, USEARCH, or OTUCLUST with less than 45 GB of RAM or 50370

hours of execution time. The median of 10 re-orderings of the data is presented for each method371

and dataset. The range of observed values is indicated by the error bars, which are typically smaller372

than the plotting symbol.373
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374

Figure 2. OptiClust performance The average execution time (A) and memory usage (B) required375

to cluster the four natural datasets. The confidence intervals indicate the range between the376

minimum and maximum values. The y-axis is scaled by the square root to demonstrate the377

relationship between the time and memory requirements relative to the number of unique sequences378

squared.379
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380

Figure 3. Effects of taxonomically splitting the datasets on clustering quality. The datasets381

were split at each taxonomic level based on their classification using a naive Bayesian classifier382

and clustered using average neighbor, VSEARCH-based DGC, and OptiClust.383
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384

:::::::
Figure

::::
S1.

:::::
The

:::::::::::
OptiClust

::::::::::
algorithm

:::
is

:::::
able

:::
to

:::::::::::
effectively

::::::::
cluster

::::::::::::
sequences

:::::
into

:::::::
OTUs

:::
by385

:::::::::::
minimizing

::::
or

::::::::::::
maximizing

::::::::::::
numerous

:::::::::
metrics.

::::
Plot

:::
of

::::::
MCC

::::
(A),

::::::::
number

:::
of

:::::::
OTUs

::::
(B),

:::::
and386

:::::::::
execution

::::::
times

::::
(C)

:::
for

::::
the

::::::::::::
comparison

::
of

:::::::
output

:::::
from

:::
the

::::::::::
OptiClust

::::::::::
algorithm

::::::
when

::
to

:::::::::::
minimizing387

::
or

::::::::::::
maximizing

::
a

:::::::
variety

:::
of

::::::::::::
parameters

::::::
when

::::::::
applied

::
to

:::::
four

:::::::
natural

:::::
and

::::
two

::::::::::
synthetic

:::::::::
datasets.388

::::::
Within

::::::::
mothur,

:::::
OTU

:::::::::::::
assignments

::::
can

:::::
also

:::
be

::::::
made

:::::
using

::::::
other

::::::::
metrics

:::::::::
including

:::::::::::
minimizing

:::::
false389

::::::::
positives

:::::
and

::::::::::::
maximizing

::::
the

::::::::::
specificity,

:::::::::
positive

::::::::::
predictive

:::::::
value,

::::
and

:::::
true

:::::::::::
negatives;

:::::::::
however,390

:::::
these

::::
all

::::::::
resulted

:::
in

:::::::::::
sequences

:::::::
being

::::::::::
assigned

::
to

::::::::::
separate

:::::::
OTUs,

:::::::
which

::::::::
resulted

:::
in

:::
no

::::::
false391

::::::::
positives

:::::
and

:::
the

::::::::::
maximum

:::::::::
number

::
of

::::
true

:::::::::::
negatives.

::::
The

::::::
error

:::::
bars

::::::::
indicate

:::
the

:::::::
range

::
of

:::::::
values392

:::::::::
observed

:::
for

:::
10

:::::::::::
replicates.393
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394

:::::::
Figure

::::
S2.

::::
The

:::::::::::
OptiClust

::::::::::
algorithm

::::::::
rapidly

:::::::::::
converges

:::
to

::::::::::
optimize

:::
the

:::::::::::
Matthews

::::::::::::
correlation395

::::::::::::
coefficient.

:::
The

::::
six

:::::::::
datasets

:::::
were

::::::::::
clustered

::::
into

::::::
OTUs

::::::
using

::::
the

:::::::::
OptiClust

::::::::::
algorithm

::::::::
seeking

:::
to396

:::::::::
maximize

::::
the

::::::::::
Matthews

:::::::::::
correlation

:::::::::::
coefficient.

:::::
This

::::
was

:::::::::
repeated

:::
10

::::::
times

:::
for

::::::
each

::::::::
dataset.

:
397
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Supplemental text. Worked example of how OptiClust algorithm clusters sequences into OTUs.398

::::::
Table

:::
S1.

:::::::::::
Summary

:::
of

::::
the

::::::::
average

:::::::::
number

::
of

:::::
true

:::::::::::
positives,

:::::
true

:::::::::::
negatives,

:::::
false

:::::::::::
positives,399

:::::
false

:::::::::::
negatives

::::
and

::::
the

::::::::::
resulting

::::::::::
Matthews

::::::::::::
correlation

::::::::::::
coefficient

:::
for

::::::
each

::
of

::::
the

:::::::::::
clustering400

:::::::::
methods

:::::
that

:::::
were

::::::::::
analyzed

:::
in

::::
this

:::::::
study

:::
for

::::::
each

:::
of

::::
the

:::
six

::::::::::
datasets.

::::::
Blank

:::::::
values

::::::::
indicate401

::::
that

::::::
those

::::::::::
conditions

::::::
could

::::
not

:::
be

::::::::::
completed

:::
in

:::
50

::::::
hours

::::
with

:::
45

::::
GB

:::
of

::::::
RAM.402
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