
SISL
The SINTEF Spline Library

Reference Manual

(version 4.4)

SINTEF ICT, Applied Mathematics
March 18, 2005

Contents

1 Introduction 1

1.1 C Syntax Used in Manual . 2

1.2 Dynamic Allocation in SISL . 2

1.3 Creating a Program . 3

1.4 An Example Program . 4

1.5 B-spline Curves . 8

1.5.1 B-splines . 9

1.5.2 The Control Polygon . 11

1.5.3 The Knot Vector . 12

1.5.4 NURBS Curves . 13

1.6 B-spline Surfaces . 14

1.6.1 The Basis Functions . 16

1.6.2 NURBS Surfaces . 17

2 Curve Definition 19

2.1 Interpolation . 19

2.1.1 Compute a curve interpolating a straight line between two
points. 19

2.1.2 Compute a curve interpolating a set of points, automatic
parameterization. 21

2.1.3 Compute a curve interpolating a set of points, parameter-
ization as input. 25

2.1.4 Compute a curve by Hermite interpolation, automatic parameteriza-
tion. 28

2.1.5 Compute a curve by Hermite interpolation, parameterization
as input. 30

2.1.6 Compute a fillet curve based on parameter value. 32

2.1.7 Compute a fillet curve based on points. 34

2.1.8 Compute a fillet curve based on radius. 38

2.1.9 Compute a circular fillet between a 2D curve and a circle. . 41

2.1.10 Compute a circular fillet between two 2D curves. 43

i

ii CONTENTS

2.1.11 Compute a circular fillet between a 2D curve and a 2D line. 46

2.1.12 Compute a blending curve between two curves. 49

2.2 Approximation . 52

2.2.1 Approximate a circular arc with a curve. 52

2.2.2 Approximate a conic arc with a curve. 55

2.2.3 Compute a curve using the input points as controlling vertices,
automatic parameterization. 57

2.2.4 Approximate the offset of a curve with a curve. 59

2.2.5 Approximate a curve with a sequence of straight lines. . . . 62

2.3 Mirror a Curve . 63

2.4 Conversion . 64

2.4.1 Convert a curve of order up to four, to a sequence of cubic
polynomials. 64

2.4.2 Convert a curve to a sequence of Bezier curves. 65

2.4.3 Pick out the next Bezier curve from a curve. 66

2.4.4 Express a curve using a higher order basis. 68

2.4.5 Express the “i”-th derivative of an open curve as a curve. . 69

2.4.6 Express a 2D or 3D ellipse as a curve. 70

2.4.7 Express a conic arc as a curve. 72

2.4.8 Express a truncated helix as a curve. 74

3 Curve Interrogation 77

3.1 Intersections . 77

3.1.1 Intersection between a curve and a point. 77

3.1.2 Intersection between a curve and a straight line or a plane. 79

3.1.3 Convert a curve/line intersection into a two-dimensional curve/origo
intersection . 81

3.1.4 Intersection between a curve and a 2D circle or a sphere. . 83

3.1.5 Intersection between a curve and a quadric curve. 86

3.1.6 Intersection between two curves. 88

3.2 Compute the Length of a Curve . 90

3.3 Check if a Curve is Closed . 91

3.4 Check if a Curve is Degenerated. 92

3.5 Pick the Parameter Range of a Curve 93

3.6 Closest Points . 94

3.6.1 Find the closest point between a curve and a point. 94

3.6.2 Find the closest point between a curve and a point. Simple
version. 97

3.6.3 Local iteration to closest point between point and curve. . . 99

3.6.4 Find the closest points between two curves. 101

3.6.5 Find a point on a 2D curve along a given direction. 104

CONTENTS iii

3.7 Find the Absolute Extremals of a Curve. 105

3.8 Area between Curve and Point . 108
3.8.1 Calculate the area between a 2D curve and a 2D point. . . 108
3.8.2 Calculate the weight point and rotational momentum of an

area between a 2D curve and a 2D point. 110

3.9 Bounding Box . 112
3.9.1 Bounding box object. 112
3.9.2 Create and initialize a curve/surface bounding box instance. 113

3.9.3 Find the bounding box of a curve. 114
3.10 Normal Cone . 115

3.10.1 Normal cone object. 115

3.10.2 Create and initialize a curve/surface direction instance. . . 116
3.10.3 Find the direction cone of a curve. 117

4 Curve Analysis 119
4.1 Curvature Evaluation . 119

4.1.1 Evaluate the curvature of a curve at given parameter values. 119
4.1.2 Evaluate the torsion of a curve at given parameter values. . 121
4.1.3 Evaluate the Variation of Curvature (VoC) of a curve at

given parameter values. 122

4.1.4 Evaluate the Frenet Frame (t,n,b) of a curve at given pa-
rameter values. 123

4.1.5 Evaluate geometric properties at given parameter values. . 125

5 Curve Utilities 127
5.1 Curve Object . 127

5.1.1 Create new curve object. 129

5.1.2 Make a copy of a curve. 131
5.1.3 Delete a curve object. 132

5.2 Evaluation . 133

5.2.1 Compute the position and the left-hand derivatives of a
curve at a given parameter value. 133

5.2.2 Compute the position and the right-hand derivatives of a
curve at a given parameter value. 135

5.2.3 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the
left hand side. 137

5.2.4 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the
right hand side. 140

5.2.5 Evaluate the curve over a grid of m points. Only positions
are evaluated. 143

iv CONTENTS

5.3 Subdivision . 144

5.3.1 Subdivide a curve at a given parameter value. 144

5.3.2 Insert a given knot into the description of a curve. 146

5.3.3 Insert a given set of knots into the description of a curve. . 147

5.3.4 Split a curve into two new curves. 149

5.3.5 Pick a part of a curve. 150

5.3.6 Pick a part of a closed curve. 151

5.4 Joining . 152

5.4.1 Join two curves at specified ends. 152

5.4.2 Join two curves at closest ends. 154

5.5 Reverse the Orientation of a Curve. 156

5.6 Extend a B-spline Curve. 157

5.7 Drawing . 159

5.7.1 Draw a sequence of straight lines. 159

5.7.2 Basic graphics routine template - move plotting position. . 160

5.7.3 Basic graphics routine template - plot line. 161

6 Surface Definition 163

6.1 Interpolation . 163

6.1.1 Compute a surface interpolating a set of points, automatic
parameterization. 163

6.1.2 Compute a surface interpolating a set of points, parameter-
ization as input. 167

6.1.3 Compute a surface interpolating a set of points, derivatives
as input. 171

6.1.4 Compute a surface interpolating a set of points, derivatives
and parameterization as input. 174

6.1.5 Compute a surface by Hermite interpolation, automatic parameter-
ization. 177

6.1.6 Compute a surface by Hermite interpolation, parameter-
ization as input. 179

6.1.7 Create a lofted surface from a set of B-spline input curves. 181

6.1.8 Create a lofted surface from a set of B-spline input curves
and parametrization. 184

6.1.9 Create a rational lofted surface from a set of rational input-
curves . 187

6.1.10 Compute a rectangular blending surface from a set of B-spline
input curves. 188

6.1.11 Compute a first derivative continuous blending surface set,
over a 3-, 4-, 5- or 6-sided region in space, from a set of
B-spline input curves. 191

CONTENTS v

6.1.12 Compute a surface, representing a Gordon patch, from a set
of B-spline input curves. 194

6.2 Approximation . 196

6.2.1 Compute a surface using the input points as control vertices,
automatic parameterization. 196

6.2.2 Compute a linear swept surface. 199

6.2.3 Compute a rotational swept surface. 201

6.2.4 Compute a surface approximating the offset of a surface. . . 203

6.3 Mirror a Surface . 206

6.4 Conversion . 207

6.4.1 Convert a surface of order up to four to a mesh of Coons
patches. 207

6.4.2 Convert a surface to a mesh of Bezier surfaces. 209

6.4.3 Pick the next Bezier surface from a surface. 210

6.4.4 Express a surface using a higher order basis. 213

6.4.5 Express the “i,j”-th derivative of an open surface as a surface.214

6.4.6 Express the octants of a sphere as a surface. 215

6.4.7 Express a truncated cylinder as a surface. 217

6.4.8 Express the octants of a torus as a surface. 219

6.4.9 Express a truncated cone as a surface. 222

7 Surface Interrogation 225

7.1 Intersection Curves . 225

7.1.1 Intersection curve object. 225

7.1.2 Create a new intersection curve object. 227

7.1.3 Delete an intersection curve object. 229

7.1.4 Free a list of intersection curves. 230

7.2 Find the Intersections . 231

7.2.1 Intersection between a curve and a straight line or a plane. 231

7.2.2 Intersection between a curve and a 2D circle or a sphere. . 234

7.2.3 Intersection between a curve and a cylinder. 237

7.2.4 Intersection between a curve and a cone. 240

7.2.5 Intersection between a curve and an elliptic cone. 243

7.2.6 Intersection between a curve and a torus. 245

7.2.7 Intersection between a surface and a point. 247

7.2.8 Intersection between a surface and a straight line. 250

7.2.9 Newton iteration on the intersection between a 3D NURBS
surface and a line. 253

7.2.10 Convert a surface/line intersection into a two-dimensional
surface/origo intersection 255

7.2.11 Intersection between a surface and a circle. 257

vi CONTENTS

7.2.12 Intersection between a surface and a curve. 260

7.3 Find the Topology of the Intersection 263

7.3.1 Find the topology for the intersection of a surface and a plane.263

7.3.2 Find the topology for the intersection of a surface and a sphere.266

7.3.3 Find the topology for the intersection of a surface and a
cylinder. 268

7.3.4 Find the topology for the intersection of a surface and a cone.271

7.3.5 Find the topology for the intersection of a surface and an
elliptic cone. 273

7.3.6 Find the topology for the intersection of a surface and a torus.276

7.3.7 Find the topology for the intersection between two surfaces. 278

7.4 Find the Topology of a Silhouette 281

7.4.1 Find the topology of the silhouette curves of a surface, using
parallel projection. 281

7.4.2 Find the topology of the silhouette curves of a surface, using
perspective projection. 283

7.4.3 Find the topology of the circular silhouette curves of a surface.286

7.5 Marching . 288

7.5.1 March an intersection curve between a surface and a plane. 288

7.5.2 March an intersection curve between a surface and a sphere. 292

7.5.3 March an intersection curve between a surface and a cylinder.296

7.5.4 March an intersection curve between a surface and a cone. . 299

7.5.5 March an intersection curve between a surface and an elliptic
cone. 302

7.5.6 March an intersection curve between a surface and a torus. 305

7.5.7 March an intersection curve between two surfaces. 309

7.6 Marching of Silhouettes . 312

7.6.1 March a silhouette curve of a surface, using parallel projection.312

7.6.2 March a silhouette curve of a surface, using perspective projection.315

7.6.3 March a circular silhouette curve of a surface. 318

7.7 Check if a Surface is Closed or has Degenerate Edges. 322

7.8 Pick the Parameter Ranges of a Surface 324

7.9 Closest Points . 325

7.9.1 Find the closest point between a surface and a point. 325

7.9.2 Find the closest point between a surface and a point. Simple
version. 328

7.9.3 Local iteration to closest point bewteen point and surface. . 330

7.10 Find the Absolute Extremals of a Surface. 332

7.11 Bounding Box . 335

7.11.1 Bounding box object. 335

7.11.2 Create and initialize a curve/surface bounding box instance. 336

CONTENTS vii

7.11.3 Find the bounding box of a surface. 337

7.12 Normal Cone . 338
7.12.1 Normal cone object. 338
7.12.2 Create and initialize a curve/surface direction instance. . . 339

7.12.3 Find the direction cone of a surface. 340

8 Surface Analysis 343
8.1 Curvature Evaluation . 343

8.1.1 Gaussian curvature of a spline surface. 343
8.1.2 Mean curvature of a spline surface. 346

8.1.3 Absolute curvature of a spline surface. 348
8.1.4 Total curvature of a spline surface. 350
8.1.5 Second order Mehlum curvature of a spline surface. 352

8.1.6 Third order Mehlum curvature of a spline surface. 354
8.1.7 Gaussian curvature of a B-spline or NURBS surface as a

NURBS surface. 356
8.1.8 Mehlum curvature of a B-spline or NURBS surface as a

NURBS surface. 358
8.1.9 Curvature on a uniform grid of a NURBS surface. 360

8.1.10 Principal curvatures of a spline surface. 362
8.1.11 Normal curvature of a spline surface. 365
8.1.12 Focal values on a uniform grid of a NURBS surface. 368

9 Surface Utilities 371
9.1 Surface Object . 371

9.1.1 Create a new surface object. 373
9.1.2 Make a copy of a surface object. 376
9.1.3 Delete a surface object. 377

9.2 Evaluation . 378
9.2.1 Compute the position, the derivatives and the normal of a

surface at a given parameter value pair. 378
9.2.2 Compute the position and derivatives of a surface at a given

parameter value pair. 381

9.2.3 Compute the position and the left- or right-hand derivatives
of a surface at a given parameter value pair. 384

9.2.4 Compute the position and the derivatives of a surface at a
given parameter value pair. 388

9.2.5 Evaluate the surface pointed at by ps1 over an m1 * m2 grid
of points (x[i],y[j]). Compute ider derivatives and normals if
suitable. 393

9.3 Subdivision . 395

9.3.1 Subdivide a surface along a given parameter line. 395

viii CONTENTS

9.3.2 Insert a given set of knots, in each parameter direction, into
the description of a surface. 397

9.4 Picking Curves from a Surface . 399
9.4.1 Pick a curve along a constant parameter line in a surface. . 399
9.4.2 Pick the curve lying in a surface, described by a curve in the

parameter plane of the surface. 400
9.5 Pick a Part of a Surface. 403
9.6 Turn the Direction of the Surface Normal Vector. 405
9.7 Drawing . 406

9.7.1 Draw a sequence of straight lines. 406
9.7.2 Basic graphics routine template - move plotting position. . 407
9.7.3 Basic graphics routine template - plot line. 408
9.7.4 Draw constant parameter lines in a surface using piecewise

straight lines. 409
9.7.5 Draw constant parameter lines in a surface bounded by a

closed curve in the parameter plane of the surface. 411

10 Data Reduction 413
10.1 Curves . 413

10.1.1 Data reduction: B-spline curve as input. 413
10.1.2 Data reduction: Point data as input. 416
10.1.3 Data reduction: Points and tangents as input. 419
10.1.4 Degree reduction: B-spline curve as input. 422

10.2 Surfaces . 424
10.2.1 Data reduction: B-spline surface as input. 424
10.2.2 Data reduction: Point data as input. 428
10.2.3 Data reduction: Points and tangents as input. 432
10.2.4 Degree reduction: B-spline surface as input. 436

11 Appendix: Error Codes 439

Chapter 1

Introduction

SISL is a geometric toolkit to model with curves and surfaces. It is a library of C
functions to perform operations such as the definition, intersection and evaluation
of NURBS (Non-Uniform Rational B-spline) geometries. Since many applications
use implicit geometric representation such as planes, cylinders, tori etc., SISL can
also handle the interaction between such geometries and NURBS.

Throughout this manual, a distinction is made between NURBS (the default)
and B-splines. The term B-splines is used for non-uniform non-rational (or poly-
nomial) B-splines. B-splines are used only where it does not make sense to employ
NURBS (such as the approximation of a circle by a B-spline) or in cases where the
research community has yet to develop stable technology for treating NURBS. A
NURBS require more memory space than a B-spline, even when the extra degrees
of freedom in a NURBS are not used. Therefore the routines are specified to give
B-spline output whenever the extra degrees of freedom are not required.

Transferring a B-spline into NURBS format is done by constructing a new
coefficient vector using the original B-spline coefficients and setting all the rational
weights equal to one (1). This new coefficient vector is then given as input to the
routine for creating a new curve/surface object while specifying that the object to
be created should be of the NURBS (rational B-spline) type.

To approximate a NURBS by a B-spline, use the offset calculation routines
with an offset of zero.

The routines in SISL are designed to function on curves and surfaces which
are at least continuously differentiable. However many routines will also handle
continuous curves and surfaces, including piecewise linear ones.

SISL is divided into seven modules, partly in order to provide a logical struc-
ture, but also to enable users with a specific application to use subsets of SISL.
There are three modules dealing with curves, three with surfaces, and one module
to perform data reduction on curves and surfaces (this last module is largely in

1

2 CHAPTER 1. INTRODUCTION

Fortran). The modules for curves and surfaces focus on functions for creation and
definition, intersection and interrogation, and general utilities.

The three important data structures used by SISL are SISLCurve, SISLSurf,
and SISLIntcurve. These are defined in the Curve Utilities, Surface Utilities, and
Surface Interrogation modules respectively. It is important to remember to always
free these structures and also to free internally allocated structures used to pass
results to the application, otherwise strange errors might result.

Each chapter in this manual contains information concerning the top level func-
tions of each module. Lower level functions not usually required by an application
are not included. Each top level function is documented by describing the purpose,
the input and output arguments and an example of use. To get you started, this
chapter contains an Example Program.

1.1 C Syntax Used in Manual

This manual uses the K&R style C syntax for historic reasons, but both the
ISO/ANSI and the K&R C standards are supported by the library and the in-
clude files.

1.2 Dynamic Allocation in SISL

In the description of all the functions in this manual, a convention exists on when to
declare or allocate arrays/objects outside a function and when an array is allocated
internally. NB! When memory for output arrays/objects are allocated inside a
function you must remember to free the allocated memory when it is not in use
any more.

The convention is the following:

• If [] is used in the synopsis and in the example it means that the array has
to be declared or allocated outside the function.

• If ∗ is used it means that the function requires a pointer and that the allo-
cation will be done outside the function if necessary.

• When either an array or an array of pointers or an object is to be allocated
in a function, two or three stars are used in the synopsis. To use the function
you declare the parameter with one star less and use & in the argument list.

• For all output variables except arrays or objects that are declared or allocated
outside the function you have to use & in the argument list.

1.3. CREATING A PROGRAM 3

1.3 Creating a Program

In order to access SISL from your program you need only one inclusion, namely
the header file sisl.h. The statement

#include "sisl.h"

must be written at the top of your main program. In this header file all types are
defined. It also contains all the SISL top level function declarations.

To compile the calling program you merely need to remember to include the
name of the directory where sisl.h resides. For example, if the directory is called
sisldir then,

$ cc -c -Isisldir prog1.c

will compile the source code prog1.c to produce prog1.o.
In order to build the executable, the c parts of the SISL library libsislc.a must

be included. Thus

$ cc prog1.o -Lsisldir -lsisl -o prog1

will build the test program prog1. See the next section for an example.

4 CHAPTER 1. INTRODUCTION

1.4 An Example Program

To clarify the previous section here is an example program designed to test the
SISL algorithm for intersecting a cone with a B-spline curve. The program calls
the SISL routines newCurve() and s1373().

#include "sisl.h"

main()

{

SISLCurve *pc=NULL;

double aepsco,aepsge,top[3],axispt[3],conept[3];

double st[100],stcoef[100],*spar;

int kstat;

int cone_exists=FALSE;

int kk,kn,kdim,ki;

int kpt,kcrv;

SISLIntcurve **qrcrv;

char ksvar[100];

kdim=3;

aepsge=0.001; /* geometric tolerance */

aepsco=0.000001; /* computational tolerance */

loop:

printf("\n cu - define a new B-spline curve");

printf("\n co - define a new cone");

printf("\n i - intersect the B-spline curve with the cone");

printf("\n q - quit");

printf("\n> ");

scanf("%s",ksvar);

if (ksvar[0] == ’c’ && ksvar[1] == ’u’)

1.4. AN EXAMPLE PROGRAM 5

{

printf("\n Give number of vertices, order of curve: ");

scanf("%d %d", &kn, &kk);

printf("Give knots values in ascending order: \n");

for (ki=0;ki<kn+kk;ki++)

{

scanf("%lf",&st[ki]);

}

printf("Give vertices \n");

for (ki=0;ki<kn*kdim;ki++)

{

scanf("%lf",&stcoef[ki]);

}

if(pc) freeCurve(pc);

pc = newCurve(kn,kk,st,stcoef,1,kdim,1);

}

else if (ksvar[0] == ’c’ && ksvar[1] == ’o’)

{

printf("\n Give top point: ");

scanf("%lf %lf %lf",&top[0],&top[1],&top[2]);

printf("\n Give a point on the axis: ");

scanf("%lf %lf %lf",&axispt[0],&axispt[1],&axispt[2]);

printf("\n Give a point on the cone surface: ");

scanf("%lf %lf %lf",&conept[0],&conept[1],&conept[2]);

cone_exists=TRUE;

}

else if (ksvar[0] == ’i’ && cone_exists && pc)

{

6 CHAPTER 1. INTRODUCTION

s1373(pc,top,axispt,conept,kdim,aepsco,aepsge,

&kpt,&spar,&kcrv,&qrcrv,&kstat);

printf("\n kstat %d",kstat);

printf("\n kpt %d",kpt);

printf("\n kcrv %d",kcrv);

for (ki=0;ki<kpt;ki++)

{

printf("\nIntersection point %lf",spar[ki]);

}

if (spar)

{

free (spar);

spar=NULL;

}

if (qrcrv)

{

freeIntcrvlist(qrcrv,kcrv);

qrcrv=NULL;

}

}

else if (ksvar[0] == ’q’)

{

return;

}

goto loop;

}

Note the include statement.

1.4. AN EXAMPLE PROGRAM 7

The program was compiled and built using the commands:

$ cc -c -Isisldir prog1.c

$ cc prog1.o -Lsisldir -lsisl -o prog1

A sample run of prog1 went as follows:

$ prog1

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> cu

Give number of vertices, order of curve: 2 2

Give knots values in ascending order:

0 0 1 1

Give vertices

1 0 0.5

-1 0 0.5

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> co

Give top point: 0 0 1

Give a point on the axis: 0 0 0

Give a point on the cone surface: 1 0 0

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> i

kstat 0

kpt 2

kcrv 0

8 CHAPTER 1. INTRODUCTION

Intersection point 0.250000

Intersection point 0.750000

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> q

$

SISL found two intersection points given by the parameters 0.25 and 0.75. These
parameters correspond to the 3D points (−0.5, 0, 0.5) and (0.5, 0, 0.5) (which could
be found by calling the evaluation routine s1221()). They lie on both the B-spline
curve and the cone — as expected!

1.5 B-spline Curves

This section is optional reading for those who want to become acquainted with
some of the mathematics of B-splines curves. For a description of the data structure
for B-spline curves in SISL, see section 5.1.

A B-spline curve is defined by the formula

c(t) =
n∑

i=1

piBi,k,t(t).

The dimension of the curve c is equal to that of its control points pi. For example, if
the dimension of the control points is one, the curve is a function, if the dimension
is two, the curve is planar, and if the dimension is three, the curve is spatial.
Usually the dimension of the curve will be at most three, but SISL also allows
higher dimensions.

Thus, a B-spline curve is a linear combination of a sequence of B-splines Bi,k,t

(called a B-basis) uniquely determined by a knot vector t and the order k. Order
is equivalent to polynomial degree plus one. For example, if the order is two,
the degree is one and the B-splines and the curve c they generate are (piecewise)
linear. If the order is three, the degree is two and the B-splines and the curve are
quadratic. Cubic B-splines and curves have order 4 and degree 3, etc.

The parameter range of a B-spline curve c is the interval

[tk, tn+1],

and so mathematically, the curve is a mapping c : [tk, tn+1]→ IRd, where d is the
Euclidean space dimension of its control points.

The complete representation of a B-spline curve consists of

1.5. B-SPLINE CURVES 9

dim : The dimension of the underlying Euclidean space, 1, 2, 3,

n : The number of vertices (also the number of B-splines)

k : The order of the B-splines.

t : The knot vector of the B-splines. t = (t1, t2, . . . , tn+k).

p : The control points of the B-spline curve. pd,i , d = 1, . . . , dim , i = 1, . . . , n.
e.g. when dim = 3, we have p = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn).

We note that arrays in c start at index 0 which means, for example, that if
the array t holds the knot vector, then t[0] = t1, . . . , t[n + k − 1] = tn+k and the
parameter interval goes from t[k − 1] to t[n]. Similar considerations apply to the
other arrays.

The data in the representation must satisfy certain conditions:

• The knot vector must be non-decreasing: ti ≤ ti+1. Moreover, two knots ti
and ti+k must be distinct: ti < ti+k.

• The number of vertices should be greater than or equal to the order of the
curve: n ≥ k.

• There should be k equal knots at the beginning and at the end of the knot
vector; that is the knot vector t must satisfy the conditions t1 = t2 = . . . = tk
and tn+1 = tn+2 = . . . = tn+k.

To understand the representation better, we will look at three parts of the
representation: the B-splines (the basis functions), the knot vector and the control
polygon.

1.5.1 B-splines

A set of B-splines is determined by the order k and the knots. For example, to
define a single B-spline of degree one, we need three knots. In figure 1.1 the three
knots are marked as dots. Knots can also be equal as shown in figure 1.2. By
taking a linear combination of the three types of B-splines shown in figures 1.1
and 1.2 we can generate a linear spline function as shown in figure 1.3.

A quadratic B-spline is a linear combination of two linear B-splines. Shown in
figure 1.4 is a quadratic B-spline defined by four knots. A quadratic B-spline is the
sum of two products, the first product between the linear B-spline on the left and
a corresponding line from 0 to 1, the second product between the linear B-spline
on the right and a corresponding line from 1 to 0; see figure 1.4. For higher degree
B-splines there is a similar definition. A B-spline of order k is the sum of two

10 CHAPTER 1. INTRODUCTION

q q q

6

0.0

1.0

,
,
,
,
,
,
,ZZ

Z
Z
Z
Z
Z
Z

Figure 1.1: A linear B-spline (order 2) defined by three knots.

q qq qq q

6

0.0

1.0 6

0.0

1.0

Z
Z
Z
Z
Z
Z
Z
Z

�
�
�
�
�
�
�
�

Figure 1.2: Linear B-splines of with multiple knots at one end.

qq q q q q qq,
,
,
,
,

Q
Q

Q
Q

Q

(((
((
l

l
l

l
l

�
�
�
XX

X
�
�
�
�
�
�

XX
XX

XX

�
�
�
�
�

SS
SS

SS
SS

SS

((((
((Q

Q
Q
Q
Q
Q���

��
�
�
�
�
�
�
�PPPPPP

Figure 1.3: A B-spline curve of dimension 1 as a linear combination of a sequence
of B-splines. Each B-spline (dashed) is scaled by a coefficient.

1.5. B-SPLINE CURVES 11

6

0.0

1.0

q q q q�
�
�
�
�
�
�

H
H

H
H

H
H

H

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@
@
@
@

@
@
@
@
@
@

Figure 1.4: A quadratic B-spline, the two linear B-splines and the corresponding
lines (dashed) in the quadratic B-spline definition.

B-splines of order k − 1, each weighted with weights in the interval [0,1]. In fact
we define B-splines of order 1 explicitly as box functions,

Bi,1(t) =

{
1 if ti ≤ t < ti+1;
0 otherwise,

and then the complete definition of a k-th order B-spline is

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t
ti+k − ti+1

Bi−1,k−1(t).

B-splines satisfy some important properties for curve and surface design. Each
B-spline is non-negative and it can be shown that they sum to one,

n∑

i=1

Bi,k,t(t) = 1.

These properties combined mean that B-spline curves satisfy the convex hull prop-
erty: the curve lies in the convex hull of its control points. Furthermore, the
support of the B-spline Bi,k,t is the interval [ti, ti+k] which means that B-spline
curves has local control: moving one control point only alters the curve locally.

Due to the demand of k multiple knots at the ends of the knot vector, B-spline
curves in SISL also have the endpoint property: the start point of the B-spline
curve equals the first control point and the end point equals the last control point,
in other words

c(tk) = p1 and c(tn+1) = pn.

1.5.2 The Control Polygon

The control points pi define the vertices The control polygon of a B-spline curve
is the polygonal arc formed by its control points, p0,p1, . . . ,pn. This means that
the control polygon, regarded as a parametric curve, is itself piecewise linear B-
spline curve (order two). If we increase the order, the distance between the control

12 CHAPTER 1. INTRODUCTION

��
��
��
��@

@
@
@
@
@
@
@�
�
�
�
�
�
�
�

Figure 1.5: Linear, quadratic, and cubic B-spline curves sharing the same control
polygon. The control polygon is equal to the linear B-spline curve. The curves are
planar, i.e. the space dimension is two.

��
�� HHHHHH((((

((�
�
�
�

Figure 1.6: The cubic B-spline curve with a redefined knot vector.

polygon and the curve increases (see figure 1.5). A higher order B-spline curve
tends to smooth the control polygon and at the same time mimic its shape. For
example, if the control polygon is convex, so is the B-spline curve.

Another property of the control polygon is that it will get closer to the curve if
it is redefined by inserting knots into the curve and thereby increasing the number
of vertices; see figure 1.6. If the refinement is infinite then the control polygon
converges to the curve.

1.5.3 The Knot Vector

The knots of a B-spline curve describe the following properties of the curve:

• The parameterization of the B-spline curve

• The continuity at the joins between the adjacent polynomial segments of the
B-spline curve.

In figure 1.7 we have two curves with the same control polygon and order but with
different parameterization.

1.5. B-SPLINE CURVES 13

qqq qqqq

qqqq qqq

��
��
��
��@

@
@
@
@
@
@
@�
�
�
�
�
�
�
�

��
��
��
��@

@
@
@
@
@
@
@�
�
�
�
�
�
�
�

Figure 1.7: Two quadratic B-spline curves with the same control polygon but
different knot vectors. The curves and the control polygons are two-dimensional.

This example is not meant as an encouragement to use parameterization for
modelling, rather to make users aware of the effect of parameterization. Something
close to curve length parameterization is in most cases preferable. For interpola-
tion, chord-length parameterization is used in most cases.

The number of equal knots determines the degree of continuity. If k consecutive
internal knots are equal, the curve is discontinuous. Similarly if k− 1 consecutive
internal knots are equal, the curve is continuous but not in general differentiable.
A continuously differentiable curve with a discontinuity in the second derivative
can be modelled using k − 2 equal knots etc. (see figure 1.8). Normally, B-spline
curves in SISL are expected to be continuous. For intersection algorithms, curves
are usually expected to be continuously differentiable (C 1).

1.5.4 NURBS Curves

A NURBS (Non-Uniform Rational B-Spline) curve is a generalization of a B-spline
curve,

c(t) =

∑n
i=1 wipiBi,k,t(t)∑n
i=1 wiBi,k,t(t)

.

14 CHAPTER 1. INTRODUCTION

qqq qq qqq
Figure 1.8: A quadratic B-spline curve with two equal internal knots.

In addition to the data of a B-spline curve, the NURBS curve c has a sequence
of weights w1, . . . , wn. One of the advantages of NURBS curves over B-spline
curves is that they can be used to represent conic sections exactly (taking the
order k to be three). A disadvantage is that NURBS curves depend nonlinearly on
their weights, making some calculations, like the evaluation of derivatives, more
complicated and less efficient than with B-spline curves.

The representation of a NURBS curve is the same as for a B-spline except that
it also includes

w : A sequence of weights w = (w1, w2, . . . , wn).

In SISL we make the assumption that

• The weights are (strictly) positive: wi > 0.

Under this condition, a NURBS curve, like its B-spline cousin, enjoys the con-
vex hull property. Due to k-fold knots at the ends of the knot vector, NURBS
curves in SISL alos have the endpoint

1.6 B-spline Surfaces

This section is optional reading for those who want to become acquainted with
some of the mathematics of tensor-product B-splines surfaces. For a description
of the data structure for B-spline surfaces in SISL, see section 9.1.

A tensor product B-spline surface is defined as

s(u, v) =
n1∑

i=1

n2∑

j=1

pi,jBi,k1,u(u)Bj,k2,v(v)

with control points pi,j and two variables (or parameters) u and v. The formula
shows that a basis function of a B-spline surface is a product of two basis functions

1.6. B-SPLINE SURFACES 15

of B-spline curves (B-splines). This is why a B-spline surface is called a tensor-
product surface. The following is a list of the components of the representation:

dim : The dimension of the underlying Euclidean space.

n1 : The number of vertices with respect to the first parameter.

n1 : The number of vertices with respect to the second parameter.

k1 : The order of the B-splines in the first parameter.

k2 : The order of the B-splines in the second parameter.

u : The knot vector of the B-splines with respect to the first parameter, u =
(u1, u2, . . . , un1+k1).

v : The knot vector of the B-splines with respect to the second parameter, v =
(v1, v2, . . . , vn2+k2).

p : The control points of the B-spline surface, cd,i,j, d = 1, . . . , dim, i = 1, . . . , n1,
j = 1, . . . , n2. When dim = 3, we have p = (x1,1, y1,1, z1,1, x2,1, y2,1, z2,1, . . .,
xn1,1, yn1,1, zn1,1, . . ., xn1,n2 , yn1,n2 , zn1,n2).

The data of the B-spline surface must fulfill the following requirements:

• Both knot vectors must be non-decreasing.

• The number of vertices must be greater than or equal to the order with
respect to both parameters: n1 ≥ k1 and n2 ≥ k2.

• There should be k1 equal knots at the beginning and end of knot vector u
and k2 equal knots at the beginning and end of knot vector v.

The properties of the representation of a B-spline surface are similar to the
properties of the representation of a B-spline curve. The control points pi,j form
a control net as shown in figure 1.9. The control net has similar properties to the
control polygon of a B-spline curve, described in section 1.5.2. A B-spline surface
has two knot vectors, one for each parameter. In figure 1.9 we can see isocurves,
surface curves defined by fixing the value of one of the parameters.

16 CHAPTER 1. INTRODUCTION

Figure 1.9: A B-spline surface and its control net. The surface is drawn using
isocurves. The dimension is 3.

6

0.0

1.0

q q q q
q
q

�
�
�
�
�

�

�

�

�
�
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C
C
C

Q
Q
Q
Q
Q
Q
QQ

�

�

�

Figure 1.10: A basis function of degree one in both variables.

1.6.1 The Basis Functions

A basis function of a B-spline surface is the product of two basis functions of two
B-spline curves,

Bi,k1,u(u)Bj,k2,v(v).

Its support is the rectangle [ui, ui+k1] × [vj , vj+k2]. If the basis functions in both
directions are of degree one and all knots have multiplicity one, then the sur-
face basis functions are pyramid-shaped (see figure 1.10). For higher degrees, the
surface basis functions are bell shaped.

1.6. B-SPLINE SURFACES 17

1.6.2 NURBS Surfaces

A NURBS (Non-Uniform Rational B-Spline) surface is a generalization of a B-
spline surface,

s(u, v) =

∑n1
i=1

∑n2
j=1wi,jpi,jBi,k1,u(u)Bj,k2,v(v)

∑n1
i=1

∑n2
j=1wi,jBi,k1,u(u)Bj,k2,v(v)

.

In addition to the data of a B-spline surface, the NURBS surface has a weights
wi,j. NURBS surfaces can be used to exactly represent several common ‘analytic’
surfaces such as spheres, cylinders, tori, and cones. A disadvantage is that NURBS
surfaces depend nonlinearly on their weights, making some calculations, like with
NURBS curves, less efficient.

The representation of a NURBS surface is the same as for a B-spline except
that it also includes

w : The weights of the NURBS surface, wi,j, i = 1, . . . , n1, j = 1, . . . , n2, so
w = (w1,1, w2,1, . . . , wn1,1, . . ., w1,2, . . . , wn1,n2).

In SISL we make the assumption that

• The weights are (strictly) positive: wi,j > 0.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Curve Definition

This chapter describes all functions in the Curve Definition module.

2.1 Interpolation

In this section we treat different kinds of interpolation of points or points and
derivatives (Hermite). In addition to the general functions there are functions to
find fillet curves (a curve between two other curves), and blending curves (a curve
between the end points of two other curves).

2.1.1 Compute a curve interpolating a straight line between two
points.

NAME
s1602 - To make a straight line represented as a B-spline curve between

two points.

SYNOPSIS
void s1602(startpt, endpt, order, dim, startpar, endpar, curve, stat)

double startpt[];
double endpt[];
int order;
int dim;
double startpar;
double *endpar;
SISLCurve **curve;
int *stat;

19

20 CHAPTER 2. CURVE DEFINITION

ARGUMENTS
Input Arguments:

startpt - Start point of the straight line
endpt - End point of the straight line
order - The order of the curve to be made.
dim - The dimension of the geometric space
startpar - Start value of the parameterization of the curve

Output Arguments:
endpar - Parameter value used at the end of the curve
curve - Pointer to the B-spline curve
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

double startpt[2];
double endpt[2];
int order;
int dim;
double startpar;
double endpar;
SISLCurve *curve;
int stat;
. . .
s1602(startpt, endpt, order, dim, startpar, &endpar, &curve, &stat);
. . .

}

2.1. INTERPOLATION 21

2.1.2 Compute a curve interpolating a set of points, automatic
parameterization.

NAME
s1356 - Compute a curve interpolating a set of points. The points can be

assigned a tangent (derivative). The parameterization of the curve
will be generated and the curve can be open, closed non-periodic
or periodic. If end-conditions are conflicting, the condition closed
curve rules out other end conditions. The output will be repre-
sented as a B-spline curve.

SYNOPSIS
void s1356(epoint, inbpnt, idim, nptyp, icnsta, icnend, iopen, ik, astpar,

cendpar, rc, gpar, jnbpar, jstat)

double epoint[];
int inbpnt;
int idim;
int nptyp[];
int icnsta;
int icnend;
int iopen;
int ik;
double astpar;
double *cendpar;
SISLCurve **rc;
double **gpar;
int *jnbpar;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - Array (of length idim × inbpnt) containing the
points/derivatives to be interpolated.

inbpnt - No. of points/derivatives in the epoint array.
idim - The dimension of the space in which the points lie.
nptyp - Array (length inbpnt) containing type indicator for

points/derivatives/second-derivatives:
= 1 : Ordinary point.
= 2 : Knuckle point. (Is treated as an ordinary

point.)
= 3 : Derivative to next point.
= 4 : Derivative to prior point.

22 CHAPTER 2. CURVE DEFINITION

(= 5 : Second-derivative to next point.)
(= 6 : Second derivative to prior point.)
= 13 : Point of tangent to next point.
= 14 : Point of tangent to prior point.

2.1. INTERPOLATION 23

icnsta - Additional condition at the start of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at start.

icnend - Additional condition at the end of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at end.

iopen - Flag telling if the curve should be open or closed:
= 1 : Open curve.
= 0 : Closed, non-periodic curve.
= −1 : Periodic (and closed) curve.

ik - The order of the spline curve to be produced.
astpar - Parameter value to be used at the start of the curve.

Output Arguments:
cendpar - Parameter value used at the end of the curve.
rc - Pointer to output B-spline curve.
gpar - Pointer to the parameter values of the points in the

curve. Represented only once, although derivatives
and second-derivatives will have the same parameter
value as the points.

jnbpar - No. of unique parameter values.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double epoint[30];
int inbpnt = 10;
int idim = 3;
int nptyp[10];
int icnsta = 0;
int icnend = 0;
int iopen = 1;
int ik = 4;
double astpar = 0.0;
double cendpar = 0.0;
SISLCurve *rc = NULL;
double *gpar = NULL;
int jnbpar = 0;

24 CHAPTER 2. CURVE DEFINITION

int jstat;
. . .
s1356(epoint, inbpnt, idim, nptyp, icnsta, icnend, iopen, ik, astpar,

&cendpar, &rc, &gpar, &jnbpar, &jstat);
. . .

}

2.1. INTERPOLATION 25

2.1.3 Compute a curve interpolating a set of points, parameter-
ization as input.

NAME
s1357 - Compute a curve interpolating a set of points. The points can be

assigned a tangent (derivative). The curve can be open, closed
or periodic. If end-conditions are conflicting, the condition closed
curve rules out other end conditions. The parameterization is
given by the array epar. The output will be represented as a
B-spline curve.

SYNOPSIS
void s1357(epoint, inbpnt, idim, ntype, epar, icnsta, icnend, iopen, ik, ast-

par, cendpar, rc, gpar, jnbpar, jstat)

double epoint[];
int inbpnt;
int idim;
int ntype[];
double epar[];
int icnsta;
int icnend;
int iopen;
int ik;
double astpar;
double *cendpar;
SISLCurve **rc;
double **gpar;
int *jnbpar;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - Array (length idim× inbpnt) containing the points/-
derivatives to be interpolated.

inbpnt - No. of points/derivatives in the epoint array.
idim - The dimension of the space in which the points lie.
ntype - Array (length inbpnt) containing type indicator for

points/derivatives/second-derivatives:
= 1 : Ordinary point.
= 2 : Knuckle point. (Is treated as an ordinary

point.)
= 3 : Derivative to next point.

26 CHAPTER 2. CURVE DEFINITION

= 4 : Derivative to prior point.
(= 5 : Second-derivative to next point.)
(= 6 : Second derivative to prior point.)
= 13 : Point of tangent to next point.
= 14 : Point of tangent to prior point.

epar - Array containing the wanted parameterization. Only
parameter values corresponding to position points are
given. For closed curves, one additional parameter
value must be specified. The last entry contains the
parametrization of the repeated start point. (if the
end point is equal to the start point of the interpola-
tion the length of the array should be equal to inpt1
also in the closed case).

icnsta - Additional condition at the start of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at start.

icnend - Additional condition at the end of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at end.

iopen - Flag telling if the curve should be open or closed:
= 1 : The curve should be open.
= 0 : The curve should be closed.
= −1 : The curve should be closed and periodic.

ik - The order of the spline curve to be produced.
astpar - Parameter value to be used at the start of the curve.

Output Arguments:
cendpar - Parameter value used at the end of the curve.
rc - Pointer to the output B-spline curve.
gpar - Pointer to the parameter values of the points in the

curve. Represented only once, although derivatives
and second-derivatives will have the same parameter
value as the points.

jnbpar - No, of unique parameter values.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

2.1. INTERPOLATION 27

EXAMPLE OF USE
{

double epoint[30];
int inbpnt = 10;
int idim = 3;
int ntype[10];
double epar[10];
int icnsta = 0;
int icnend = 0;
int iopen = 0;
int ik = 4;
double astpar = 0.0;
double cendpar;
SISLCurve *rc;
double *gpar;
int jnbpar;
int jstat;
. . .
s1357(epoint, inbpnt, idim, ntype, epar, icnsta, icnend, iopen, ik, ast-

par, &cendpar, &rc, &gpar, &jnbpar, &jstat);
. . .

}

28 CHAPTER 2. CURVE DEFINITION

2.1.4 Compute a curve by Hermite interpolation, automatic
parameterization.

NAME
s1380 - To compute the cubic Hermite interpolant to the data given by

the points point and the derivatives derivate. The output is rep-
resented as a B-spline curve.

SYNOPSIS
void s1380(point, derivate, numpt, dim, typepar, curve, stat)

double point[];
double derivate[];
int numpt;
int dim;
int typepar;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

point - Array (length dim*numpt) containing the points in
sequence (x0, y0, x1, y1, . . .) to be interpolated.

derivate - Array (length dim*numpt) containing the derivate in
sequence (dx0

dt ,
dy0

dt ,
dx1
dt ,

dy1

dt , . . .) to be interpolated.

numpt - No. of points/derivatives in the point and derivative
arrays.

dim - The dimension of the space in which the points lie.
typepar - Type of parameterization:

= 1 : Parameterization using cord length
between the points.

6= 1 : Uniform parameterization.

Output Arguments:
curve - Pointer to the output B-spline curve
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

2.1. INTERPOLATION 29

EXAMPLE OF USE
{

double point[10];
double derivate[10];
int numpt = 5;
int dim = 2;
int typepar;
SISLCurve *curve;
int stat;
. . .
s1380(point, derivate, numpt, dim, typepar, &curve, &stat);
. . .

}

30 CHAPTER 2. CURVE DEFINITION

2.1.5 Compute a curve by Hermite interpolation, parameterization
as input.

NAME
s1379 - To compute the cubic Hermite interpolant to the data given by the

points point and the derivatives derivate and the parameterization
par. The output is represented as a B-spline curve.

SYNOPSIS
void s1379(point, derivate, par, numpt, dim, curve, stat)

double point[];
double derivate[];
double par[];
int numpt;
int dim;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

point - Array (length dim*numpt) containing the points to
be interpolated in the sequence is (x0, y0, x1, y1, . . .) .

derivate - Array (length dim*numpt) containing the derivatives
to be interpolated in the sequence is

(
dx0

dt
,
dy0

dt
,
dx1

dt
,
dy1

dt
, . . .).

par - Parameterization array, (t0, t1, . . .). The array should
be increasing in value.

numpt - No. of points/derivatives in the point and derivative
arrays.

dim - The dimension of the space in which the points lie.

Output Arguments:
curve - Pointer to output B-spline curve
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

2.1. INTERPOLATION 31

EXAMPLE OF USE
{

double point[10];
double derivate[10];
double par[5];
int numpt = 5;
int dim = 2;
SISLCurve *curve;
int stat;
. . .
s1379(point, derivate, par, numpt, dim, &curve, &stat);
. . .

}

32 CHAPTER 2. CURVE DEFINITION

2.1.6 Compute a fillet curve based on parameter value.

NAME
s1607 - To calculate a fillet curve between two curves. The start and end

point for the fillet is given as one parameter value for each of the
curves. The output is represented as a B-spline curve.

SYNOPSIS
void s1607(curve1, curve2, epsge, end1, fillpar1, end2, fillpar2, filltype, dim,

order, newcurve, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double end1;
double fillpar1;
double end2;
double fillpar2;
int filltype;
int dim;
int order;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
end1 - Parameter value on the first curve. The parameter

fillpar1 divides the first curve in two pieces. End1 is
used to select which of these pieces the fillet should
extend.

fillpar1 - Parameter value of the start point of the fillet on the
first curve.

end2 - Parameter value on the second curve indicating that
the part of the curve lying on this side of fillpar2 shall
not be replaced by the fillet.

fillpar2 - Parameter value of the start point of the fillet on the
second curve.

2.1. INTERPOLATION 33

filltype - Indicator of the type of fillet.
= 1 : Circle approximation, interpolating tan-

gent on first curve, not on curve 2.
= 2 : Conic approximation if possible,
else : polynomial segment.

dim - Dimension of space.
order - Order of the fillet curve, which is not always used.

Output Arguments:
newcurve - Pointer to the B-spline fillet curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double end1;
double fillpar1;
double end2;
double fillpar2;
int filltype;
int dim;
int order;
SISLCurve *newcurve;
int stat;
. . .
s1607(curve1, curve2, epsge, end1, fillpar1, end2, fillpar2, filltype, dim,

order, &newcurve, &stat);
. . .

}

34 CHAPTER 2. CURVE DEFINITION

2.1.7 Compute a fillet curve based on points.

NAME
s1608 - To calculate a fillet curve between two curves. Points indicate be-

tween which points on the input curve the fillet is to be produced.
The output is represented as a B-spline curve.

SYNOPSIS
void s1608(curve1, curve2, epsge, point1, startpt1, point2, endpt2, filltype,

dim, order, newcurve, parpt1, parspt1, parpt2, parept2, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[];
double startpt1[];
double point2[];
double endpt2[];
int filltype;
int dim;
int order;
SISLCurve **newcurve;
double *parpt1;
double *parspt1;
double *parpt2;
double *parept2;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point close to curve 1 indicating that the part of the

curve lying on this side of startpt1 is not to be re-
placed by the fillet.

startpt1 - Point close to curve 1, indicating where the fillet is
to start. The tangent at the start of the fillet will
have the same orientation as the curve from point1
to startpt1.

point2 - Point close to curve 2 indicating that the part of the
curve lying on this side of endpt2 is not to be replaced
by the fillet.

2.1. INTERPOLATION 35

endpt2 - Point close to curve two, indicating where the fillet
is to end. The tangent at the end of the fillet will
have the same orientation as the curve from endpt2
to point2.

36 CHAPTER 2. CURVE DEFINITION

filltype - Indicator of type of fillet.
= 1 : Circle, interpolating tangent on first

curve, not on curve 2.
= 2 : Conic if possible,
else : polynomial segment.

dim - Dimension of space.
order - Order of fillet curve, which is not always used.

Output Arguments:
newcurve - Pointer to the B-spline fillet curve.
parpt1 - Parameter value of point point1 on curve 1.
parspt1 - Parameter value of point startpt1 on curve 1.
parpt2 - Parameter value of point point2 on curve 2.
parept2 - Parameter value of point endpt2 on curve 2.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[3];
double startpt1[3];
double point2[3];
double endpt2[3];
int filltype;
int dim = 3;
int order;
SISLCurve *newcurve;
double parpt1;
double parspt1;
double parpt2;
double parept2;
int stat;
. . .
s1608(curve1, curve2, epsge, point1, startpt1, point2, endpt2,

filltype, dim, order, &newcurve, &parpt1, &parspt1,
&parpt2, &parept2, &stat);

2.1. INTERPOLATION 37

. . .
}

38 CHAPTER 2. CURVE DEFINITION

2.1.8 Compute a fillet curve based on radius.

NAME
s1609 - To calculate a constant radius fillet curve between two curves if

possible. The output is represented as a B-spline curve.

SYNOPSIS
void s1609(curve1, curve2, epsge, point1, pointf, point2, radius, normal,

filltype, dim, order, newcurve, parend1, parspt1, parend2,
parept2, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[];
double pointf[];
double point2[];
double radius;
double normal[];
int filltype;
int dim;
int order;
SISLCurve **newcurve;
double *parend1;
double *parspt1;
double *parend2;
double *parept2;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point indicating that the fillet should be put on the

side of curve1 where point1 is situated.
pointf - Point indicating where the fillet curve should go.

point1 together with pointf indicates the direction of
the start tangent of the curve, while pointf together
with point2 indicates the direction of the end tangent
of the curve. If more than one position of the fillet
curve is possible, the closest curve to pointf is chosen.

2.1. INTERPOLATION 39

point2 - Point indicating that the fillet should be put on the
side of curve2 where point2 is situated.

radius - The radius to be used on the fillet if a circular fillet is
possible, otherwise a conic or a quadratic polynomial
curve is used, approximating the circular fillet.

normal - Normal to the plane the fillet curve should lie close
to. This is only used in 3D fillet calculations, and
the fillet centre will be in the direction of the cross
product of the curve tangents and the normal.

filltype - Indicator of type of fillet.
= 1 : Circle, interpolating tangent on first

curve, not on curve 2.
= 2 : Conic if possible,
else : polynomial segment.

dim - Dimension of space.
order - Order of fillet curve, which is not always used.

Output Arguments:
newcurve - Pointer to the B-spline fillet curve.
parend1 - Parameter value of the end of curve 1 not affected by

the fillet.
parspt1 - Parameter value of the point on curve 1 where the

fillet starts.
parend2 - Parameter value of the end of curve 2 not affected by

the fillet.
parept2 - Parameter value of the point on curve 2 where the

fillet ends.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

40 CHAPTER 2. CURVE DEFINITION

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[3];
double pointf[3];
double point2[3];
double radius;
double normal[3];
int filltype;
int dim = 3;
int order;
SISLCurve *newcurve;
double parend1;
double parspt1;
double parend2;
double parept2;
int stat;
. . .
s1609(curve1, curve2, epsge, point1, pointf, point2, radius,

normal, filltype, dim, order, &newcurve, &parend1, &parspt1,
&parend2, &parept2, &stat);

. . .
}

2.1. INTERPOLATION 41

2.1.9 Compute a circular fillet between a 2D curve and a circle.

NAME
s1014 - Compute the fillet by iterating to the start and end points of a

fillet between a 2D curve and a circle. The centre of the circular
fillet is also calculated.

SYNOPSIS
void s1014(pc1, circ cen, circ rad, aepsge, eps1, eps2, aradius, parpt1,

parpt2, centre, jstat)
SISLCurve *pc1;
double circ cen[];
double circ rad;
double aepsge;
double eps1[];
double eps2[];
double aradius;
double *parpt1;
double *parpt2;
double centre[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The first input curve.
circ cen - 2D centre of the circle.
circ rad - Radius of the circle.
aepsge - Geometry resolution.
eps1 - 2D point telling that the fillet should be put on the

side of curve 1 where eps1 is situated.

eps2 - 2D point telling that the fillet should be put on the
side of the input circle where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parpt1 - Parameter value of the point on curve 1 where the

fillet starts. Input is a guess value for the iteration.

parpt2 - Parameter value of the point on the input circle where
the fillet ends. Input is a guess value for the iteration.

Output Arguments:

42 CHAPTER 2. CURVE DEFINITION

centre - 2D centre of the circular fillet. Space must be allo-
cated outside the function.

jstat - Status message
= 1 : Converged,
= 2 : Diverged,
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1;
double circ cen[2];
double circ rad;
double aepsge;
double eps1[2];
double eps2[2];
double aradius;
double parpt1;
double parpt2;
double centre[2];
int jstat;
. . .
s1014(pc1, circ cen, circ rad, aepsge, eps1, eps2, aradius, &parpt1,

&parpt2, centre, &jstat);
. . .

}

2.1. INTERPOLATION 43

2.1.10 Compute a circular fillet between two 2D curves.

NAME
s1015 - Compute the fillet by iterating to the start and end points of a

fillet between two 2D curves. The centre of the circular fillet is
also calculated.

SYNOPSIS
void s1015(pc1, pc2, aepsge, eps1, eps2, aradius, parpt1, parpt2, centre,

jstat)
SISLCurve *pc1;
SISLCurve *pc2;
double aepsge;
double eps1[];
double eps2[];
double aradius;
double *parpt1;
double *parpt2;
double centre[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The first 2D input curve.
pc2 - The second 2D input curve.
aepsge - Geometry resolution.
eps1 - 2D point telling that the fillet should be put on the

side of curve 1 where eps1 is situated.

eps2 - 2D point telling that the fillet should be put on the
side of curve 2 where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parpt1 - Parameter value of the point on curve 1 where the

fillet starts. Input is a guess value for the iteration.

parpt2 - Parameter value of the point on curve 2 where the
fillet ends. Input is a guess value for the iteration.

Output Arguments:
centre - 2D centre of the circular fillet. Space must be allo-

cated outside the function.

44 CHAPTER 2. CURVE DEFINITION

jstat - Status message
= 1 : Converged,
= 2 : Diverged,
< 0 : Error.

2.1. INTERPOLATION 45

EXAMPLE OF USE
{

SISLCurve *pc1;
SISLCurve *pc2;
double aepsge;
double eps1[2];
double eps2[2];
double aradius;
double parpt1;
double parpt2;
double centre[2];
int jstat;
. . .
s1015(pc1, pc2, aepsge, eps1, eps2, aradius, &parpt1, &parpt2, centre,

&jstat);
. . .

}

46 CHAPTER 2. CURVE DEFINITION

2.1.11 Compute a circular fillet between a 2D curve and a 2D
line.

NAME
s1016 - Compute the fillet by iterating to the start and end points of a

fillet between a 2D curve and a 2D line. The centre of the circular
fillet is also calculated.

SYNOPSIS
void s1016(pc1, point, normal, aepsge, eps1, eps2, aradius, parpt1, parpt2,

centre, jstat)
SISLCurve *pc1;
double point[];
double normal[];
double aepsge;
double eps1[];
double eps2[];
double aradius;
double *parpt1;
double *parpt2;
double centre[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The 2D input curve.
point - 2D point on the line.
normal - 2D normal to the line.
aepsge - Geometry resolution.
eps1 - 2D point telling that the fillet should be put on the

side of curve 1 where eps1 is situated.

eps2 - 2D point telling that the fillet should be put on the
side of curve 2 where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parpt1 - Parameter value of the point on curve 1 where the

fillet starts. Input is a guess value for the iteration.

parpt2 - Parameter value of the point on the line where the
fillet ends. Input is a guess value for the iteration.

2.1. INTERPOLATION 47

Output Arguments:
centre - 2D centre of the (circular) fillet. Space must be allo-

cated outside the function.

48 CHAPTER 2. CURVE DEFINITION

jstat - Status message
= 1 : Converged,
= 2 : Diverged,
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1;
double point[2];
double normal[2];
double aepsge;
double eps1[2];
double eps2[2];
double aradius;
double parpt1;
double parpt2;
double centre[2];
int jstat;
. . .
s1016(pc1, point, normal, aepsge, eps1, eps2, aradius, &parpt1,

&parpt2, centre, &jstat);
. . .

}

2.1. INTERPOLATION 49

2.1.12 Compute a blending curve between two curves.

NAME
s1606 - To compute a blending curve between two curves. Two points

indicate between which ends the blend is to be produced. The
blending curve is either a circle or an approximated conic section
if this is possible, otherwise it is a quadratic polynomial spline
curve. The output is represented as a B-spline curve.

SYNOPSIS
void s1606(curve1, curve2, epsge, point1, point2, blendtype, dim, order,

newcurve, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[];
double point2[];
int blendtype;
int dim;
int order;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point near the end of curve 1 where the blend starts.
point2 - Point near the end of curve 2 where the blend starts.
blendtype - Indicator of type of blending.

= 1 : Circle, interpolating tangent on first
curve, not on curve 2, if possible.

= 2 : Conic if possible,
else : polynomial segment.

dim - Dimension of the geometry space.
order - Order of the blending curve.

Output Arguments:
newcurve - Pointer to the B-spline blending curve.
stat - Status messages

> 0 : warning

50 CHAPTER 2. CURVE DEFINITION

= 0 : ok
< 0 : error

2.1. INTERPOLATION 51

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[3];
double point2[3];
int blendtype;
int dim = 3;
int order;
SISLCurve *newcurve;
int stat;
. . .
s1606(curve1, curve2, epsge, point1, point2, blendtype, dim, order,

&newcurve, &stat);
. . .

}

52 CHAPTER 2. CURVE DEFINITION

2.2 Approximation

Two kinds of curves are treated in this section. The first is approximations of
special shapes like circles and conic segments. The second is approximation of a
point set, or offsets to curves.

Except for the point set approximation function, all functions require a toler-
ance for the approximation. Note that there is a close relationship between the
size of the tolerance and the amount of data for the curve.

2.2.1 Approximate a circular arc with a curve.

NAME
s1303 - To create a curve approximating a circular arc around the axis

defined by the centre point, an axis vector, a start point and a
rotational angle. The maximal deviation between the true circular
arc and the approximation to the arc is controlled by the geometric
tolerance (epsge). The output will be represented as a B-spline
curve.

SYNOPSIS
void s1303(startpt, epsge, angle, centrept, axis, dim, curve, stat)

double startpt[];
double epsge;
double angle;
double centrept[];
double axis[];
int dim;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

startpt - Start point of the circular arc
epsge - Maximal deviation allowed between the true circle

and the circle approximation.
angle - The rotational angle. Counterclockwise around axis.

If the rotational angle is outside < −2π,+2π > then
a closed curve is produced.

centrept - Point on the axis of the circle.
axis - Normal vector to plane in which the circle lies. Used

if dim = 3.

2.2. APPROXIMATION 53

dim - The dimension of the space in which the circular arc
lies (2 or 3).

54 CHAPTER 2. CURVE DEFINITION

Output Arguments:
curve - Pointer to the B-spline curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

double startpt[3];
double epsge;
double angle;
double centrept[3];
double axis[3];
int dim = 3;
SISLCurve *curve;
int stat;
. . .
s1303(startpt, epsge, angle, centrept, axis, dim, &curve, &stat);
. . .

}

2.2. APPROXIMATION 55

2.2.2 Approximate a conic arc with a curve.

NAME
s1611 - To approximate a conic arc with a curve in two or three dimen-

sional space. If two points are given, a straight line is produced,
if three an approximation of a circular arc, and if four or five a
conic arc. The output will be represented as a B-spline curve.

SYNOPSIS
void s1611(point, numpt, dim, typept, open, order, startpar, epsge, endpar,

curve, stat)

double point[];
int numpt;
int dim;
double typept[];
int open;
int order;
double startpar;
double epsge;
double *endpar;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

point - Array of length dim× numpt containing the points/
derivatives to be interpolated.

numpt - No. of points/derivatives in the point array.
dim - The dimension of the space in which the points lie.
typept - Array (length numpt) containing type indicator for

points/derivatives/ second-derivatives:

1 : Ordinary point.
3 : Derivative to next point.
4 : Derivative to prior point.

open - Open or closed curve:
0 : Closed curve, not implemented.
1 : Open curve.

order - The order of the B-spline curve to be produced.
startpar - Parameter-value to be used at the start of the curve.
epsge - The geometry resolution.

56 CHAPTER 2. CURVE DEFINITION

Output Arguments:
endpar - Parameter-value used at the end of the curve.
curve - Pointer to the output B-spline curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

NOTE
When four points/tangents are given as input, the xy term of the implicit
equation is set to zero. Thus the points might end on two branches of a
hyperbola and a straight line is produced. When four or five points/tangents
are given only three of these should actually be points.

EXAMPLE OF USE
{

double point[30];
int numpt = 10;
int dim = 3;
double typept[10];
int open;
int order;
double startpar;
double epsge;
double endpar;
SISLCurve *curve;
int stat;
. . .
s1611(point, numpt, dim, typept, open, order, startpar, epsge,

&endpar, &curve, &stat);
. . .

}

2.2. APPROXIMATION 57

2.2.3 Compute a curve using the input points as controlling vertices,
automatic parameterization.

NAME
s1630 - To compute a curve using the input points as controlling vertices.

The distances between the points are used as parametrization.
The output will be represented as a B-spline curve.

SYNOPSIS
void s1630(epoint, inbpnt, astpar, iopen, idim, ik, rc, jstat)

double epoint[];
int inbpnt;
double astpar;
int iopen;
int idim;
int ik;
SISLCurve **rc;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - The array containing the points to be used as con-
trolling vertices of the B-spline curve.

inbpnt - No. of points in epoint.
astpar - Parameter value to be used at the start of the curve.

iopen - Open/closed/periodic condition.

= −1 : Closed and periodic.
= 0 : Closed.
= 1 : Open.

idim - The dimension of the space.
ik - The order of the spline curve to be produced.

Output Arguments:
rc - Pointer to the B-spline curve.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

58 CHAPTER 2. CURVE DEFINITION

EXAMPLE OF USE
{

double epoint[30];
int inbpnt = 10;
double astpar = 0.0;
int iopen = 1;
int idim = 3;
int ik = 4;
SISLCurve *rc = NULL;
int jstat;
. . .
s1630(epoint, inbpnt, astpar, iopen, idim, ik, &rc, &jstat);
. . .

}

2.2. APPROXIMATION 59

2.2.4 Approximate the offset of a curve with a curve.

NAME
s1360 - To create a approximation of the offset to a curve within a toler-

ance. The output will be represented as a B-spline curve.
With an offset of zero, this routine can be used to approximate any
NURBS curve, within a tolerance, with a (non-rational) B-spline
curve.

SYNOPSIS
void s1360(oldcurve, offset, epsge, norm, max, dim, newcurve, stat)

SISLCurve *oldcurve;
double offset;
double epsge;
double norm[];
double max;
int dim;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

oldcurve - The input curve.
offset - The offset distance. If dim=2, a positive sign on this

value put the offset on the side of the positive normal
vector, and a negative sign puts the offset on the neg-
ative normal vector. If dim=3, the offset direction is
determined by the cross product of the tangent vector
and the normal vector. The offset distance is multi-
plied by this cross product.

epsge - Maximal deviation allowed between the true offset
curve and the approximated offset curve.

norm - Vector used in 3D calculations.
max - Maximal step length. It is neglected if max≤epsge.

If max=0.0, then a maximal step equal to the longest
box side of the curve is used.

dim - The dimension of the space must be 2 or 3.

NOTE
If the vector norm and the curve tangent are parallel at some point, then
the curve produced will not be an offset at this point, and it will probably
move from one side of the input curve to the other side.

60 CHAPTER 2. CURVE DEFINITION

2.2. APPROXIMATION 61

Output Arguments:
newcurve - Pointer to the B-spline curve approximating the offset

curve.
stat - Status messages.

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *oldcurve;
double offset;
double epsge;
double norm[3];
double max;
int dim = 3;
SISLCurve *newcurve;
int stat;
. . .
s1360(oldcurve, offset, epsge, norm, max, dim, &newcurve, &stat);
. . .

}

62 CHAPTER 2. CURVE DEFINITION

2.2.5 Approximate a curve with a sequence of straight lines.

NAME
s1613 - To calculate a set of points on a curve. The straight lines between

the points will not deviate more than epsge from the curve at any
point. The generated points will have the same spatial dimension
as the input curve.

SYNOPSIS
void s1613(curve, epsge, points, numpoints, stat)

SISLCurve *curve;
double epsge;
double **points;
int *numpoints;
int *stat;

ARGUMENTS
Input Arguments:

curve - The input curve.
epsge - Geometry resolution, maximum distance allowed be-

tween the curve and the straight lines that are to be
calculated.

Output Arguments:
points - Calculated points,

(a vector of numpoints× curve->idim elements).
numpoints - Number of calculated points.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double epsge;
double *points;
int numpoints;
int stat;
. . .
s1613(curve, epsge, &points, &numpoints, &stat);
. . .

}

2.3. MIRROR A CURVE 63

2.3 Mirror a Curve

NAME
s1600 - To mirror a curve around a plane.

SYNOPSIS
void s1600(oldcurve, point, normal, dim, newcurve, stat)

SISLCurve *oldcurve;
double point[];
double normal[];
int dim;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

oldcurve - Pointer to original curve.
point - A point in the plane.
normal - Normal vector to the plane.
dim - The dimension of the space.

Output Arguments:
newcurve - Pointer to the mirrored curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *oldcurve;
double point[3];
double normal[3];
int dim = 3;
SISLCurve *newcurve;
int stat;
. . .
s1600(oldcurve, point, normal, dim, &newcurve, &stat);
. . .

}

64 CHAPTER 2. CURVE DEFINITION

2.4 Conversion

2.4.1 Convert a curve of order up to four, to a sequence of cubic
polynomials.

NAME
s1389 - Convert a curve of order up to 4 to a sequence of non-rational

cubic segments with uniform parameterization.
SYNOPSIS

void s1389(curve, cubic, numcubic, dim, stat)

SISLCurve *curve;
double **cubic;
int *numcubic;
int *dim;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve that is to be converted

Output Arguments:
cubic - Array containing the sequence of cubic segments.

Each segment is represented by the start point, fol-
lowed by the start tangent, end point and end tan-
gent. Each segment needs 4*dim doubles for storage.

numcubic - Number of elements of length (4*dim) in the array
cubic

dim - The dimension of the geometric space.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double *cubic;
int numcubic;
int dim;
int stat;
. . .
s1389(curve, &cubic, &numcubic, &dim, &stat);
. . .

}

2.4. CONVERSION 65

2.4.2 Convert a curve to a sequence of Bezier curves.

NAME
s1730 - To convert a curve to a sequence of Bezier curves. The Bezier

curves are stored as one curve with all knots of multiplicity
newcurve->ik (order of the curve). If the input curve is rational,
the generated Bezier curves will be rational too (i.e. there will be
rational weights in the representation of the Bezier curves).

SYNOPSIS
void s1730(curve, newcurve, stat)

SISLCurve *curve;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to convert.

Output Arguments:
newcurve - The new curve containing all the Bezier curves.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
SISLCurve *newcurve;
int stat;
. . .
s1730(curve, &newcurve, &stat);
. . .

}

66 CHAPTER 2. CURVE DEFINITION

2.4.3 Pick out the next Bezier curve from a curve.

NAME
s1732 - To pick out the next Bezier curve from a curve. This function re-

quires a curve represented as the curve that is output from s1730().
If the input curve is rational, the generated Bezier curves will be
rational too (i.e. there will be rational weights in the representa-
tion of the Bezier curves).

SYNOPSIS
void s1732(curve, number, startpar, endpar, coef, stat)

SISLCurve *curve;
int number;
double *startpar;
double *endpar;
double coef[];
int *stat;

ARGUMENTS
Input Arguments:

curve - curve to pick from.
number - The number of the Bezier curve that is to be picked,

where 0 ≤ number < in/ik (i.e. the number of ver-
tices in the curve divided by the order of the curve).

Output Arguments:
startpar - The start parameter value of the Bezier curve.
endpar - The end parameter value of the Bezier curve.
coef - The vertices of the Bezier curve. Space of size

(idim + 1) × ik (i.e. spatial dimension of curve +1
times the order of the curve) must be allocated out-
side the function.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

2.4. CONVERSION 67

EXAMPLE OF USE
{

SISLCurve *curve;
int number;
double startpar;
double endpar;
double coef[12];
int stat;
. . .
s1732(curve, number, &startpar, &endpar, coef, &stat);
. . .

}

68 CHAPTER 2. CURVE DEFINITION

2.4.4 Express a curve using a higher order basis.

NAME
s1750 - To describe a curve using a higher order basis.

SYNOPSIS
void s1750(curve, order, newcurve, stat)

SISLCurve *curve;
int order;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The input curve.
order - Order of the new curve.

Output Arguments:
newcurve - The new curve of higher order.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double order;
SISLCurve *newcurve;
int stat;
. . .
s1750(curve, order, &newcurve, &stat);
. . .

}

2.4. CONVERSION 69

2.4.5 Express the “i”-th derivative of an open curve as a curve.

NAME
s1720 - To express the “i”-th derivative of an open curve as a curve.

SYNOPSIS
void s1720(curve, derive, newcurve, stat)

SISLCurve *curve;
int derive;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Curve to be differentiated.
derive - The order ”i” of the derivative, where 0 ≤ derive.

Output Arguments:
newcurve - The ”i”-th derivative of a curve represented as a

curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
int derive;
SISLCurve *newcurve;
int stat;
. . .
s1720(curve, derive, &newcurve, &stat);
. . .

}

70 CHAPTER 2. CURVE DEFINITION

2.4.6 Express a 2D or 3D ellipse as a curve.

NAME
s1522 - Convert a 2D or 3D analytical ellipse to a curve. The curve will

be geometrically exact.

SYNOPSIS
void s1522(normal, centre, ellipaxis, ratio, dim, ellipse, jstat)

double normal[];
double centre[];
double ellipaxis[];
double ratio;
int dim;
SISLCurve **ellipse;
int *jstat;

ARGUMENTS
Input Arguments:

normal - 3D normal to ellipse plane (not necessarily normal-
ized). Used if dim = 3.

centre - Centre of ellipse (2D if dim = 2 and 3D if dim = 3).

ellipaxis - This will be used as starting point for the ellipse curve
(2D if dim = 2 and 3D if dim = 3).

ratio - The ratio between the length of the given el-
lipaxis and the length of the other axis, i.e.
|ellipaxis|/|otheraxis| (a compact representation for-
mat).

dim - Dimension of the space in which the elliptic nurbs
curve lies (2 or 3).

Output Arguments:
ellipse - Ellipse curve (2D if dim = 2 and 3D if dim = 3).

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

2.4. CONVERSION 71

EXAMPLE OF USE
{

double normal[3];
double centre[3];
double ellipaxis[3];
double ratio;
int dim = 3;
SISLCurve *ellipse;
int jstat;
. . .
s1522(normal, centre, ellipaxis, ratio, dim, &ellipse, &jstat);
. . .

}

72 CHAPTER 2. CURVE DEFINITION

2.4.7 Express a conic arc as a curve.

NAME
s1011 - Convert an analytic conic arc to a curve. The curve will be geo-

metrically exact. The arc is given by position at start, shoulder
point and end, and a shape factor.

SYNOPSIS
void s1011(start pos, top pos, end pos, shape, dim, arc seg, stat)

double start pos[];
double top pos[];
double end pos[];
double shape;
int dim;
SISLCurve **arc seg;
int *stat;

ARGUMENTS
Input Arguments:

start pos - Start point of segment.
top pos - Shoulder point of segment. This is the intersection

point of the tangents in start pos and end pos.

end pos - End point of segment.
shape - Shape factor, must be ≥ 0.

< 0.5, an ellipse,
= 0.5, a parabola,
> 0.5, a hyperbola,
≥ 1, the start and end points lies on different

branches of the hyperbola. We want a
single arc segment, therefore if shape ≥ 1,
shape is set to 0.999999.

dim - The spatial dimension of the curve to be produced.

Output Arguments:
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

arc seg - Pointer to the curve produced.

2.4. CONVERSION 73

EXAMPLE OF USE
{

double start pos[3];
double top pos[3];
double end pos[3];
double shape;
int dim = 3;
SISLCurve *arc seg;
int stat;
. . .
s1011(start pos, top pos, end pos, shape, dim, &arc seg, &stat);
. . .

}

74 CHAPTER 2. CURVE DEFINITION

2.4.8 Express a truncated helix as a curve.

NAME
s1012 - Convert an analytical truncated helix to a curve. The curve will

be geometrically exact.

SYNOPSIS
void s1012(start pos, axis pos, axis dir, frequency, numb quad,

counter clock, helix, stat)

double start pos[];
double axis pos[];
double axis dir[];
double frequency;
int numb quad;
int counter clock;
SISLCurve **helix;
int *stat;

ARGUMENTS
Input Arguments:

start pos - Start position on the helix.
axis pos - Point on the helix axis.
axis dir - Direction of the helix axis.
frequency - The length along the helix axis for one period of rev-

olution.
numb quad - Number of quadrants in the helix.
counter clock - Flag for direction of revolution:

= 0 : clockwise,
= 1 : counter clockwise.

Output Arguments:
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

helix - Pointer to the helix curve produced.

2.4. CONVERSION 75

EXAMPLE OF USE
{

double start pos[3];
double axis pos[3];
double axis dir[3];
double frequency;
int numb quad;
int counter clock;
SISLCurve *helix;
int stat;
. . .
s1012(start pos,

axis pos, axis dir, frequency, numb quad, counter clock, &he-
lix, &stat)

. . .
}

76 CHAPTER 2. CURVE DEFINITION

Chapter 3

Curve Interrogation

This chapter describes the functions in the Curve Interrogation module.

3.1 Intersections

3.1.1 Intersection between a curve and a point.

NAME
s1871 - Find all the intersections between a curve and a point.

SYNOPSIS
void s1871(pc1, pt1, idim, aepsge, jpt, gpar1, jcrv, wcurve, jstat)

SISLCurve *pc1;
double *pt1;
int idim;
double aepsge;
int *jpt;
double **gpar1;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - Pointer to the curve.
pt1 - coordinates of the point.
idim - number of coordinates in pt1.
aepsge - Geometry resolution.

77

78 CHAPTER 3. CURVE INTERROGATION

Output Arguments:
jpt - Number of single intersection points.
gpar1 - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie continuous. Intersection curves
are stored in wcurve.

jcrv - Number of intersection curves.
wcurve - Array containing descriptions of the intersection

curves. The curves are only described by points in
the parameter plane. The curve-pointers points to
nothing.
If the curves given as input are degenerate, an in-
tersection point can be returned as an intersection
curve. Use s1327() to decide if an intersection curve
is a point on one of the curves.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1;
double *pt1;
int idim;
double aepsge;
int jpt = 0;
double *gpar1 = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1871(pc1, pt1, idim, aepsge, &jpt, &gpar1, &jcrv, &wcurve, &jstat);
. . .

}

3.1. INTERSECTIONS 79

3.1.2 Intersection between a curve and a straight line or a plane.

NAME
s1850 - Find all the intersections between a curve and a plane (if curve

dimension and dim = 3) or a curve and a line (if curve dimension
and dim = 2).

SYNOPSIS
void s1850(curve, point, normal, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)

SISLCurve *curve;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS

Input Arguments:
curve - Pointer to the curve.
point - Point in the plane/line.
normal - Normal to the plane or any normal to the direction

of the line.
dim - Dimension of the space in which the curve and the

plane/line lies, dim must be equal to two or three.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.

80 CHAPTER 3. CURVE INTERROGATION

intcurve - Array of pointers to SISLIntcurve objects containing
description of the intersection curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double point[3];
double normal[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1850(curve, point, normal, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

3.1. INTERSECTIONS 81

3.1.3 Convert a curve/line intersection into a two-dimensional
curve/origo intersection

NAME
s1327 - Put the equation of the curve pointed at by pcold into two planes

given by the point epoint and the normals enorm1 and enorm2.
The result is an equation where the new two-dimensional curve
rcnew is to be equal to origo.

SYNOPSIS
void s1327(pcold, epoint, enorm1, enorm2, idim, rcnew, jstat)

SISLCurve *pcold;
double epoint[];
double enorm1[];
double enorm2[];
int idim;
SISLCurve **rcnew;
int *jstat;

ARGUMENTS
Input Arguments:

pcold - Pointer to input curve.
epoint - SISLPoint in the planes.
enorm1 - Normal to the first plane.
enorm2 - Normal to the second plane.
idim - Dimension of the space in which the planes lie.

Output Arguments:
rcnew - 2-dimensional curve.
jstat - status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *pcold;
double epoint[];
double enorm1[];
double enorm2[];
int idim;
SISLCurve **rcnew;

82 CHAPTER 3. CURVE INTERROGATION

int *jstat;
. . .
s1327(pcold, epoint, enorm1, enorm2, idim, rcnew, jstat);
. . .

}

3.1. INTERSECTIONS 83

3.1.4 Intersection between a curve and a 2D circle or a sphere.

NAME
s1371 - Find all the intersections between a curve and a sphere (if curve

dimension and dim = 3), or a curve and a circle (if curve dimension
and dim = 2).

SYNOPSIS
void s1371(curve, centre, radius, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double centre[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
centre - Centre of the circle/sphere.
radius - Radius of circle or sphere.
dim - Dimension of the space in which the curve and the

circle/sphere lies, dim should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.

84 CHAPTER 3. CURVE INTERROGATION

intcurve - Array of pointers to SISLIntcurve objects containing
descriptions of the intersection curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing.

3.1. INTERSECTIONS 85

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double centre[3];
double radius;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1371(curve, centre, radius, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

86 CHAPTER 3. CURVE INTERROGATION

3.1.5 Intersection between a curve and a quadric curve.

NAME
s1374 - Find all the intersections between a curve and a quadric curve, (if

curve dimension and dim = 2), or a curve and a quadric surface,
(if curve dimension and dim = 3).

SYNOPSIS
void s1374(curve, conarray, dim, epsco, epsge, numintpt, intpar, numintcu,

intcurve, stat)

SISLCurve *curve;
double conarray[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
conarray - Matrix of dimension (dim+ 1)× (dim+ 1) describing

the conic curve or surface with homogeneous coordi-
nates. For dim=2 the implicit equation of the curve
is that the following is equal to zero:

(
x y 1

)

c0 c1 c2
c3 c4 c5
c6 c7 c8

x
y
1

dim - Dimension of the space in which the cone and the
curve lie, dim should be equal to two or three.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

3.1. INTERSECTIONS 87

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to SISLIntcurve objects containing

descriptions of the intersection curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double conarray[16];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1374(curve, conarray, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

88 CHAPTER 3. CURVE INTERROGATION

3.1.6 Intersection between two curves.

NAME
s1857 - Find all the intersections between two curves.

SYNOPSIS
void s1857(curve1, curve2, epsco, epsge, numintpt, intpar1, intpar2,

numintcu, intcurve, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsco;
double epsge;
int *numintpt;
double **intpar1;
double **intpar2;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - Pointer to the first curve.
curve2 - Pointer to the second curve.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar1 - Array containing the parameter values of the single

intersection points in the parameter interval of the
first curve. Intersection curves are stored in intcurve.

intpar2 - Array containing the parameter values of the sin-
gle intersection points in the parameter interval of
the second curve. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.

3.1. INTERSECTIONS 89

intcurve - Array of pointers to the SISLIntcurve objects contain-
ing descriptions of the intersection curves. The curves
are only described by start points and end points in
the parameter interval of the curve. The curve point-
ers point to nothing. If the curves given as input are
degenerate, an intersection point can be returned as
an intersection curve.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsco;
double epsge;
int numintpt;
double *intpar1;
double *intpar2;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1857(curve1, curve2, epsco, epsge, &numintpt, &intpar1, &intpar2,

&numintcu, &intcurve, &stat);
. . .

}

90 CHAPTER 3. CURVE INTERROGATION

3.2 Compute the Length of a Curve

NAME
s1240 - Compute the length of a curve. The length calculated will not

deviate more than epsge divided by the calculated length, from
the real length of the curve.

SYNOPSIS
void s1240(curve, epsge, length, stat)

SISLCurve *curve;
double epsge;
double *length;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve.
epsge - Geometry resolution.

Output Arguments:
length - The length of the curve.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

NOTE
The algorithm is based on recursive subdivision and will thus for small
values of epsge require long computation time.

EXAMPLE OF USE
{

SISLCurve *curve;
double epsge;
double length;
int stat;
. . .
s1240(curve, epsge, &length, &stat);
. . .

}

3.3. CHECK IF A CURVE IS CLOSED 91

3.3 Check if a Curve is Closed

NAME
s1364 - To check if a curve is closed, i.e. test if the distance between the

end points of the curve is less than a given tolerance.

SYNOPSIS
void s1364(curve, epsge, stat)

SISLCurve *curve;
double epsge;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve.
epsge - Geometric tolerance.

Output Arguments:
stat - Status messages

= 2 : Curve is closed and periodic.
= 1 : Curve is closed.
= 0 : Curve is open.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double epsge;
int stat;
. . .
s1364(curve, epsge, &stat);
. . .

}

92 CHAPTER 3. CURVE INTERROGATION

3.4 Check if a Curve is Degenerated.

NAME
s1451 - To check if a curve is degenerated.

SYNOPSIS
void s1451(pc1, aepsge, jdgen, jstat)

SISLCurve *pc1;
double aepsge;
int *jdgen;
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - Pointer to the curve to be tested.
aepsge - The curve is degenerate if all vertices lie within the

distance aepsge from each other

Output Arguments:
jdgen - Degenerate indicator

= 0 : The curve is not degenerate.
= 1 : The curve is degenerate.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLCurve *pc1;
double aepsge;
int *jdgen;
int *jstat;
. . .
s1451(pc1, aepsge, jdgen, jstat);
. . .

}

3.5. PICK THE PARAMETER RANGE OF A CURVE 93

3.5 Pick the Parameter Range of a Curve

NAME
s1363 - To pick the parameter range of a curve.

SYNOPSIS
void s1363(curve, startpar, endpar, stat)

SISLCurve *curve;
double *startpar;
double *endpar;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve.

Output Arguments:
startpar - Start of the parameter interval of the curve.
endpar - End of the parameter interval of the curve.
stat - Status messages

= 1 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double startpar;
double endpar;
int stat;
. . .
s1363(curve, &startpar, &endpar, &stat);
. . .

}

94 CHAPTER 3. CURVE INTERROGATION

3.6 Closest Points

3.6.1 Find the closest point between a curve and a point.

NAME
s1953 - Find the closest points between a curve and a point.

SYNOPSIS
void s1953(curve, point, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, jstat)
SISLCurve *curve;
double point[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the space in which the curve and point

lie.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single closest points.
intpar - Array containing the parameter values of the single

closest points in the parameter interval of the curve.
The points lie in sequence. Closest curves are stored
in intcurve.

numintcu - Number of closest curves.
intcurve - Array of pointers to the SISLIntcurve objects contain-

ing descriptions of the closest curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing.

3.6. CLOSEST POINTS 95

jstat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

96 CHAPTER 3. CURVE INTERROGATION

EXAMPLE OF USE
{

SISLCurve *curve;
double point[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int jstat;
. . .
s1953(curve, point, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &jstat);
. . .

}

3.6. CLOSEST POINTS 97

3.6.2 Find the closest point between a curve and a point. Simple
version.

NAME
s1957 - Find the closest point between a curve and a point. The method is

fast and should work well in clear cut cases but does not guarantee
finding the right solution. As long as it doesn’t fail, it will find
exactly one point. In other cases, use s1953().

SYNOPSIS
void s1957(pcurve, epoint, idim, aepsco, aepsge, gpar, dist, jstat)

SISLCurve *pcurve;
double epoint[];
int idim;
double aepsco;
double aepsge;
double *gpar;
double *dist;
int *jstat;

ARGUMENTS
Input Arguments:

pcurve - Pointer to the curve in the closest point problem.

epoint - The point in the closest point problem.
idim - Dimension of the space in which epoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
gpar - The parameter value of the closest point in the pa-

rameter interval of the curve.
dist - The closest distance between curve and point.
jstat - Status message

< 0 : Error.
= 0 : Point found by iteration.
> 0 : Warning.
= 1 : Point lies at an end.

98 CHAPTER 3. CURVE INTERROGATION

EXAMPLE OF USE
{

SISLCurve *pcurve;
double epoint[3];
int idim = 3;
double aepsco;
double aepsge;
double gpar = 0;
double dist = 0;
int jstat = 0;
. . .
s1957(pcurve, epoint, idim, aepsco, aepsge, &gpar, &dist, &jstat);
. . .

}

3.6. CLOSEST POINTS 99

3.6.3 Local iteration to closest point between point and curve.

NAME
s1774 - Newton iteration on the distance function between a curve and a

point, to find a closest point or an intersection point. If a bad
choice for the guess parameter is given in, the iteration may end
at a local, not global closest point.

SYNOPSIS
void s1774(crv, point, dim, epsge, start, end, guess, clpar, stat)

SISLCurve *crv;
double point[];
int dim;
double epsge;
double start;
double end;
double guess;
double *clpar;
int *stat;

ARGUMENTS
Input Arguments:

crv - The curve in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the geometry.
epsge - Geometrical resolution.
start - Curve parameter giving the start of the search inter-

val.
end - Curve parameter giving the end of the search interval.
guess - Curve guess parameter for the closest point iteration.

Output Arguments:
clpar - Resulting curve parameter from the iteration.
stat - Status messages

> 0 : A minimum distance found.
= 0 : Intersection found.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *crv;
double point[];

100 CHAPTER 3. CURVE INTERROGATION

int dim;
double epsge;
double start;
double end;
double guess;
double *clpar;
int *stat;
. . .
s1774(crv, point, dim, epsge, start, end, guess, clpar, stat);
. . .

}

3.6. CLOSEST POINTS 101

3.6.4 Find the closest points between two curves.

NAME
s1955 - Find the closest points between two curves.

SYNOPSIS
void s1955(curve1, curve2, epsco, epsge, numintpt, intpar1, intpar2,

numintcu, intcurve, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsco;
double epsge;
int *numintpt;
double **intpar1;
double **intpar2;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - Pointer to the first curve in the closest point problem.
curve2 - Pointer to the second curve in the closest point prob-

lem.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single closest points.
intpar1 - Array containing the parameter values of the single

closest points in the parameter interval of the first
curve. The points lie in sequence. Closest curves are
stored in intcurve.

intpar2 - Array containing the parameter values of the single
closest points in the parameter interval of the second
curve. The points lie in sequence. Closest curves are
stored in intcurve.

numintcu - Number of closest curves.

102 CHAPTER 3. CURVE INTERROGATION

intcurve - Array of pointers to the SISLIntcurve objects contain-
ing descriptions of the closest curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing. If the curves given as input are de-
generate, a closest point may be returned as a closest
curve.

3.6. CLOSEST POINTS 103

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsco;
double epsge;
int numintpt;
double *intpar1;
double *intpar2;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1955(curve1, curve2, epsco, epsge, &numintpt, &intpar1, &intpar2,

&numintcu, &intcurve, &stat);
. . .

}

104 CHAPTER 3. CURVE INTERROGATION

3.6.5 Find a point on a 2D curve along a given direction.

NAME
s1013 - Find a point on a 2D curve along a given direction.

SYNOPSIS
void s1013(pcurve, ang, ang tol, guess par, iter par, jstat)

SISLCurve *pcurve;
double ang;
double ang tol;
double guess par;
double *iter par;
int *jstat;

ARGUMENTS
Input Arguments:

pcurve - Pointer to the curve.
ang - The angle (in radians) describing the wanted

direction.
ang tol - The angular tolerance (in radians).
guess par - Start parameter value on the curve.

Output Arguments:
iter par - The parameter value found on the curve.
stat - Status messages

= 2 : A minimum distance found.
= 1 : Intersection found.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pcurve;
double ang;
double ang tol;
double guess par;
double iter par;
int jstat;
. . .
s1013(pcurve, ang, ang tol, guess par, &iter par, &jstat);
. . .

}

3.7. FIND THE ABSOLUTE EXTREMALS OF A CURVE. 105

3.7 Find the Absolute Extremals of a Curve.

NAME
s1920 - Find the absolute extremal points/intervals of a curve relative to

a given direction.

SYNOPSIS
void s1920(curve, dir, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double dir[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
dir - The direction in which the extremal point(s) and/or

interval(s) are to be calculated. If dim = 1, a posi-
tive value indicates the maximum of the function and
a negative value the minimum. If the dimension is
greater than 1, the array contains the coordinates of
the direction vector.

dim - Dimension of the space in which the curve and dir lie.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single extremal points.
intpar - Array containing the parameter values of the single

extremal points in the parameter interval of the curve.
The points lie in sequence. Extremal curves are stored
in intcurve.

numintcu - Number of extremal curves.

106 CHAPTER 3. CURVE INTERROGATION

intcurve - Array of pointers to the SISLIntcurve objects contain-
ing descriptions of the extremal curves. The curves
are only described by start points and end points in
the parameter interval of the curve. The curve point-
ers point to nothing.

3.7. FIND THE ABSOLUTE EXTREMALS OF A CURVE. 107

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double dir[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1920(curve, dir, dim, epsco, epsge, &numintpt, &intpar, &numintcu,

&intcurve, &stat);
. . .

}

108 CHAPTER 3. CURVE INTERROGATION

3.8 Area between Curve and Point

3.8.1 Calculate the area between a 2D curve and a 2D point.

NAME
s1241 - To calculate the area between a 2D curve and a 2D point. When

the curve is rotating counter-clockwise around the point, the area
contribution is positive. When the curve is rotating clockwise
around the point, the area contribution is negative. If the curve
is closed or periodic, the area calculated is independent of where
the point is situated. The area is calculated exactly for B-spline
curves, for NURBS the result is an approximation. This routine
will only perform if the order of the curve is less than 7 (can easily
be extended).

SYNOPSIS
void s1241(pcurve, point, dim, epsge, area, stat)

SISLCurve *pcurve;
double point[];
int dim;
double epsge;
double *area;
int *stat;

ARGUMENTS
Input Arguments:

pcurve - The 2D curve.
point - The reference point.
dim - Dimension of geometry (must be 2).
epsge - Absolute geometrical tolerance.

Output Arguments:
area - Calculated area.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pcurve;
double point[];

3.8. AREA BETWEEN CURVE AND POINT 109

int dim;
double epsge;
double *area;
int *stat;
. . .
s1241(pcurve, point, dim, epsge, area, stat);
. . .

}

110 CHAPTER 3. CURVE INTERROGATION

3.8.2 Calculate the weight point and rotational momentum of an
area between a 2D curve and a 2D point.

NAME
s1243 - To calculate the weight point and rotational momentum of an area

between a 2D curve and a 2D point. The area is also calculated.
When the curve is rotating counter-clockwise around the point, the
area contribution is positive. When the curve is rotating clockwise
around the point, the area contribution is negative. OBSERVE:
FOR CALCULATION OF AREA ONLY, USE s1241().

SYNOPSIS
void s1243(pcurve, point, dim, epsge, weight, area, moment, stat)

SISLCurve *pcurve;
double point[];
int dim;
double epsge;
double weight[];
double *area;
double *moment;
int *stat;

ARGUMENTS
Input Arguments:

pcurve - The 2D curve.
point - The reference point.
dim - Dimension of geometry (must be 2).
epsge - Absolute geometrical tolerance.

Output Arguments:
weight - Weight point.
area - Area.
moment - Rotational momentum.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *pcurve;
double point[];

3.8. AREA BETWEEN CURVE AND POINT 111

int dim;
double epsge;
double weight[];
double *area;
double *moment;
int *stat;
. . .
s1243(pcurve, point, dim, epsge, weight, area, moment, stat);
. . .

}

112 CHAPTER 3. CURVE INTERROGATION

3.9 Bounding Box

Both curves and surfaces have bounding boxes. These are boxes surrounding an
object not only parallel to the main axis, but also rotated 45 degrees around each
main axis. These bounding boxes are used by the intersection functions to decide
if an intersection is possible or not. They might also be used to find the position
of objects under other circumstances.

3.9.1 Bounding box object.

In the library a bounding box is stored in a struct SISLbox containing the following:

double *emax; Allocated array containing the minimum values of the
bounding box

double *emin; Allocated array containing the maximum values of
the bounding box

int imin; The index of the minimum coefficient ecoef[imin].
Only used in dimension one. ecoef is the control poly-
gon of the curve/surface.

int imax; The index of the maximum coefficient ecoef[imax].
Only used in dimension one. ecoef is the control poly-
gon of the curve/surface.

3.9. BOUNDING BOX 113

3.9.2 Create and initialize a curve/surface bounding box instance.

NAME
newbox - Create and initialize a curve/surface bounding box instance.

SYNOPSIS
SISLbox *newbox(idim)

int idim;

ARGUMENTS
Input Arguments:

idim - Dimension of geometry space.

Output Arguments:
newbox - Pointer to new SISLbox structure. If it is impossible

to allocate space for the structure, newbox will return
a NULL value.

EXAMPLE OF USE
{

int idim;
SISLbox *box;
. . .
box = newbox(idim);
. . .

}

114 CHAPTER 3. CURVE INTERROGATION

3.9.3 Find the bounding box of a curve.

NAME
s1988 - Find the bounding box of a SISLCurve. NB. The geometric

bounding box is returned also in the rational case, that is the
box in homogenous coordinates is NOT computed.

SYNOPSIS
void s1988(pc, emax, emin, jstat)

SISLCurve *pc;
double **emax;
double **emin;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to treat.

Output Arguments:
emin - Array of dimension idim containing the minimum val-

ues of the bounding box, i.e. bottom-left corner of the
box.

emax - Array of dimension idim containing the maximum val-
ues of the bounding box, i.e. upper-right corner of the
box.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLCurve *pc;
double *emax = NULL;
double *emin = NULL;
int jstat = 0;
. . .
s1988(pc, &emax, &emin, &jstat);
. . .

}

3.10. NORMAL CONE 115

3.10 Normal Cone

Both curves and surfaces have normal cones. These are the cones that are convex
hull of all normalized tangents of a curve and all normalized normals of a surface.

These normal cones are used by the intersection functions to decide if only one
intersection is possible. They might also be used to find directions of objects for
other reasons.

3.10.1 Normal cone object.

In the library a direction cone is stored in a struct SISLdir containing the following:

int igtpi; To mark if the angle of direction cone is greater than
π.

= 0 : The direction of a surface and its bound-
ary curves or a curve is not greater than
π in any parameter direction.

= 1 : The direction of a surface or a curve is
greater than π in the first parameter di-
rection.

= 2 : The angle of direction cone of a surface
is greater than π in the second parameter
direction.

= 10 : The angle of direction cone of a bound-
ary curve in first parameter direction of a
surface is greater than π.

= 20 : The angle of direction cone of a boundary
curve in second parameter direction of a
surface is greater than π.

double *ecoef; Allocated array containing the coordinates of the cen-
tre of the cone.

double aang; The angle from the centre which describes the cone.

116 CHAPTER 3. CURVE INTERROGATION

3.10.2 Create and initialize a curve/surface direction instance.

NAME
newdir - Create and initialize a curve/surface direction instance.

SYNOPSIS
SISLdir *newdir(idim)

int idim;

ARGUMENTS
Input Arguments:

idim - Dimension of the space in which the object lies.

Output Arguments:
newdir - Pointer to new direction structure. If it is impossible

to allocate space for the structure, newdir will return
a NULL value.

EXAMPLE OF USE
{

int idim;
SISLdir *dir;
. . .
dir = newdir(idim);
. . .

}

3.10. NORMAL CONE 117

3.10.3 Find the direction cone of a curve.

NAME
s1986 - Find the direction cone of a curve.

SYNOPSIS
void s1986(pc, aepsge, jgtpi, gaxis, cang, jstat)

SISLCurve *pc;
double aepsge;
int *jgtpi;
double **gaxis;
double *cang;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to treat.
aepsge - Geometry tolerance.

Output Arguments:
jgtpi - To mark if the angle of the direction cone is greater

than π.
= 0 The direction cone of the curve ≤ π.

= 1 The direction cone of the curve > π.

gaxis - Allocated array containing the coordinates of the cen-
tre of the cone. It is only computed if jgtpi = 0.

cang - The angle from the centre to the boundary of the
cone. It is only computed if jgtpi = 0.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc;
double aepsge;
int jgtpi = 0;
double *gaxis = NULL;
double cang = 0.0;
int jstat = 0;

118 CHAPTER 3. CURVE INTERROGATION

. . .
s1986(pc, aepsge, &jgtpi, &gaxis, &cang, &jstat);
. . .

}

Chapter 4

Curve Analysis

This chapter describes the Curve Analysis part.

4.1 Curvature Evaluation

4.1.1 Evaluate the curvature of a curve at given parameter values.

NAME
s2550 - Evaluate the curvature of a curve at given parameter values ax[0

],...,ax[num ax - 1].

SYNOPSIS
void s2550(curve, ax, num ax, curvature, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double curvature[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

curvature - The ”num ax” curvature values computed
jstat - Status messages

119

120 CHAPTER 4. CURVE ANALYSIS

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double ax[];
int num ax;
double curvature[];
int *jstat;
. . .
s2550(curve, ax, num ax, curvature, jstat);
. . .

}

4.1. CURVATURE EVALUATION 121

4.1.2 Evaluate the torsion of a curve at given parameter values.

NAME
s2553 - Evaluate the torsion of a curve at given parameter values ax[0

],...,ax[num ax - 1].

SYNOPSIS
void s2553(curve, ax, num ax, torsion, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double torsion[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

torsion - The ”num ax” torsion values computed
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double ax[];
int num ax;
double torsion[];
int *jstat;
. . .
s2553(curve, ax, num ax, torsion, jstat);
. . .

}

122 CHAPTER 4. CURVE ANALYSIS

4.1.3 Evaluate the Variation of Curvature (VoC) of a curve at
given parameter values.

NAME
s2556 - Evaluate the Variation of Curvature (VoC) of a curve at given

parameter values ax[0],...,ax[num ax - 1].

SYNOPSIS
void s2556(curve, ax, num ax, VoC, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double VoC[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

VoC - The ”num ax” Variation of Curvature (VoC) values
computed

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double ax[];
int num ax;
double VoC[];
int *jstat;
. . .
s2556(curve, ax, num ax, VoC, jstat);
. . .

}

4.1. CURVATURE EVALUATION 123

4.1.4 Evaluate the Frenet Frame (t,n,b) of a curve at given pa-
rameter values.

NAME
s2559 - Evaluate the Frenet Frame (t,n,b) of a curve at given parameter

values ax[0],...,ax[num ax - 1].

SYNOPSIS
void s2559(curve, ax, num ax, p, t, n, b, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double p[];
double t[];
double n[];
double b[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

t - The Frenet Frame (in 3D) computed. Each of the
arrays (t,n,b)
are of dim. 3*num ax, and the data are stored like
this: tx(ax[0]), ty(ax[0]), tz(ax[0]), ...,tx(ax[num ax-
1]), ty(ax[num ax-1]), tz(ax[num ax-1]).

p - 1]
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double ax[];
int num ax;

124 CHAPTER 4. CURVE ANALYSIS

double p[];
double t[];
double n[];
double b[];
int *jstat;
. . .
s2559(curve, ax, num ax, p, t, n, b, jstat);
. . .

}

4.1. CURVATURE EVALUATION 125

4.1.5 Evaluate geometric properties at given parameter values.

NAME
s2562 - Evaluate the 3D position, the Frenet Frame (t,n,b) and geometric

property (curvature, torsion or variation of curvature) of a curve
at given parameter values ax[0],...,ax[num ax-1]. These data are
needed to produce spike plots (using the Frenet Frame and the
geometric property) and circular tube plots (using circular in the
normal plane (t,b), where the radius is equal to the geometric
property times a scaling factor for visual effects).

SYNOPSIS
void s2562(curve, ax, num ax, val flag, p, t, n, b, val, jstat)

SISLCurve *curve;
double ax[];
int num ax;
int val flag;
double p[];
double t[];
double n[];
double b[];
double val[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values
val - Compute geometric property

= 1 : curvature
= 2 : torsion
= 3 : variation of curvature

Output Arguments:
-

t - The Frenet Frame (in 3D) computed. Each of the
arrays (t,n,b)
are of dim. 3*num ax, and the data are stored like
this: tx(ax[0]), ty(ax[0]), tz(ax[0]), ...,tx(ax[num ax-
1]), ty(ax[num ax-1]), tz(ax[num ax-1]).

p - 1]

126 CHAPTER 4. CURVE ANALYSIS

val - Geometric property (curvature, torsion or variation
of curvature) of a curve at given parameter values
ax[0],...,ax[num ax-1].

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
double ax[];
int num ax;
int val flag;
double p[];
double t[];
double n[];
double b[];
double val[];
int *jstat;
. . .
s2562(curve, ax, num ax, val flag, p, t, n, b, val, jstat);
. . .

}

Chapter 5

Curve Utilities

This chapter describes the Curve Utilities. These are common to both the Curve
Definition and Curve Interrogation modules.

5.1 Curve Object

In the library both B-spline and NURBS curves are stored in a struct SISLCurve
containing the following:

int ik; Order of curve.
int in; Number of vertices.
double *et; Pointer to the knot vector.
double *ecoef; Pointer to the array containing non-rational vertices,

size in× idim.

double *rcoef; Pointer to the array of rational vertices and weights,
size in× (idim+ 1).

int ikind; Type of curve
= 1 : Polynomial B-spline curve.
= 2 : Rational B-spline (nurbs) curve.
= 3 : Polynomial Bezier curve.
= 4 : Rational Bezier curve.

int idim; Dimension of the space in which the curve lies.
int icopy; Indicates whether the arrays of the curve are allocated

and copied or referenced by creation of the curve.
= 0 : Pointer set to input arrays. The arrays

are not deleted by freeCurve.
= 1 : Array allocated and copied. The arrays

are deleted by freeCurve.

127

128 CHAPTER 5. CURVE UTILITIES

= 2 : Pointer set to input arrays, but are to be
treated as copied. The arrays are deleted
by freeCurve.

SISLdir *pdir; Pointer to a SISLdir object used for storing curve
direction.

SISLbox *pbox; Pointer to a SISLbox object used for storing the sur-
rounding boxes.

int cuopen; Open/closed/periodic flag.
= −1 : Closed curve with periodic (cyclic) pa-

rameterization and overlapping end ver-
tices.

= 0 : Closed curve with k-tuple end knots and
coinciding start/end vertices.

= 1 : Open curve (default).

When using a curve, do not declare a SISLCurve but a pointer to a SISLCurve,
and initialize it to point on NULL. Then you may use the dynamic allocation
functions newCurve and freeCurve described below, to create and delete curves.

There are two ways to pass coefficient and knot arrays to newCurve. By setting
icopy = 1, newCurve allocates new arrays and copies the given ones. But by
setting icopy = 0 or 2, newCurve simply points to the given arrays. Therefore
it is IMPORTANT that the given arrays have been allocated in free memory
beforehand.

5.1. CURVE OBJECT 129

5.1.1 Create new curve object.

NAME
newCurve - Create and initialize a SISLCurve-instance.

SYNOPSIS
SISLCurve *newCurve(number, order, knots, coef, kind, dim, copy)

int number;
int order;
double knots[];
double coef[];
int kind;
int dim;
int copy;

ARGUMENTS
Input Arguments:

number - Number of vertices in the new curve.
order - Order of curve.
knots - Knot vector of curve.
coef - Vertices of curve. These can either be the dim

dimensional non-rational vertices, or the (dim + 1)
dimensional rational vertices.

kind - Type of curve.
= 1 : Polynomial B-spline curve.
= 2 : Rational B-spline (nurbs) curve.
= 3 : Polynomial Bezier curve.
= 4 : Rational Bezier curve.

dim - Dimension of the space in which the curve lies.
copy - Flag

= 0 : Set pointer to input arrays.
= 1 : Copy input arrays.
= 2 : Set pointer and remember to free arrays.

Output Arguments:
newCurve - Pointer to the new curve. If it is impossible to allocate

space for the curve, newCurve returns NULL.

130 CHAPTER 5. CURVE UTILITIES

EXAMPLE OF USE
{

SISLCurve *curve = NULL;
int number = 10;
int order = 4;
double knots[14];
double coef[30];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
curve = newCurve(number, order, knots, coef, kind, dim, copy);
. . .

}

5.1. CURVE OBJECT 131

5.1.2 Make a copy of a curve.

NAME
copyCurve - Make a copy of a curve.

SYNOPSIS
SISLCurve *copyCurve(pcurve)

SISLCurve *pcurve;

ARGUMENTS
Input Arguments:

pcurve - Curve to be copied.

Output Arguments:
copyCurve - The new curve.

EXAMPLE OF USE
{

SISLCurve *curvecopy = NULL;
SISLCurve *curve = NULL;
int number = 10;
int order = 4;
double knots[14];
double coef[30];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
curve = newCurve(number, order, knots, coef, kind, dim, copy);
. . .
curvecopy = copyCurve(curve);
. . .

}

132 CHAPTER 5. CURVE UTILITIES

5.1.3 Delete a curve object.

NAME
freeCurve - Free the space occupied by the curve. Before using freeCurve,

make sure the curve object exists.

SYNOPSIS
void freeCurve(curve)

SISLCurve *curve;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve to delete.
EXAMPLE OF USE

{
SISLCurve *curve = NULL;
int number = 10;
int order = 4;
double knots[14];
double coef[30];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
curve = newCurve(number, order, knots, coef, kind, dim, copy);
. . .
freeCurve(curve);
. . .

}

5.2. EVALUATION 133

5.2 Evaluation

5.2.1 Compute the position and the left-hand derivatives of a
curve at a given parameter value.

NAME
s1227 - To compute the position and the first derivatives of the curve at

a given parameter value Evaluation from the left hand side.

SYNOPSIS
void s1227(curve, der, parvalue, leftknot, derive, stat)

SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives
are to be computed.

der - The number of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and derivative.
etc.

parvalue - The parameter value at which to compute position
and derivatives.

Input/Output Arguments:
leftknot - Pointer to the interval in the knot vector where par-

value is located. If et[] is the knot vector, the relation:

et[leftknot] < parvalue ≤ et[leftknot + 1]

should hold. (If parvalue ≤ et[ik − 1]) then leftknot
should be “ik-1”. Here “ik” is the order of the curve.)
If leftknot does not have the right value when entering
the routine, its value will be changed to the value
satisfying the above condition.

134 CHAPTER 5. CURVE UTILITIES

Output Arguments:
derive - Double array of dimension (der + 1) × dim contain-

ing the position and derivative vectors. (dim is the
dimension of the Euclidean space in which the curve
lies.) These vectors are stored in the following order:
first the components of the position vector, then the
dim components of the tangent vector, then the dim
components of the second derivative vector, and so
on. (The C declaration of derive as a two dimensional
array would therefore be derive[der + 1][dim].)

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
int der = 3;
double parvalue;
int leftknot;
double derive[12];
int stat;
. . .
s1227(curve, der, parvalue, &leftknot, derive, &stat);
. . .

}

5.2. EVALUATION 135

5.2.2 Compute the position and the right-hand derivatives of a
curve at a given parameter value.

NAME
s1221 - To compute the positione and the first derivatives of a curve at a

given parameter value. Evaluation from the right hand side.

SYNOPSIS
void s1221(curve, der, parvalue, leftknot, derive, stat)

SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives
are to be computed.

der - The number (order) of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and derivative.
etc.

parvalue - The parameter value at which to compute position
and derivatives.

Input/Output Arguments:
leftknot - Pointer to the interval in the knot vector where par-

value is located. If et[] is the knot vector, the relation:

et[leftknot] ≤ parvalue < et[leftknot+ 1]

should hold. (If parvalue ≥ et[in]) then leftknot
should be “in-1”. Here “in” is the number of coef-
ficients.) If leftknot does not have the right value
when entering the routine, its value will be changed
to the value satisfying the above condition.

136 CHAPTER 5. CURVE UTILITIES

Output Arguments:
derive - Double array of dimension (der + 1) × dim contain-

ing the position and derivative vectors. (dim is the
dimension of the Euclidean space in which the curve
lies.) These vectors are stored in the following order:
first the dim components of the position vector, then
the dim components of the tangent vector, then the
dim components of the second derivative vector, and
so on. (The C declaration of derive as a two dimen-
sional array would therefore be derive[der+ 1][dim].)

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
int der = 3;
double parvalue;
int leftknot = 0;
double derive[12];
int stat;
. . .
s1221(curve, der, parvalue, &leftknot, derive, &stat);
. . .

}

5.2. EVALUATION 137

5.2.3 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the
left hand side.

NAME
s1225 - Evaluate position, first derivative, curvature and radius of curva-

ture of a curve at a given parameter value, from the left hand
side.

SYNOPSIS
void s1225(curve, der, parvalue, leftknot, derive, curvature, radius of cur-

vature, jstat)
SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
double curvature[];
double *radius of curvature;
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives
are to be computed.

der - The number of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and first derivative.
etc.

parvalue - The parameter value at which to compute position
and derivatives.

Input/Output Arguments:

138 CHAPTER 5. CURVE UTILITIES

leftknot - Pointer to the interval in the knot vector where ax is
located. If et is the knot vector, the relation

et[ileft] < parvalue <= et[ileft+ 1]

should hold. (If parvalue = et[ik-1] then ileft should
be ik-1. Here in is the number of B-spline coeffi-
cients.) If ileft does not have the right value upon
entry to the routine, its value will be changed to the
value satisfying the above condition.

Output Arguments:
derive - Double array of dimension [(ider+1)∗ idim] contain-

ing the position and derivative vectors. (idim is the
number of components of each B-spline coefficient,
i.e. the dimension of the Euclidean space in which
the curve lies.) These vectors are stored in the fol-
lowing order: First the idim components of the po-
sition vector, then the idim components of the tan-
gent vector, then the idim components of the second
derivative vector, and so on. (The C declaration of
eder as a two dimensional array would therefore be
eder[ider+1,idim].)

curvature - Array of dimension idim
radius - 1, indicates that the radius of curvature is infinit.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
double curvature[];
double *radius of curvature;
int *jstat;
. . .

5.2. EVALUATION 139

s1225(curve, der, parvalue, leftknot, derive, curvature, radius of cur-
vature, jstat);

. . .
}

140 CHAPTER 5. CURVE UTILITIES

5.2.4 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the
right hand side.

NAME
s1226 - Evaluate position, first derivative, curvature and radius of curva-

ture of a curve at a given parameter value, from the right hand
side.

SYNOPSIS
void s1226(curve, der, parvalue, leftknot, derive, curvature, radius of cur-

vature, jstat)
SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
double curvature[];
double *radius of curvature;
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives
are to be computed.

der - The number of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and first derivative.
etc.

parvalue - The parameter value at which to compute position
and derivatives.

Input/Output Arguments:

5.2. EVALUATION 141

leftknot - Pointer to the interval in the knot vector where ax is
located. If et is the knot vector, the relation

et[ileft] < parvalue <= et[ileft+ 1]

should hold. (If parvalue = et[ik-1] then ileft should
be ik-1. Here in is the number of B-spline coeffi-
cients.) If ileft does not have the right value upon
entry to the routine, its value will be changed to the
value satisfying the above condition.

Output Arguments:
derive - Double array of dimension [(ider+1)*idim] containing

the position and derivative vectors. (idim is the num-
ber of components of each B-spline coefficient, i.e. the
dimension of the Euclidean space in which the curve
lies.) These vectors are stored in the following order:
First the idim components of the position vector, then
the idim components of the tangent vector, then the
idim components of the second derivative vector, and
so on. (The C declaration of eder as a two dimen-
sional array would therefore be eder[ider+1,idim].)

curvature - Array of dimension idim
radius - 1, indicates that the radius of curvature is infinit.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
double curvature[];
double *radius of curvature;
int *jstat;
. . .
s1226(curve, der, parvalue, leftknot, derive, curvature, radius of cur-

vature, jstat);

142 CHAPTER 5. CURVE UTILITIES

. . .
}

5.2. EVALUATION 143

5.2.5 Evaluate the curve over a grid of m points. Only positions
are evaluated.

NAME
s1542 - Evaluate the curve pointed at by pc1 over a m grid of points

(x[i]). Only positions are evaluated. This does not work for in the
rational case.

SYNOPSIS
void s1542(pc1, m, x, eder, jstat)

SISLCurve *pc1;
int m;
double x[];
double eder[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - Pointer to the curve to evaluate.
m - Number of grid points.
x - Array of parameter values of the grid.

Output Arguments:
eder - Array where the derivatives of the curve are placed,

dimension idim * (ider+1) * m. The sequence is po-
sition at point x[0], followed by the same information
at x[1], etc.

jstat - status messages
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1;
int m;
double x[];
double eder[];
int *jstat;
. . .
s1542(pc1, m, x, eder, jstat);
. . .

}

144 CHAPTER 5. CURVE UTILITIES

5.3 Subdivision

5.3.1 Subdivide a curve at a given parameter value.

NAME
s1710 - Subdivide a curve at a given parameter value.

NOTE: When the curve is periodic (i.e. when the cuopen flag of
the curve has value = −1), this function will return only ONE
curve through rcnew1. This curve is the same geometric curve as
pc1, but is represented on a closed basis, i.e. with k-tuple start/end
knots and coinciding start/end coefficients. The cuopen flag of the
curve will then be set to closed (= 0) and a status value jstat equal
to 2 will be returned.

SYNOPSIS
void s1710(pc1, apar, rcnew1, rcnew2, jstat)

SISLCurve *pc1;
double apar;
SISLCurve **rcnew1;
SISLCurve **rcnew2;
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The curve to subdivide.
apar - Parameter value at which to subdivide.

Output Arguments:
rcnew1 - First part of the subdivided curve.
rcnew2 - Second part of the subdivided curve. If the parameter

value is at the end of a curve NULL pointers might
be returned

jstat - Status messages
= 5 : Parameter value at end of curve,

rcnew1=NULL or rcnew2=NULL.
= 2 : pc1 periodic, rcnew2=NULL.
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

5.3. SUBDIVISION 145

EXAMPLE OF USE
{

SISLCurve *pc1;
double apar;
SISLCurve *rcnew1 = NULL;
SISLCurve *rcnew2 = NULL;
int jstat = 0;
. . .

s1710(pc1, apar, &rcnew1, &rcnew2, &jstat);
. . .

}

146 CHAPTER 5. CURVE UTILITIES

5.3.2 Insert a given knot into the description of a curve.

NAME
s1017 - Insert a given knot into the description of a curve.

NOTE : When the curve is periodic (i.e. the curve flag cuopen =
−1), the input parameter value must lie in the half-open [et[kk −
1], et[kn) interval, the function will automatically update the extra
knots and coeffisients. rcnew->in is still equal to pc->in+ 1!

SYNOPSIS
void s1017(pc, rc, apar, jstat)

SISLCurve *pc;
int *jstat;
double apar;
SISLCurve **rc;

ARGUMENTS
Input Arguments:

pc - The curve to be refined.
apar - Parameter value of the knot to be inserted.

Output Arguments:
rc - The new, refined curve.
jstat - Status message

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc;
double apar;
SISLCurve *rc = NULL;
int jstat = 0;
. . .
s1017(pc, &rc, apar, &jstat);
. . .

}

5.3. SUBDIVISION 147

5.3.3 Insert a given set of knots into the description of a curve.

NAME
s1018 - Insert a given set of knots into the description of a curve.

NOTE : When the curve is periodic (i.e. when the curve flag
cuopen = −1), the input parameter values must lie in the half-
open [et[kk − 1], et[kn), the function will automatically update
the extra knots and coeffisients. The rcnew->in will still be equal
to pc->in+ inpar.

SYNOPSIS
void s1018(pc, epar, inpar, rcnew, jstat)

SISLCurve *pc;
double epar[];
int inpar;
SISLCurve **rcnew;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to be refined.
epar - Knots to be inserted. The values are stored in in-

creasing order and may be multiple.

inpar - Number of knots in epar.

Output Arguments:
rcnew - The new, refined curve.
jstat - Status message

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc;
double epar[5];
int inpar = 5;
SISLCurve *rcnew = NULL;
int jstat = 0;
. . .
s1018(pc, epar, inpar, &rcnew, &jstat);
. . .

148 CHAPTER 5. CURVE UTILITIES

}

5.3. SUBDIVISION 149

5.3.4 Split a curve into two new curves.

NAME
s1714 - Split a curve in two parts at two specified parameter values. The

first curve starts at parval1. If the curve is open, the last part of
the curve is translated so that the end of the curve joins the start.

SYNOPSIS
void s1714(curve, parval1, parval2, newcurve1, newcurve2, stat)

SISLCurve *curve;
double parval1;
double parval2;
SISLCurve **newcurve1;
SISLCurve **newcurve2;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to split.
parval1 - Start parameter value of the first new curve.
parval2 - Start parameter value of the second new curve.

Output Arguments:
newcurve1 - The first new curve.
newcurve2 - The second new curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double parval1;
double parval2;
SISLCurve *newcurve1;
SISLCurve *newcurve2;
int stat;
. . .
s1714(curve, parval1, parval2, &newcurve1, &newcurve2, &stat);
. . .

}

150 CHAPTER 5. CURVE UTILITIES

5.3.5 Pick a part of a curve.

NAME
s1712 - To pick one part of a curve and make a new curve of the part. If

endpar < begpar the direction of the new curve is turned. Use
s1713() to pick a curve part crossing the start/end points of a
closed (or periodic) curve.

SYNOPSIS
void s1712(curve, begpar, endpar, newcurve, stat)

SISLCurve *curve;
double begpar;
double endpar;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to pick a part from.
begpar - Start parameter value of the part curve to be picked.
endpar - End parameter value of the part curve to be picked.

Output Arguments:
newcurve - The new curve that is a part of the original curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double begpar;
double endpar;
SISLCurve *newcurve;
int stat;
. . .
s1712(curve, begpar, endpar, &newcurve, &stat);
. . .

}

5.3. SUBDIVISION 151

5.3.6 Pick a part of a closed curve.

NAME
s1713 - To pick one part of a closed curve and make a new curve of that

part. If the routine is used on an open curve and endpar ≤ begpar,
the last part of the curve is translated so that the end of the curve
joins the start.

SYNOPSIS
void s1713(curve, begpar, endpar, newcurve, stat)

SISLCurve *curve;
double begpar;
double endpar;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to pick a part from.
begpar - Start parameter value of the part of the curve to be

picked.
endpar - End parameter value of the part of the curve to be

picked.

Output Arguments:
newcurve - The new curve that is a part of the original curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double begpar;
double endpar;
SISLCurve *newcurve;
int stat;
. . .
s1713(curve, begpar, endpar, &newcurve, &stat);
. . .

}

152 CHAPTER 5. CURVE UTILITIES

5.4 Joining

5.4.1 Join two curves at specified ends.

NAME
s1715 - To join one end of one curve with one end of another curve by

translating the second curve. If curve1 is to be joined at the start,
the direction of the curve is turned. If curve2 is to be joined at the
end, the direction of this curve is turned. This means that curve1
always makes the first part of the new curve.

SYNOPSIS
void s1715(curve1, curve2, end1, end2, newcurve, stat)

SISLCurve *curve1;
SISLCurve *curve2;
int end1;
int end2;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - First curve to join.
curve2 - Second curve to join.
end1 - True (1) if the first curve is to be joined at the end,

else false (0).
end2 - True (1) if the second curve is to be joined at the end,

else false (0).

Output Arguments:
newcurve - The new joined curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

5.4. JOINING 153

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
int end1;
int end2;
SISLCurve *newcurve;
int stat;
. . .
s1715(curve1, curve2, end1, end2, &newcurve, &stat);
. . .

}

154 CHAPTER 5. CURVE UTILITIES

5.4.2 Join two curves at closest ends.

NAME
s1716 - To join two curves at the ends that lie closest to each other, if

the distance between the ends is less than the tolerance epsge. If
curve1 is to be joined at the start, the direction of the curve is
turned. If curve2 is to be joined at the end, the direction of this
curve is turned. This means that curve1 always makes up the first
part of the new curve. If epsge is positive, but smaller than the
smallest distance between the ends of the two curves, a NULL
pointer is returned.

SYNOPSIS
void s1716(curve1, curve2, epsge, newcurve, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - First curve to join.
curve2 - Second curve to join.
epsge - The curves are to be joined if epsge is greater than or

equal to the distance between the ends lying closest
to each other. If epsge is negative, the curves are
automatically joined.

Output Arguments:
newcurve - The new joined curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
SISLCurve *newcurve;

5.4. JOINING 155

int stat;
. . .
s1716(curve1, curve2, epsge, &newcurve, &stat);
. . .

}

156 CHAPTER 5. CURVE UTILITIES

5.5 Reverse the Orientation of a Curve.

NAME
s1706 - Turn the direction of a curve by reversing the ordering of the

coefficients. The start parameter value of the new curve is the
same as the start parameter value of the old curve. This routine
turns the direction of the orginal curve. If you want a copy with
a turned direction, just make a copy and turn the direction of the
copy.

SYNOPSIS
void s1706(curve)

SISLCurve *curve;

ARGUMENTS
Input Arguments:

curve - The curve to turn.

EXAMPLE OF USE
{

SISLCurve *curve;
. . .
s1706(curve);
. . .

}

5.6. EXTEND A B-SPLINE CURVE. 157

5.6 Extend a B-spline Curve.

NAME
s1233 - To extend a B-spline curve (i.e. NOT rationals) at the start and/or

the end of the curve by continuing the polynomial behaviour of
the curve.

SYNOPSIS
void s1233(pc, afak1, afak2, rc, jstat)

SISLCurve *pc;
double afak1;
double afak2;
SISLCurve **rc;
int *jstat;

ARGUMENTS
Input Arguments:

pc - Pointer to the B-spline curve to be extended.

afak1 - How much the curve is to be stretched at the start of
the curve. The length of the stretched curve will be
equal to (1+afak1) times the input curve. afak1 ≥ 0
and will be set to 0 if negative.

afak2 - How much the curve is to be stretched at the end of
the curve. The length of the stretched curve will be
equal to (1+afak2) times the input curve. afak2 ≥ 0
and will be set to 0 if negative.

Output Arguments:
rc - Pointer to the extended B-spline curve.
jstat - Status message

< 0 : Error.
= 0 : Ok.
= 1 : Stretching factors less than 0 – readjusted

factor(s) have been used.
> 0 : Warning.

158 CHAPTER 5. CURVE UTILITIES

EXAMPLE OF USE
{

SISLCurve *pc;
double afak1;
double afak2;
SISLCurve *rc = NULL;
int jstat = 0;
. . .
s1233(pc, afak1, afak2, &rc, &jstat);
. . .

}

5.7. DRAWING 159

5.7 Drawing

5.7.1 Draw a sequence of straight lines.

NAME
s6drawseq - Draw a broken line as a sequence of straight lines described

by the array points. For dimension 3.

SYNOPSIS
void s6drawseq(points, numpoints)

double points[];
int numpoints;

ARGUMENTS
Input Arguments:

points - Points stored in sequence. i.e.
(x0, y0, z0, x1, y1, z1, . . .).

numpoints - Number of points in the sequence.

NOTE
s6drawseq() is device dependent, it calls the empty dummy functions
s6move() and s6line(). Before using it, make sure you have a version of
these two functions interfaced to your graphic package.
More about s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

double points[30];
int numpoints = 10;
. . .
s6drawseq(points, numpoints)
. . .

}

160 CHAPTER 5. CURVE UTILITIES

5.7.2 Basic graphics routine template - move plotting position.

NAME
s6move - Move the graphics plotting position to a 3D point.

SYNOPSIS
void s6move(point)

double point[];

ARGUMENTS
Input Arguments:

point - A 3D point, i.e. (x, y, z), to move the graphics plotting
position to.

NOTE
The functionality of s6move() is device dependent,
so it is only an empty (printf() call) dummy rou-
tine. Before using it, make sure you have a version of
s6move() interfaced to your graphic package.

EXAMPLE OF USE
{

double point[3];
. . .
s6move(point)
. . .

}

5.7. DRAWING 161

5.7.3 Basic graphics routine template - plot line.

NAME
s6line - Plot a line between the current 3D graphics plotting position and

a given 3D point.

SYNOPSIS
void s6line(point)

double point[];

ARGUMENTS
Input Arguments:

point - A 3D point, i.e. (x, y, z), to draw a line to, from the
current graphics plotting position.

NOTE
The functionality of s6line() is device dependent, so it
is only an empty (printf() call) dummy routine. Be-
fore using it, make sure you have a version of s6line()
interfaced to your graphic package.

EXAMPLE OF USE
{

double point[3];
. . .
s6line(point)
. . .

}

162 CHAPTER 5. CURVE UTILITIES

Chapter 6

Surface Definition

6.1 Interpolation

6.1.1 Compute a surface interpolating a set of points, automatic
parameterization.

NAME
s1536 - To compute a tensor surface interpolating a set of points, auto-

matic parameterization. The output is represented as a B-spline
surface.

SYNOPSIS
void s1536(points, im1, im2, idim, ipar, con1, con2, con3, con4, order1,

order2, iopen1, iopen2, rsurf, jstat)
double points[];
int im1;
int im2;
int idim;
int ipar;
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
int iopen1;
int iopen2;
SISLSurf **rsurf;
int *jstat;

163

164 CHAPTER 6. SURFACE DEFINITION

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the
positions of the nodes (using the same ordering as
ecoef in the SISLSurf structure).

im1 - The number of interpolation points in the first pa-
rameter direction.

im2 - The number of interpolation points in the second pa-
rameter direction.

idim - Dimension of the space we are working in.
ipar - Flag showing the desired parametrization to be used:

= 1 : Mean accumulated cord-length parame-
terization.

= 2 : Uniform parametrization.
Numbering of surface edges:

3 4

1

2

-(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.

6.1. INTERPOLATION 165

order2 - Order of surface in second
iopen1 - Open/closed/periodic in first parameter direction.

= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

166 CHAPTER 6. SURFACE DEFINITION

iopen2 - Open/closed/periodic in second parameter direction.
= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double points[300];
int im1 = 10;
int im2 = 10;
int idim = 3;
int ipar;
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
int iopen1;
int iopen2;
SISLSurf *rsurf;
int jstat;
. . .
s1536(points, im1, im2, idim, ipar, con1, con2, con3, con4, order1,

order2, iopen1, iopen2, &rsurf, &jstat);
. . .

}

6.1. INTERPOLATION 167

6.1.2 Compute a surface interpolating a set of points, parameter-
ization as input.

NAME
s1537 - Compute a tensor surface interpolating a set of points, parameter-

ization as input. The output is represented as a B-spline surface.

SYNOPSIS
void s1537(points, im1, im2, idim, par1, par2, con1, con2, con3, con4, or-

der1, order2, iopen1, iopen2, rsurf, jstat)

double points[];
int im1;
int im2;
int idim;
double par1[];
double par2[];
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
int iopen1;
int iopen2;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the
positions of the nodes (using the same ordering as
ecoef in the SISLSurf structure).

im1 - The number of interpolation points in the first pa-
rameter direction.

im2 - The number of interpolation points in the second pa-
rameter direction.

idim - Dimension of the space we are working in.
par1 - Parametrization in first parameter direction.
par2 - Parametrization in second parameter direction.

168 CHAPTER 6. SURFACE DEFINITION

Numbering of surface edges:

3 4

1

2

-(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.
iopen1 - Open/closed/periodic in first parameter direction.

= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

iopen2 - Open/closed/periodic in second parameter direction.
= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.

6.1. INTERPOLATION 169

= 0 : Ok.
> 0 : Warning.

170 CHAPTER 6. SURFACE DEFINITION

EXAMPLE OF USE
{

double points[300];
int im1 = 10;
int im2 = 10;
int idim = 3;
double par1[10];
double par2[10];
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
int iopen1;
int iopen2;
SISLSurf *rsurf;
int jstat;
. . .
s1537(points, im1, im2, idim, par1, par2, con1, con2, con3, con4, or-

der1, order2, iopen1, iopen2, &rsurf, &jstat);
. . .

}

6.1. INTERPOLATION 171

6.1.3 Compute a surface interpolating a set of points, derivatives
as input.

NAME
s1534 - To compute a surface interpolating a set of points, derivatives as

input. The output is represented as a B-spline surface.

SYNOPSIS
void s1534(points, der10, der01, der11, im1, im2, idim, ipar, con1, con2,

con3, con4, order1, order2, rsurf, jstat)

double points[];
double der10[];
double der01[];
double der11[];
int im1;
int im2;
int idim;
int ipar;
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the
positions of the nodes (using the same ordering as
ecoef in the SISLSurf structure).

der10 - Array of dimension idim× im1× im2 containing the
first derivatives in the first parameter direction.

der01 - Array of dimension idim× im1× im2 containing the
first derivatives in the second parameter direction.

der11 - Array of dimension idim× im1× im2 containing the
cross derivatives (the twists).

im1 - The number of interpolation points in the first pa-
rameter direction.

im2 - The number of interpolation points in the second pa-
rameter direction.

172 CHAPTER 6. SURFACE DEFINITION

idim - Dimension of the space we are working in.
ipar - Flag showing the desired parametrization to be used:

= 1 : Mean accumulated cord-length parame-
terization.

= 2 : Uniform parametrization.
Numbering of surface edges:

3 4

1

2

-(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

6.1. INTERPOLATION 173

EXAMPLE OF USE
{

double points[300];
double der10[300];
double der01[300];
double der11[300];
int im1 = 10;
int im2 = 10;
int idim = 3;
int ipar;
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
SISLSurf *rsurf;
int jstat;
. . .
s1534(points, der10, der01, der11, im1, im2, idim, ipar, con1, con2,

con3, con4, order1, order2, &rsurf, &jstat);
. . .

}

174 CHAPTER 6. SURFACE DEFINITION

6.1.4 Compute a surface interpolating a set of points, derivatives
and parameterization as input.

NAME
s1535 - Compute a surface interpolating a set of points, derivatives and

parameterization as input. The output is represented as a B-spline
surface.

SYNOPSIS
void s1535(points, der10, der01, der11, im1, im2, idim, par1, par2, con1,

con2, con3, con4, order1, order2, rsurf, jstat)

double points[];
double der10[];
double der01[];
double der11[];
int im1;
int m2;
int idim;
double par1[];
double par2[];
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the
positions of the nodes (using the same ordering as
ecoef in the SISLSurf structure).

der10 - Array of dimension idim× im1× im2 containing the
first derivatives in the first parameter direction.

der01 - Array of dimension idim× im1× im2 containing the
first derivatives in the second parameter direction.

der11 - Array of dimension idim× im1× im2 containing the
cross derivatives (the twists).

im1 - The number of interpolation points in the first pa-
rameter direction.

6.1. INTERPOLATION 175

im2 - The number of interpolation points in the second pa-
rameter direction.

idim - Dimension of the space we are working in.
par1 - Parametrization in first parameter direction.
par2 - Parametrization in second parameter direction.

Numbering of surface edges:

3 4

1

2

-(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

176 CHAPTER 6. SURFACE DEFINITION

EXAMPLE OF USE
{

double points[300];
double der10[300];
double der01[300];
double der11[300];
int im1 = 10;
int im2 = 10;
int idim = 3;
double par1[10];
double par2[10];
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
SISLSurf *rsurf;
int jstat;
. . .
s1535(points, der10, der01, der11, im1, im2, idim, par1, par2, con1,

con2, con3, con4, order1, order2, &rsurf, &jstat);
. . .

}

6.1. INTERPOLATION 177

6.1.5 Compute a surface by Hermite interpolation, automatic
parameterization.

NAME
s1529 - Compute the cubic Hermite surface interpolant to the data given.

More specifically, given positions, (u’,v), (u,v’), and (u’,v’) deriva-
tives at points of a rectangular grid, the routine computes a cubic
tensor-product B-spline interpolant to the given data with double
knots at each data (the first knot vector will have double knots at
all interior points in epar1, quadruple knots at the first and last
points, and similarly for the second knot vector). The output is
represented as a B-spline surface.

SYNOPSIS
void s1529(ep, eder10, eder01, eder11, im1, im2, idim, ipar, rsurf, jstat)

double ep[];
double eder10[];
double eder01[];
double eder11[];
int im1;
int im2;
int idim;
int ipar;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array of dimension idim× im1× im2 containing the
positions of the nodes (using the same ordering as
ecoef in the SISLSurf structure).

eder10 - Array of dimension idim× im1× im2 containing the
first derivative in the first parameter direction.

eder01 - Array of dimension idim× im1× im2 containing the
first derivative in the second parameter direction.

eder11 - Array of dimension idim× im1× im2 containing the
cross derivative (twist vector).

ipar - Flag showing the desired parametrization to be used:
= 1 : Mean accumulated cord-length para-

meterization.
= 2 : Uniform parametrization.

178 CHAPTER 6. SURFACE DEFINITION

im1 - The number of interpolation points in the first pa-
rameter direction.

im2 - The number of interpolation points in the second pa-
rameter direction.

idim - Spatial dimension.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double ep[300];
double eder10[300];
double eder01[300];
double eder11[300];
int im1 = 10;
int im2 = 10;
int idim = 3;
int ipar;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1529(ep, eder10, eder01, eder11, im1, im2, idim, ipar, &rsurf, &jstat);
. . .

}

6.1. INTERPOLATION 179

6.1.6 Compute a surface by Hermite interpolation, parameter-
ization as input.

NAME
s1530 - To compute the cubic Hermite interpolant to the data given. More

specifically, given positions, 10, 01, and 11 derivatives at points of
a rectangular grid, the routine computes a cubic tensor-product B-
spline interpolant to the given data with double knots at each data
point (the first knot vector will have double knots at all interior
points in epar1, quadruple knots at the first and last points, and
similarly for the second knot vector). The output is represented
as a B-spline surface.

SYNOPSIS
void s1530(ep, eder10, eder01, eder11, epar1, epar2, im1, im2, idim, rsurf,

jstat)
double ep[];
double eder10[];
double eder01[];
double eder11[];
double epar1[];
double epar2[];
int im1;
int im2;
int idim;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array of dimension idim× im1× im2 containing the
positions of the nodes (using the same ordering as
ecoef in the SISLSurf structure).

eder10 - Array of dimension idim× im1× im2 containing the
first derivative in the first parameter direction.

eder01 - Array of dimension idim× im1× im2 containing the
first derivative in the second parameter direction.

eder11 - Array of dimension idim× im1× im2 containing the
cross derivative (twist vector).

epar1 - Array of size im1 containing the parametrization in
the first direction.

180 CHAPTER 6. SURFACE DEFINITION

epar2 - Array of size im2 containing the parametrization in
the first direction.

im1 - The number of interpolation points in the 1st param. dir.
im2 - The number of interpolation points in the 2nd param. dir.
idim - Dimension of the space we are working in.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double ep[30];
double eder10[30];
double eder01[30];
double eder11[30];
double epar1[2];
double epar2[5];
int im1 = 2;
int im2 = 5;
int idim = 3;
SISLSurf *rsurf;
int jstat;
. . .
s1530(ep, eder10, eder01, eder11, epar1, epar2, im1, im2, idim, &rsurf,

&jstat);
. . .

}

6.1. INTERPOLATION 181

6.1.7 Create a lofted surface from a set of B-spline input curves.

NAME
s1538 - To create a lofted surface from a set of B-spline (i.e. NOT rational)

input curves. The output is represented as a B-spline surface.

SYNOPSIS
void s1538(inbcrv, vpcurv, nctyp, astpar, iopen, iord2, iflag, rsurf, gpar,

jstat)
int inbcrv;
SISLCurve *vpcurv[];
int nctyp[];
double astpar;
int iopen;
int iord2;
int iflag;
SISLSurf **rsurf;
double **gpar;
int *jstat;

ARGUMENTS
Input Arguments:

inbcrv - Number of B-spline curves in the curve set.
vpcurv - Array (length inbcrv) of pointers to the curves in the

curve-set.
nctyp - Array (length inbcrv) containing the types of curves

in the curve-set.
= 1 : Ordinary curve.
= 2 : Knuckle curve. Treated as an ordinary curve.
= 3 : Tangent to next curve.
= 4 : Tangent to prior curve.
(= 5 : Second derivative to prior curve.)
(= 6 : Second derivative to next curve.)
= 13 : Curve giving start of tangent to next curve.
= 14 : Curve giving end of tangent to prior curve.

astpar - Start parameter for spline lofting direction.
iopen - Flag telling if the resulting surface should be open,

closed or periodic in the lofting direction (i.e. not the
curve direction).
= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

182 CHAPTER 6. SURFACE DEFINITION

iord2 - Maximal order of the surface in the lofting direction.

6.1. INTERPOLATION 183

iflag - Flag telling if the size of the tangents in the derivative
curves should be adjusted or not.
= 0 : Do not adjust tangent sizes.
= 1 : Adjust tangent sizes.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
gpar - The input curves are constant parameter lines in the

parameter-plane of the produced surface. The i-th
element in this array contains the (constant) value of
this parameter of the i-th. input curve.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int inbcrv;
SISLCurve *vpcurv[3];
int nctyp[3];
double astpar;
int iopen;
int iord2;
int iflag;
SISLSurf *rsurf = NULL;
double *gpar = NULL;
int jstat = 0;
. . .
s1538(inbcrv, vpcurv, nctyp, astpar, iopen, iord2, iflag, &rsurf, &gpar,

&jstat);
. . .

}

184 CHAPTER 6. SURFACE DEFINITION

6.1.8 Create a lofted surface from a set of B-spline input curves
and parametrization.

NAME
s1539 - To create a spline lofted surface from a set of input curves. The

parametrization of the position curves is given in epar.

SYNOPSIS
void s1539(inbcrv, vpcurv, nctyp, epar, astpar, iopen, iord2, iflag, rsurf,

gpar, jstat)
int inbcrv;
SISLCurve *vpcurv[];
int nctyp[];
double epar[];
double astpar;
int iopen;
int iord2;
int iflag;
SISLSurf **rsurf;
double **gpar;
int *jstat;

ARGUMENTS
Input Arguments:

inbcrv - set.
vpcurv - Array (length inbcrv) of pointers to the curves in the

curve-set.
nctyp - Array (length inbcrv) containing the types of curves

in the curve-set.
= 1 : Ordinary curve.
= 2 : Knuckle curve. Treated as an ordinary curve.
= 3 : Tangent to next curve.
= 4 : Tangent to previous curve.
(= 5 : Second derivative to previous curve.)
(= 6 : Second derivative to next curve.)
= 13 : Curve giving start of tangent to next curve.
= 14 : Curve giving end of tangent to previous curve.

6.1. INTERPOLATION 185

epar - Array containing the wanted parametrization. Only
parametervalues corresponding to position curves are
given. For closed curves, one additional parameter
value must be spesified. The last entry contains the
parametrization of the repeted start curve. (if the
endpoint is equal to the startpoint of the interpolation
the lenght of the array should be equal to inpt1 also in
the closed case). The number of entries in the array is
thus equal to the number of position curves (number
plus one if the curve is closed).

astpar - parameter for spline lofting direction.
iopen - Flag saying whether the resulting surface should be

closed or open.
= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

iord2 - spline basis in the lofting direction.

iflag - Flag saying whether the size of the tangents in the
derivative curves should be adjusted or not.
= 0 : Do not adjust tangent sizes.
= 1 : Adjust tangent sizes.

Output Arguments:
rsurf - Pointer to the surface produced.
gpar - The input curves are constant parameter lines in the

parameter-plane of the produced surface. The i-th
element in this array contains the (constant) value of
this parameter of the i-th. input curve.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int inbcrv;
SISLCurve *vpcurv[];
int nctyp[];
double epar[];
double astpar;
int iopen;

186 CHAPTER 6. SURFACE DEFINITION

int iord2;
int iflag;
SISLSurf **rsurf;
double **gpar;
int *jstat;
. . .
s1539(inbcrv, vpcurv, nctyp, epar, astpar, iopen, iord2, iflag, rsurf,

gpar, jstat);
. . .

}

6.1. INTERPOLATION 187

6.1.9 Create a rational lofted surface from a set of rational input-
curves

NAME
s1508 - To create a rational lofted surface from a set of rational input-

curves.

SYNOPSIS
void s1508(inbcrv, vpcurv, par arr, rsurf, jstat)

int inbcrv;
SISLCurve *vpcurv[];
double par arr[];
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

inbcrv - Number of NURBS-curves in the curve set.
vpcurv - Array (length inbcrv) of pointers to the curves in the

curve-set.
par arr - The required parametrization, must be strictly in-

creasing, length inbcrv.
Output Arguments:

rsurf - Pointer to the NURBS surface produced.
jstat - status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int inbcrv;
SISLCurve *vpcurv[3];
double par arr[3];
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1508(inbcrv, vpcurv, par arr, &rsurf, &jstat);
. . .

}

188 CHAPTER 6. SURFACE DEFINITION

6.1.10 Compute a rectangular blending surface from a set of B-spline
input curves.

NAME
s1390 - Make a 4-edged blending surface between 4 B-spline (i.e. NOT

rational) curves where each curve is associated with a number of
cross-derivative B-spline (i.e. NOT rational) curves. The output is
represented as a B-spline surface. The input curves are numbered
successively around the blending parameter, and the directions
of the curves are expected to be as follows when this routine is
entered:

6 6

-

-

4 2

1

3

-(i)

6
(ii)

(i) first parameter direction of the surface.
(ii) second parameter direction of the surface.

NB! The cross-derivatives are always pointing into the patch, and
note the directions in the above diagram.

SYNOPSIS
void s1390(curves, surf, numder, stat)

SISLCurve *curves[];
SISLSurf **surf;
int numder[];
int *stat;

ARGUMENTS
Input Arguments:

curves - Pointers to the boundary B-spline curves:
curves[i], i = 0, . . . , numder[0] − 1, are pointers to
position and cross-derivatives along the first edge.
curves[i],
i = numder[0], . . . , numder[0] + numder[1] − 1, are
pointers to position and cross-derivatives along the
second edge.

6.1. INTERPOLATION 189

curves[i], i = numder[0] + numder[1], . . . ,
numder[0]+numder[1]+numder[2]−1, are pointers
to position and cross-derivatives along the third edge.

190 CHAPTER 6. SURFACE DEFINITION

curves[i],
i = numder[0] + numder[1] + numder[2], . . . ,
numder[0]+numder[1]+numder[2]+numder[3]−1,
are pointers to position and cross-derivatives along
the fourth edge.

numder - Array of length 4, numder[i] gives the number of
curves on edge number i+ 1.

Output Arguments:
surf - Pointer to the blending B-spline surface.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curves[8];
SISLSurf *surf;
int numder[4];
int stat;
. . .
s1390(curves, &surf, numder, &stat)
. . .

}

6.1. INTERPOLATION 191

6.1.11 Compute a first derivative continuous blending surface set,
over a 3-, 4-, 5- or 6-sided region in space, from a set of
B-spline input curves.

NAME
s1391 - To create a first derivative continuous blending surface set over a

3-, 4-, 5- and 6-sided region in space. The boundary of the region
are B-spline (i.e. NOT rational) curves and the cross boundary
derivatives are given as B-spline (i.e. NOT rational) curves. This
function automatically preprocesses the input cross tangent curves
in order to make them suitable for the blending. Thus, the cross
tangent curves should be taken as the cross tangents of the sur-
rounding surface. It is not necessary and not advisable to match
tangents etc. in the corners. The output is represented as a set of
B-spline surfaces.

SYNOPSIS
void s1391(pc, ws, icurv, nder, jstat)

SISLCurve **pc;
SISLSurf ***ws;
int icurv;
int nder[];
int *jstat;

ARGUMENTS
Input Arguments:

pc - Pointers to boundary B-spline curves. All
curves must have same parameter direction around
the patch, either clockwise or counterclockwise.
pc1[i], i = 0, . . . nder[0] − 1 are pointers to position
and cross-derivatives along first edge. pc1[i], i =
nder[0], . . . nder[1] − 1 are pointers to position and
cross-derivatives along second edge.

...

pc1[i], i = nder[0]+. . .+nder[icurv−2], . . . , nder[icurv−1]−1

are pointers to position and cross-derivatives along
fourth edge.

icurv - Number of boundary curves (3, 5, 4 or 6).

192 CHAPTER 6. SURFACE DEFINITION

nder - nder[i] gives number of curves on edge number i+ 1.
These numbers has to be equal to 2. The vector is of
length icurv.

6.1. INTERPOLATION 193

Output Arguments:
ws - These are pointers to the blending B-spline surfaces.

The vector is of length icurv.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLCurve **pc;
SISLSurf **ws = NULL;
int icurv = 5;
int nder[5];
int jstat = 0;
. . .
s1391(pc, &ws, icurv, nder, &jstat);
. . .

}

194 CHAPTER 6. SURFACE DEFINITION

6.1.12 Compute a surface, representing a Gordon patch, from a
set of B-spline input curves.

NAME
s1401 - Compute a Gordon patch, given position and cross tangent con-

ditions as B-spline (i.e. NOT rational) curves at the boundary of
a squared region and the twist vector in the corners. The output
is represented as a B-spline surface.

SYNOPSIS
void s1401(vcurve, etwist, rsurf, jstat)

double etwist[];
SISLCurve *vcurve[];
int *jstat;
SISLSurf **rsurf;

ARGUMENTS
Input Arguments:

vcurve - Position and cross-tangent B-spline curves around the
square region. For each edge of the region position
and cross-tangent curves are given. The dimension of
the array is 8.

The orientation is as follows:

6 6

-

-

4 2

1

3

-(i)

6
(ii)

(i) first parameter direction of the surface.
(ii) second parameter direction of the surface.

etwist - Twist-vectors of the corners of the vertex region. The
first element of the array is the twist in the corner
before the first edge, etc. The dimension of the array
is 4 times the spatial dimension of the input curves
(currently only 3D).

6.1. INTERPOLATION 195

Output Arguments:
rsurf - Gordons-patch represented as a B-spline surface.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int idim = 3;
double etwist[4*idim];
SISLCurve *vcurve[8];
int jstat = 0;
SISLSurf *rsurf = NULL;
. . .
s1401(vcurve, etwist, &rsurf, &jstat);
. . .

}

196 CHAPTER 6. SURFACE DEFINITION

6.2 Approximation

Two kinds of surfaces are treated in this section. The first is approximation of
special shape properties like rotation or sweeping. The second is offsets to surfaces.

All functions require a tolerance for use in the approximation. It is useful to
note that there is a close relation between the size of the tolerance and the amount
of data for the surface.

6.2.1 Compute a surface using the input points as control vertices,
automatic parameterization.

NAME
s1620 - To calculate a surface using the input points as control vertices.

The parametrization is calculated according to ipar. The output
is represented as a B-spline surface.

SYNOPSIS
void s1620(epoint, inbpnt1, inbpnt2, ipar, iopen1, iopen2, ik1, ik2, idim, rs,

jstat)

double epoint[];
int inbpnt1;
int inbpnt2;
int ipar;
int iopen1;
int iopen2;
int ik1;
int ik2;
int idim;
SISLSurf **rs;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - The array containing the points to be used as con-
trolling vertices of the B-spline surface.

inbpnt1 - The number of points in first parameter direction.
inbpnt2 - The number of points in second parameter direction.
ipar - Flag showing the desired parametrization to be used:

= 1 : Mean accumulated cord-length parame-
terization.

= 2 : Uniform parametrization.
iopen1 - Open/close condition in the first parameter direction:

6.2. APPROXIMATION 197

= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

198 CHAPTER 6. SURFACE DEFINITION

iopen2 - Open/close condition in the second parameter direction:
= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

ik1 - The order of the surface in first direction.
ik2 - The order of the surface in second direction.
idim - The dimension of the space.

Output Arguments:
rs - Pointer to the B-spline surface.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double epoint[300];
int inbpnt1 = 10;
int inbpnt2 = 10;
int ipar;
int iopen1;
int iopen2;
int ik1;
int ik2;
int idim = 3;
SISLSurf *rs = NULL;
int jstat = 0;
. . .
s1620(epoint, inbpnt1, inbpnt2, ipar, iopen1, iopen2, ik1, ik2, idim,

&rs, &jstat);
. . .

}

6.2. APPROXIMATION 199

6.2.2 Compute a linear swept surface.

NAME
s1332 - To create a linear swept surface by making the tensor-product of

two curves.

SYNOPSIS
void s1332(curve1, curve2, epsge, point, surf, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point[];
SISLSurf **surf;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - Pointer to curve 1.
curve2 - Pointer to curve 2.
epsge - Maximal deviation allowed between the true swept

surface and the generated surface.
point - Point near the curve to sweep along. The vertices of

the new surface are made by adding the vector from
point to each of the vertices on the sweep curve, to
each of the vertices on the other curve.

Output Arguments:
surf - Pointer to the surface produced.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

curve *curve1;
curve *curve2;
double epsge;
double point[3];
SISLSurf *surf;
int stat;
. . .

200 CHAPTER 6. SURFACE DEFINITION

s1332(curve1, curve2, epsge, point, &surf, &stat);
. . .

}

6.2. APPROXIMATION 201

6.2.3 Compute a rotational swept surface.

NAME
s1302 - To create a rotational swept surface by rotating a curve a given

angle around the axis defined by point[] and axis[]. The maxi-
mal deviation allowed between the true rotational surface and the
generated surface, is epsge. If epsge is set to 0, a NURBS surface
is generated and if epsge > 0, a B-spline surface is generated.

SYNOPSIS
void s1302(curve, epsge, angle, point, axis, surf, stat)

SISLCurve *curve;
double epsge;
double angle;
double point[];
double axis[];
SISLSurf **surf;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve that is to be rotated.
epsge - Maximal deviation allowed between the true rota-

tional surface and the generated surface.
angle - The rotational angle. The angle is counterclockwise

around axis. If the absolute value of the angle is
greater than 2π then a rotational surface that is closed
in the rotation direction is made.

point - Point on the rotational axis.
axis - Direction of rotational axis.

Output Arguments:
surf - Pointer to the produced surface. This will be a

NURBS (i.e. rational) surface if epsge = 0 and a
B-spline (i.e. non-rational) surface if epsge > 0.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

202 CHAPTER 6. SURFACE DEFINITION

EXAMPLE OF USE
{

SISLCurve *curve;
double epsge;
double angle;
double point[3];
double axis[3];
SISLSurf *surf;
int stat;
. . .
s1302(curve, epsge, angle, point, axis, &surf, &stat);
. . .

}

6.2. APPROXIMATION 203

6.2.4 Compute a surface approximating the offset of a surface.

NAME
s1365 - Create a surface approximating the offset of a surface. The output

is represented as a B-spline surface.
With an offset of zero, this routine can be used to approximate any
NURBS (rational) surface with a B-spline (non-rational) surface.

SYNOPSIS
void s1365(ps, aoffset, aepsge, amax, idim, rs, jstat)

SISLSurf *ps;
double aoffset;
double aepsge;
double amax;
int idim;
SISLSurf **rs;
int *jstat;

ARGUMENTS
Input Arguments:

ps - The input surface.
aoffset - The offset distance. If idim = 2 a positive signe on

this value put the offset on the side of the positive
normal vector, and a negative sign puts the offset on
the sign of the negative normal vector. If idim = 3
the offset is determined by the cross product of the
tangent vector and the anorm vector. The offset dis-
tance is multiplied by this vector.

aepsge - Maximal deviation allowed between true offset surface
and the approximated offset surface.

amax - Maximal stepping length. Is negleceted if amax ≤
aepsge. If amax = 0 then a maximal step length of
the longest box side is used.

idim - The dimension of the space (2 or 3).
Output Arguments:

rs - The approximated offset represented as a B-spline
surface.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

204 CHAPTER 6. SURFACE DEFINITION

6.2. APPROXIMATION 205

EXAMPLE OF USE
{

SISLSurf *ps;
double aoffset;
double aepsge;
double amax;
int idim;
SISLSurf *rs;
int jstat;
. . .
s1365(ps, aoffset, aepsge, amax, idim, &rs, &jstat);
. . .

}

206 CHAPTER 6. SURFACE DEFINITION

6.3 Mirror a Surface

NAME
s1601 - Mirror a surface about a plane.

SYNOPSIS
void s1601(psurf, epoint, enorm, idim, rsurf, jstat)

SISLSurf *psurf;
double epoint[];
double enorm[];
int idim;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

psurf - The input surface.
epoint - A point in the plane.
enorm - The normal vector to the plane.
idim - The dimension of the space, must be the same as the

surface.
Output Arguments:

rsurf - Pointer to the mirrored surface.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLSurf *psurf;
double epoint[3];
double enorm[3];
int idim = 3;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1601(psurf, epoint, enorm, idim, &rsurf, &jstat);
. . .

}

6.4. CONVERSION 207

6.4 Conversion

6.4.1 Convert a surface of order up to four to a mesh of Coons
patches.

NAME
s1388 - To convert a surface of order less than or equal to 4 in both direc-

tions to a mesh of Coons patches with uniform parameterization.
The function assumes that the surface is C1 continuous.

SYNOPSIS
void s1388(surf, coons, numcoons1, numcoons2, dim, stat)

SISLSurf *surf;
double **coons;
int *numcoons1;
int *numcoons2;
int *dim
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface that is to be converted

Output Arguments:
coons - Array containing the (sequence of) Coons patches.

The total number of patches is numcoons1 ×
numcoons2. The patches are stored in sequence with
dim × 16 values for each patch. For each corner of
the patch we store in sequence, positions, derivative
in first direction, derivative in second direction, and
twists.

numcoons1 - Number of Coons patches in first parameter direction.

numcoons2 - Number of Coons patches in second parameter direc-
tion.

dim - The dimension of the geometric space.
stat - Status messages

= 1 : Order too high, surface interpolated.
= 0 : Ok.
< 0 : Error.

208 CHAPTER 6. SURFACE DEFINITION

EXAMPLE OF USE
{

SISLSurf *surf;
double *coons;
int numcoons1;
int numcoons2;
int dim
int stat;
. . .
s1388(surf, &coons, &numcoons1, &numcoons2, &dim, &stat);
. . .

}

6.4. CONVERSION 209

6.4.2 Convert a surface to a mesh of Bezier surfaces.

NAME
s1731 - To convert a surface to a mesh of Bezier surfaces. The Bezier

surfaces are stored in a surface with all knots having multiplicity
equal to the order of the surface in the corresponding parameter
direction. If the input surface is rational, the generated Bezier
surfaces will be rational too (i.e. there will be rational weights in
the representation of the Bezier surfaces).

SYNOPSIS
void s1731(surf, newsurf, stat)

SISLSurf *surf;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to convert.

Output Arguments:
newsurf - The new surface storing the Bezier represented

surfaces.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
SISLSurf *newsurf;
int stat;
. . .
s1731(surf, &newsurf, &stat);
. . .

}

210 CHAPTER 6. SURFACE DEFINITION

6.4.3 Pick the next Bezier surface from a surface.

NAME
s1733 - To pick the next Bezier surface from a surface. This function

requires a surface represented as the result of s1731(). See page
209. This routine does not check that the surface is correct. If
the input surface is rational, the generated Bezier surfaces will be
rational too (i.e. there will be rational weights in the representation
of the Bezier surfaces).

SYNOPSIS
void s1733(surf, number1, number2, startpar1, endpar1, startpar2,

endpar2, coef, stat)
SISLSurf *surf;
int number1;
int number2;
double *startpar1;
double *endpar1;
double *startpar2;
double *endpar2;
double coef[];
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface to convert.
number1 - The number of the Bezier patch to pick in the hor-

izontal direction, where 0 ≤ number1 < in1/ik1 of
the surface.

number2 - The number of the Bezier patch to pick in the vertical
direction, , where 0 ≤ number2 < in2/ik2 of the
surface.

Output Arguments:
startpar1 - The start parameter value of the Bezier patch in the

horizontal direction.
endpar1 - The end parameter value of the Bezier patch in the

horizontal direction.
startpar2 - The start parameter value of the Bezier patch in the

vertical direction.
endpar2 - The end parameter value of the Bezier patch in the

vertical direction.

6.4. CONVERSION 211

coef - The vertices of the Bezier patch. Space must be al-
located with a size of (idim+ 1)× ik1× ik2 as given
by the surface (this is done for reasons of efficiency).

212 CHAPTER 6. SURFACE DEFINITION

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
int number1;
int number2;
double startpar1;
double endpar1;
double startpar2;
double endpar2;
double coef[48];
int stat;
. . .
s1733(surf, number1, number2, &startpar1, &endpar1, &startpar2,

&endpar2, coef, &stat);
. . .

}

6.4. CONVERSION 213

6.4.4 Express a surface using a higher order basis.

NAME
s1387 - To express a surface as a surface of higher order.

SYNOPSIS
void s1387(surf, order1, order2, newsurf, stat)

SISLSurf *surf;
int order1;
int order2;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to raise the order of.
order1 - New order in the first parameter direction.
order2 - New order in the second parameter direction.

Output Arguments:
newsurf - The resulting order elevated surface.
stat - Status messages

= 1 : Input order equal to order of surface.
Pointer set to input.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int order1;
int order2;
SISLSurf *newsurf;
int stat;
. . .
s1387(surf, order1, order2, &newsurf, &stat);
. . .

}

214 CHAPTER 6. SURFACE DEFINITION

6.4.5 Express the “i,j”-th derivative of an open surface as a surface.

NAME
s1386 - To express the (der1, der2)-th derivative of an open surface as a

surface.

SYNOPSIS
void s1386(surf, der1, der2, newsurf, stat)

SISLSurf *surf;
int der1;
int der2;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to differentiate.
der1 - The derivative to be produced in the first parameter

direction: 0 ≤ der1
der2 - The derivative to be produced in the second parame-

ter direction: 0 ≤ der2
Output Arguments:

newsurf - The result of the (der1, der2) differentiation of surf.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
int der1;
int der2;
SISLSurf *newsurf;
int stat;
. . .
s1386(surf, der1, der2, &newsurf, &stat);
. . .

}

6.4. CONVERSION 215

6.4.6 Express the octants of a sphere as a surface.

NAME
s1023 - To express the octants of a sphere as a surface. This can also be

used to describe the complete sphere. The sphere/the octants of
the sphere will be geometrically exact.

SYNOPSIS
void s1023(centre, axis, equator, latitude, longitude, sphere, stat)

double centre[];
double axis[];
double equator[];
int latitude;
int longitude;
SISLSurf **sphere;
int *stat;

ARGUMENTS
Input Arguments:

centre - Centre point of the sphere.
axis - Axis of the sphere (towards the north pole).
equator - Vector from centre to start point on the equator.
latitude - Flag indicating number of octants in north/south di-

rection:
= 1 : Octants in the northern hemisphere.
= 2 : Octants in both hemispheres.

longitude - Flag indicating number of octants along the equator.
This is counted counterclockwise from equator.

= 1 : Octants in 1. quadrant.
= 2 : Octants in 1. and 2. quadrant.
= 3 : Octants in 1., 2. and 3. quadrant.
= 4 : Octants in all quadrants.

Output Arguments:
sphere - The sphere produced.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

216 CHAPTER 6. SURFACE DEFINITION

EXAMPLE OF USE
{

double centre[3];
double axis[3];
double equator[3];
int latitude;
int longitude;
SISLSurf *sphere = NULL;
int stat = 0;
. . .
s1023(centre, axis, equator, latitude, longitude, &sphere, &stat);
. . .

}

6.4. CONVERSION 217

6.4.7 Express a truncated cylinder as a surface.

NAME
s1021 - To express a truncated cylinder as a surface. The cylinder can be

elliptic. The cylinder will be geometrically exact.

SYNOPSIS
void s1021(bottom pos, bottom axis, ellipse ratio, axis dir, height, cyl,

stat)

double bottom pos[];
double bottom axis[];
double ellipse ratio;
double axis dir[];
double height;
SISLSurf **cyl;
int *stat;

ARGUMENTS
Input Arguments:

bottom pos - Center point of the bottom.
bottom axis - One of the bottom axis (major or minor).
ellipse ratio - Ratio between the other axis and bottom axis.
axis dir - Direction of the cylinder axis.
height - Height of the cone, can be negative.

Output Arguments:
cyl - Pointer to the cylinder produced.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double bottom pos[3];
double bottom axis[3];
double ellipse ratio;
double axis dir[3];
double height;
SISLSurf *cyl = NULL;
int stat = 0;
. . .

218 CHAPTER 6. SURFACE DEFINITION

s1021(bottom pos, bottom axis, ellipse ratio, axis dir, height, &cyl,
&stat)

. . .
}

6.4. CONVERSION 219

6.4.8 Express the octants of a torus as a surface.

NAME
s1024 - To express the octants of a torus as a surface. This can also be

used to describe the complete torus. The torus/the octants of the
torus will be geometrically exact.

SYNOPSIS
void s1024(centre, axis, equator, minor radius, start minor, end minor,

numb major, torus, stat)
double centre[];
double axis[];
double equator[];
double minor radius;
int start minor;
int end minor;
int numb major;
SISLSurf **torus;
int *stat;

ARGUMENTS
Input Arguments:

centre - Centre point of the torus.
axis - Normal to the torus plane.
equator - Vector from centre to start point on the major circle.

minor radius - Radius of the minor circle.
start minor - Start quadrant on the minor circle (1,2,3 or 4). This is

counted clockwise from the extremum in the direction
of axis.

end minor - End quadrant on the minor circle (1,2,3 or 4). This is
counted clockwise from the extremum in the direction
of axis.

numb major - Number of quadrants on the major circle (1,2,3 or 4).
This is counted counterclockwise from equator.

Output Arguments:
torus - Pointer to the torus produced.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

220 CHAPTER 6. SURFACE DEFINITION

6.4. CONVERSION 221

EXAMPLE OF USE
{

double centre[3];
double axis[3];
double equator[3];
double minor radius;
int start minor;
int end minor;
int numb major;
SISLSurf *torus = NULL;
int stat = 0;
. . .
s1024(centre, axis, equator, minor radius, start minor, end minor,

numb major, &torus, &stat)
. . .

}

222 CHAPTER 6. SURFACE DEFINITION

6.4.9 Express a truncated cone as a surface.

NAME
s1022 - To express a truncated cone as a surface. The cone can be elliptic.

The cone will be geometrically exact.

SYNOPSIS
void s1022(bottom pos, bottom axis, ellipse ratio, axis dir, cone angle,

height, cone, stat)

double bottom pos[];
double bottom axis[];
double ellipse ratio;
double axis dir[];
double cone angle;
double height;
SISLSurf **cone;
int *stat;

ARGUMENTS
Input Arguments:

bottom pos - Center point of the bottom.
bottom axis - One of the bottom axis (major or minor).
ellipse ratio - Ratio between the other axis and bottom axis.
axis dir - Direction of the cone axis.
cone angle - Angle between axis dir and the cone at the end of

bottom axis, positive if the cone is sloping inwards.

height - Height of the cone, can be negative.

Output Arguments:
cone - Pointer to the cone produced.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

6.4. CONVERSION 223

EXAMPLE OF USE
{

double bottom pos[3];
double bottom axis[3];
double ellipse ratio;
double axis dir[3];
double cone angle;
double height;
SISLSurf *cone = NULL;
int stat = 0;
. . .
s1022(bottom pos, bottom axis, ellipse ratio, axis dir, cone angle,

height, &cone, &stat)
. . .

}

224 CHAPTER 6. SURFACE DEFINITION

Chapter 7

Surface Interrogation

This chapter describes the functions in the Surface Interrogation module.

7.1 Intersection Curves

Intersection curves are tied to two objects where at least one is a surface or a
curve. The representation of the intersection curves in the SISLIntcurve structure
has two levels. The first level is guide points which are points in the parametric
space and on the intersection curve. In every case there must be at least one guide
point, but there is no upper bound. This will be the result from the topology
routines. The second level is curves, one curve in the geometric space and one
curve in each parameter plane if each surface is parametric. This will be the result
from the marching routines.

7.1.1 Intersection curve object.

In the library an intersection curve is stored in a struct SISLIntcurve containing
the following:

int ipoint; Number of guide points defining the curve.
double *epar1; Pointer to the parameter values of the points in the

first object.
double *epar2; Pointer to the parameter values of the points in the

second object.
int ipar1; Number of parameter directions of first object.
int ipar2; Number of parameter directions of second object.
SISLCurve *pgeom; Pointer to the intersection curve in the geometry

space. If the curve is not computed, pgeom points
to NULL.

225

226 CHAPTER 7. SURFACE INTERROGATION

SISLCurve *ppar1; Pointer to the intersection curve in the parameter
plane of the first object. If the curve is not computed,
ppar1 points to NULL.

SISLCurve *ppar2; Pointer to the intersection curve in the parameter
plane of the second object. If the curve is not com-
puted, ppar2 points to NULL.

int itype; Type of curve:
= 1 : Straight line.
= 2 : Closed loop. No singularities.
= 3 : Closed loop. One singularity. Not used.
= 4 : Open curve. No singularity.
= 5 : Open curve. Singularity at the beginning

of the curve.
= 6 : Open curve. Singularity at the end of the

curve.
= 7 : Open curve. Singularity at the beginning

and end of the curve.
= 8 : An isolated singularity. Not used.

Singularities are points on the intersection curve where, in an intersection between
a curve and a surface, the tangent of the curve lies in the tangent plane of the
surface, or in an intersection between two surfaces, the tangent plane of the surfaces
coincide.

7.1. INTERSECTION CURVES 227

7.1.2 Create a new intersection curve object.

NAME
newIntcurve - Create and initialize a SISLIntcurve-instance. Note that the arrays

guidepar1 and guidepar2 will be freed by freeIntcurve. In most
cases the SISLIntcurve objects will be generated internally in the
SISL intersection routines.

SYNOPSIS
SISLIntcurve *newIntcurve(numgdpt, numpar1, numpar2, guidepar1,

guidepar2, type)

int numgdpt;
int numpar1;
int numpar2;
double guidepar1[];
double guidepar2[];
int type;

ARGUMENTS
Input Arguments:

numgdpt - Number of guide points that describe the curve.
numpar1 - Number of parameter directions of first object in-

volved in the intersection.
numpar2 - Number of parameter directions of second object in-

volved in the intersection.
guidepar1 - Parameter values of the guide points in the parameter

area of the first object. NB! The epar1 pointer is set
to point to this array. The values are not copied.

guidepar2 - Parameter values of the guide points in the parameter
area of the second object. NB! The epar2 pointer is
set to point to this array. The values are not copied.

. type - Kind of curve, see type SISLIntcurve on page 225

Output Arguments:
newIntcurve Pointer to new SISLIntcurve. If it is impossible to

allocate space for the SISLIntcurve, newIntcurve re-
turns NULL.

228 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLIntcurve *intcurve = NULL;
int numgdpt = 2;
int numpar1 = 2;
int numpar2 = 2;
double guidepar1[4];
double guidepar2[4];
int type = 4;
. . .
intcurve = newIntcurve(numgdpt, numpar1, numpar2, guidepar1,

guidepar2, type);
. . .

}

7.1. INTERSECTION CURVES 229

7.1.3 Delete an intersection curve object.

NAME
freeIntcurve - Free the space occupied by a SISLIntcurve.

Note that the arrays guidepar1 and guidepar2 will be freed as well.

SYNOPSIS
void freeIntcurve(intcurve)

SISLIntcurve *intcurve;

ARGUMENTS
Input Arguments:

intcurve - Pointer to the SISLIntcurve to delete.

EXAMPLE OF USE
{

SISLIntcurve *intcurve = NULL;
int numgdpt = 2;
int numpar1 = 2;
int numpar2 = 2;
double guidepar1[4];
double guidepar2[4];
int type = 4;
. . .
intcurve = newIntcurve(numgdpt, numpar1, numpar2, guidepar1,

guidepar2, type);
. . .
freeIntcurve(intcurve);
. . .

}

230 CHAPTER 7. SURFACE INTERROGATION

7.1.4 Free a list of intersection curves.

NAME
freeIntcrvlist - Free a list of SISLIntcurve.

SYNOPSIS
void freeIntcrvlist(vilist, icrv)

SISLIntcurve **vilist;
int icrv;

ARGUMENTS
Input Arguments:

vilist - Array of pointers to pointers to instance of Intcurve.
icrv - number of SISLIntcurves in the list.

Output Arguments:
None - None.

EXAMPLE OF USE
{

SISLIntcurve **vilist;
int icrv;
. . .
freeIntcrvlist(vilist, icrv);
. . .

}

7.2. FIND THE INTERSECTIONS 231

7.2 Find the Intersections

7.2.1 Intersection between a curve and a straight line or a plane.

NAME
s1850 - Find all the intersections between a curve and a plane (if curve

dimension and dim = 3) or a curve and a line (if curve dimension
and dim = 2).

SYNOPSIS
void s1850(curve, point, normal, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)

SISLCurve *curve;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS

Input Arguments:
curve - Pointer to the curve.
point - Point in the plane/line.
normal - Normal to the plane or any normal to the direction

of the line.
dim - Dimension of the space in which the curve and the

plane/line lies, dim must be equal to two or three.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

232 CHAPTER 7. SURFACE INTERROGATION

numintcu - Number of intersection curves.

7.2. FIND THE INTERSECTIONS 233

intcurve - Array of pointers to SISLIntcurve objects containing
description of the intersection curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double point[3];
double normal[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1850(curve, point, normal, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

234 CHAPTER 7. SURFACE INTERROGATION

7.2.2 Intersection between a curve and a 2D circle or a sphere.

NAME
s1371 - Find all the intersections between a curve and a sphere (if curve

dimension and dim = 3), or a curve and a circle (if curve dimension
and dim = 2).

SYNOPSIS
void s1371(curve, centre, radius, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double centre[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
centre - Centre of the circle/sphere.
radius - Radius of circle or sphere.
dim - Dimension of the space in which the curve and the

circle/sphere lies, dim should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.

7.2. FIND THE INTERSECTIONS 235

intcurve - Array of pointers to SISLIntcurve objects containing
descriptions of the intersection curves. The curves are
only described by start points and end points in the
parameter interval of the curve. The curve pointers
point to nothing.

236 CHAPTER 7. SURFACE INTERROGATION

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double centre[3];
double radius;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1371(curve, centre, radius, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

7.2. FIND THE INTERSECTIONS 237

7.2.3 Intersection between a curve and a cylinder.

NAME
s1372 - Find all the intersections between a curve and a cylinder.

SYNOPSIS
void s1372(curve, point, dir, radius, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)

SISLCurve *curve;
double point[];
double dir[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
point - Point on the cylinder axis.
dir - Direction of the cylinder axis.
radius - Radius of the cylinder.
dim - Dimension of the space in which the cylinder and the

curve lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.

238 CHAPTER 7. SURFACE INTERROGATION

intcurve - Array of pointers to the SISLIntcurve objects contain-
ing descriptions of the intersection curves. The curves
are only described by start points and end points in
the parameter interval of the curve. The curve point-
ers point to nothing.

7.2. FIND THE INTERSECTIONS 239

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double point[3];
double dir[3];
double radius;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1372(curve, point, dir, radius, dim, epsco, epsge, &numintpt,

&intpar, &numintcu, &intcurve, &stat);
. . .

}

240 CHAPTER 7. SURFACE INTERROGATION

7.2.4 Intersection between a curve and a cone.

NAME
s1373 - Find all the intersections between a curve and a cone.

SYNOPSIS
void s1373(curve, top, dir, conept, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)

SISLCurve *curve;
double top[];
double axispt[];
double conept[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
top - Top point of the cone.
axispt - Point on the cone axis.
conept - Point on the cone surface, other than the top point.
dim - Dimension of the space in which the cone and the

curve lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.

7.2. FIND THE INTERSECTIONS 241

intcurve - Array of pointers to the SISLIntcurve object contain-
ing descriptions of the intersection curves. The curves
are only described by start points and end points in
the parameter interval of the curve. The curve point-
ers point to nothing.

242 CHAPTER 7. SURFACE INTERROGATION

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double top[3];
double dir[3];
double conept[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1373(curve, top, dir, conept, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

7.2. FIND THE INTERSECTIONS 243

7.2.5 Intersection between a curve and an elliptic cone.

NAME
s1502 - Find all the intersections between a curve and an elliptic cone.

SYNOPSIS
void s1502(curve, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

numintpt, intpar, numintcu, intcurve, stat)

SISLCurve *curve;
double basept[];
double normdir[];
double ellipaxis[];
double alpha;
double ratio;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
basept - Base point of the cone, centre of elliptic base.
normdir - Direction of the cone axis, normal to the elliptic base.

The default is pointing from the base point to the top
point of the cone.

ellipaxis - One of the axes of the ellipse (major or minor).
alpha - The opening angle of the cone at the ellipaxis.
ratio - The ratio of the major and minor axes = elli-

paxis/otheraxis.

dim - Dimension of the space in which the cone and the
curve lie, dim should be equal to three.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

244 CHAPTER 7. SURFACE INTERROGATION

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to the SISLIntcurve object contain-

ing descriptions of the intersection curves. The curves
are only described by start points and end points in
the parameter interval of the curve. The curve point-
ers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double basept[3];
double normdir[3];
double ellipaxis[3];
double alpha;
double ratio;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1502(curve, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

&numintpt, &intpar, &numintcu, &intcurve, &stat);
. . .

}

7.2. FIND THE INTERSECTIONS 245

7.2.6 Intersection between a curve and a torus.

NAME
s1375 - Find all the intersections between a curve and a torus.

SYNOPSIS
void s1375(curve, centre, normal, centdist, rad, dim, epsco, epsge,

numintpt, intpar, numintcu, intcurve, stat)

SISLCurve *curve;
double centre[];
double normal[];
double centdist;
double rad;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
centre - The centre of the torus (lying in the symmetry plane)

normal - Normal of symmetry plane.
centdist - Distance from the centre of the cone to the centre

circle of the torus.
rad - The radius of the torus surface.
dim - Dimension of the space in which the torus and the

curve lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single

intersection points in the parameter interval of the
curve. The points lie in sequence. Intersection curves
are stored in intcurve.

numintcu - Number of intersection curves.

246 CHAPTER 7. SURFACE INTERROGATION

intcurve - Array of pointers to the SISLIntcurve objects contain-
ing descriptions of the intersection curves. The curves
are only described by start points and end points in
the parameter interval of the curve. The curve point-
ers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve;
double centre[3];
double normal[3];
double centdist;
double rad;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *intpar;
int numintcu;
SISLIntcurve **intcurve;
int stat;
. . .
s1375(curve, centre, normal, centdist, rad, dim, epsco, epsge,

&numintpt, &intpar, &numintcu, &intcurve, &stat);
. . .

}

7.2. FIND THE INTERSECTIONS 247

7.2.7 Intersection between a surface and a point.

NAME
s1870 - Find all intersections between a surface and a point.

SYNOPSIS
void s1870(ps1, pt1, idim, aepsge, jpt, gpar1, jcrv, wcurve, jstat)

SISLSurf *ps1;
double *pt1;
int idim;
double aepsge;
int *jpt;
double **gpar1;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface.
pt1 - Coordinates of the point.
idim - Number of coordinates in pt1.
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single intersection points.
gpar1 - Array containing the parameter values of the sin-

gle intersection points in the parameter interval of
the surface. The points lie continuous. Intersection
curves are stored in wcurve.

jcrv - Number of intersection curves.
wcurve - Array containing descriptions of the intersection

curves. The curves are only described by points in
the parameter plane. The curve-pointers points to
nothing.
If the curves given as input are degnenerate an inter-
section point can be returned as an intersection curve.
Use s1327 to decide if an intersection curve is a point
on one of the curves.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.

248 CHAPTER 7. SURFACE INTERROGATION

< 0 : Error.

7.2. FIND THE INTERSECTIONS 249

EXAMPLE OF USE
{

SISLSurf *ps1;
double *pt1;
int idim;
double aepsge;
int jpt = 0;
double *gpar1 = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1870(ps1, pt1, idim, aepsge, &jpt, &gpar1, &jcrv, &wcurve, &jstat);
. . .

}

250 CHAPTER 7. SURFACE INTERROGATION

7.2.8 Intersection between a surface and a straight line.

NAME
s1856 - Find all intersections between a tensor-product surface and an

infinite straight line.

SYNOPSIS
void s1856(surf, point, linedir, dim, epsco, epsge, numintpt, pointpar,

numintcr, intcurves, stat)

SISLSurf *surf;
double point[];
double linedir[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point on the line.
linedir - Direction vector of the line.
dim - Dimension of the space in which the line lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection

curves. The curves are only described by start points
and end points in the parameter plane. The curve
pointers point to nothing.

stat - Status messages

7.2. FIND THE INTERSECTIONS 251

> 0 : warning
= 0 : ok
< 0 : error

252 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLSurf *surf;
double point[3];
double linedir[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1856(surf, point, linedir, dim, epsco, epsge, &numintpt, &pointpar,

&numintcr, &intcurves, &stat);
. . .

}

7.2. FIND THE INTERSECTIONS 253

7.2.9 Newton iteration on the intersection between a 3D NURBS
surface and a line.

NAME
s1518 - Newton iteration on the intersection between a 3D NURBS surface

and a line. If a good initial guess is given, the intersection will be
found quickly. However if a bad initial guess is given, the iteration
might not converge. We only search in the rectangular subdomain
specified by ”start” and ”end”. This can be the whole domain if
desired.

SYNOPSIS
void s1518(surf, point, dir, epsge, start, end, parin, parout, stat)

SISLSurf *surf;
double point[];
double dir[];
double epsge;
double start[];
double end[];
double parin[];
double parout[];
int *stat;

ARGUMENTS
Input Arguments:

surf - The NURBS surface.
point - A point on the line.
dir - The vector direction of the line (not necessarily nor-

malized).
epsge - Geometric resolution.
start - Lower limits of search rectangle (umin, vmin).
end - Upper limits of search rectangle (umax, vmax).
parin - Initial guess (u0,v0) for parameter point of intersec-

tion (which should be inside the search rectangle).

Output Arguments:
parout - Parameter point (u,v) of intersection.
jstat - status messages = 1 : Intersection found. ¡ 0 : error.

EXAMPLE OF USE
{

SISLSurf *surf;

254 CHAPTER 7. SURFACE INTERROGATION

double point[];
double dir[];
double epsge;
double start[];
double end[];
double parin[];
double parout[];
int *stat;
. . .
s1518(surf, point, dir, epsge, start, end, parin, parout, stat);
. . .

}

7.2. FIND THE INTERSECTIONS 255

7.2.10 Convert a surface/line intersection into a two-dimensional
surface/origo intersection

NAME
s1328 - Put the equation of the surface pointed at by psold into two planes

given by the point epoint and the normals enorm1 and enorm2.
The result is an equation where the new two-dimensional surface
rsnew is to be equal to origo.

SYNOPSIS
void s1328(psold, epoint, enorm1, enorm2, idim, rsnew, jstat)

SISLSurf *psold;
double epoint[];
double enorm1[];
double enorm2[];
int idim;
SISLSurf **rsnew;
int *jstat;

ARGUMENTS
Input Arguments:

psold - Pointer to input surface.
epoint - SISLPoint in the planes.
enorm1 - Normal to the first plane.
enorm2 - Normal to the second plane.
idim - Dimension of the space in which the planes lie.

Output Arguments:
rsnew - dimensional surface.
jstat - status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *psold;
double epoint[];
double enorm1[];
double enorm2[];
int idim;
SISLSurf **rsnew;

256 CHAPTER 7. SURFACE INTERROGATION

int *jstat;
. . .
s1328(psold, epoint, enorm1, enorm2, idim, rsnew, jstat);
. . .

}

7.2. FIND THE INTERSECTIONS 257

7.2.11 Intersection between a surface and a circle.

NAME
s1855 - Find all intersections between a tensor-product surface and a full

circle.

SYNOPSIS
void s1855(surf, centre, radius, normal, dim, epsco, epsge, numintpt,

pointpar, numintcr, intcurves, stat)

SISLSurf *surf;
double centre[];
double radius;
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - Centre of the circle.
radius - Radius of the circle.
normal - Normal vector to the plane in which the circle lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection

curves. The curves are only described by start points
and end points in the parameter plane. The curve
pointers point to nothing.

258 CHAPTER 7. SURFACE INTERROGATION

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

7.2. FIND THE INTERSECTIONS 259

EXAMPLE OF USE
{

SISLSurf *surf;
double centre[3];
double radius;
double normal[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1855(surf, centre, radius, normal, dim, epsco, epsge, &numintpt,

&pointpar, &numintcr, &intcurves, &stat);
. . .

}

260 CHAPTER 7. SURFACE INTERROGATION

7.2.12 Intersection between a surface and a curve.

NAME
s1858 - Find all intersections between a surface and a curve. Intersection

curves are described by guide points. To pick the intersection
curves use s1712() described on page 150.

SYNOPSIS
void s1858(surf, curve, epsco, epsge, numintpt, pointpar1, pointpar2,

numintcr, intcurves, stat)

SISLSurf *surf;
SISLCurve *curve;
double epsco;
double epsge;
int *numintpt;
double **pointpar1;
double **pointpar2;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
curve - Pointer to the curve.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar1 - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

pointpar2 - Array containing the parameter values of the single
intersection points in the parameter interval of the
curve.

numintcr - Number of intersection curves.

7.2. FIND THE INTERSECTIONS 261

intcurves - Array containing the description of the intersection
curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing. If the curves
given as input are degenerate, an intersection point
can be returned as an intersection curve.

262 CHAPTER 7. SURFACE INTERROGATION

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
SISLCurve *curve;
double epsco;
double epsge;
int numintpt;
double *pointpar1;
double *pointpar2;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1858(surf, curve, epsco, epsge, &numintpt, &pointpar1, &pointpar2,

&numintcr, &intcurves, &stat);
. . .

}

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 263

7.3 Find the Topology of the Intersection

7.3.1 Find the topology for the intersection of a surface and a
plane.

NAME
s1851 - Find all intersections between a tensor-product surface and a

plane. Intersection curves are described by guide points. To make
the intersection curves use s1314() described on page 288.

SYNOPSIS
void s1851(surf, point, normal, dim, epsco, epsge, numintpt, pointpar, nu-

mintcr, intcurves, stat)

SISLSurf *surf;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to surface
point - Point in the plane.
normal - Normal to the plane.
dim - Dimension of the space in which the plane lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

numintcr - Number of intersection curves.

264 CHAPTER 7. SURFACE INTERROGATION

intcurves - Array containing descriptions of the intersection
curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing.

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 265

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double point[3];
double normal[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1851(surf, point, normal, dim, epsco, epsge, &numintpt, &pointpar,

&numintcr, &intcurves, &stat);
. . .

}

266 CHAPTER 7. SURFACE INTERROGATION

7.3.2 Find the topology for the intersection of a surface and a
sphere.

NAME
s1852 - Find all intersections between a tensor-product surface and a

sphere. Intersection curves are described by guide points. To pro-
duce the intersection curves use s1315() described on page 292.

SYNOPSIS
void s1852(surf, centre, radius, dim, epsco, epsge, numintpt, pointpar,

numintcr, intcurves, stat)

SISLSurf *surf;
double centre [];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - Center of the sphere.
radius - Radius of the sphere.
dim - Dimension of the space in which the sphere lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

numintcr - Number of intersection curves.

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 267

intcurves - Array containing description of the intersection
curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double centre[3];
double radius;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1852(surf, centre, radius, dim, epsco, epsge, &numintpt, &pointpar,

&numintcr, &intcurves, &stat);
. . .

}

268 CHAPTER 7. SURFACE INTERROGATION

7.3.3 Find the topology for the intersection of a surface and a
cylinder.

NAME
s1853 - Find all intersections between a tensor-product surface and a cylin-

der. Intersection curves are described by guide points. To produce
the intersection curves use s1316() described on page 296.

SYNOPSIS
void s1853(surf, point, cyldir, radius, dim, epsco, epsge, numintpt,

pointpar, numintcr, intcurves, stat)
SISLSurf *surf;
double point[];
double cyldir[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point on the axis of the cylinder.
cyldir - The direction vector of the axis of the cylinder.
radius - Radius of the cylinder.
dim - Dimension of the space in which the cylinder lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

numintcr - Number of intersection curves.

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 269

intcurves - Array containing description of the intersection
curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing.

270 CHAPTER 7. SURFACE INTERROGATION

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double point[3];
double cyldir[3];
double radius;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
intcurve **intcurves;
int stat;
. . .
s1853(surf, point, cyldir, radius, dim, epsco, epsge, &numintpt,

&pointpar, &numintcr, &intcurves, &stat);
. . .

}

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 271

7.3.4 Find the topology for the intersection of a surface and a
cone.

NAME
s1854 - Find all intersections between a tensor-product surface and a cone.

Intersection curves are described by guide points. To produce the
intersection curves use s1317() described on page 299.

SYNOPSIS
void s1854(surf, toppt, axispt, conept, dim, epsco, epsge, numintpt, point-

par, numintcr, intcurves, stat)
SISLSurf *surf;
double toppt[];
double axispt[];
double conept[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface
toppt - Top point of the cone.
axispt - Point on the axis of the cone, axispt must be different

from toppt.

conept - Point on the cone surface, conept must be different
from toppt.

dim - Dimension of the space in which the cone lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

272 CHAPTER 7. SURFACE INTERROGATION

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection

curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double toppt[3];
double axispt[3];
double conept[3];
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1854(surf, toppt, axispt, conept, dim, epsco, epsge, &numintpt,

&pointpar, &numintcr, &intcurves, &stat);
. . .

}

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 273

7.3.5 Find the topology for the intersection of a surface and an
elliptic cone.

NAME
s1503 - Find all intersections between a tensor-product surface and an

elliptic cone. Intersection curves are described by guide points.
To produce the intersection curves use s1501() described on page
302.

SYNOPSIS
void s1503(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

numintpt, pointpar, numintcr, intcurves, stat)

SISLSurf *surf;
double basept[];
double normdir[];
double ellipaxis[];
double alpha;
double ratio;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface
basept - Base point of the cone, centre of elliptic base.
normdir - Direction of the cone axis, normal to the elliptic base.

The default is pointing from the base point to the top
point.

ellipaxis - One of the axes of the ellipse (major or minor). The
other axis will be calculated as normdir × ellipaxis
scaled with ratio.

alpha - The opening angle in radians of the cone at the elli-
paxis.

ratio - The ratio of the major and minor axes = elli-
paxis/otheraxis.

dim - Dimension of the space in which the cone lies.
epsco - Computational resolution (not used).

274 CHAPTER 7. SURFACE INTERROGATION

epsge - Geometry resolution.

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 275

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection

curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double basept[3];
double normdir[3];
double ellipaxis[3];
double alpha;
double ratio;
double alpha;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1503(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

&numintpt, &pointpar, &numintcr, &intcurves, &stat);
. . .

}

276 CHAPTER 7. SURFACE INTERROGATION

7.3.6 Find the topology for the intersection of a surface and a
torus.

NAME
s1369 - Find all intersections between a surface and a torus. Intersection

curves are described by guide points. To produce the intersection
curves use s1318() described on page 305.

SYNOPSIS
void s1369(surf, centre, normal, cendist, radius, dim, epsco, epsge,

numintpt, pointpar, numintcr, intcurves, stat)

SISLSurf *surf;
double centre[];
double normal[];
double cendist;
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - The centre of the torus (lying in the symmetry plane)
normal - Normal to the symmetry plane.
cendist - Distance from centre to centre circle of the torus.
radius - The radius of the torus surface.
dim - Dimension of the space in which the torus lies. dim

should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single

intersection points in the parameter plane of the sur-
face. The points lie in sequence. Intersection curves
are stored in intcurves.

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 277

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection

curves. The curves are only described by start
points and end points (guide points) in the param-
eter planes. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double centre[3];
double normal[3];
double cendist;
double radius;
int dim = 3;
double epsco;
double epsge;
int numintpt;
double *pointpar;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1369(surf, centre, normal, cendist, radius, dim, epsco, epsge,

&numintpt, &pointpar, &numintcr, &intcurves, &stat);
. . .

}

278 CHAPTER 7. SURFACE INTERROGATION

7.3.7 Find the topology for the intersection between two surfaces.

NAME
s1859 - Find all intersections between two surfaces. Intersection curves

are described by guide points. To produce the intersection curves
use s1310() described on page 309.

SYNOPSIS
void s1859 (surfl, surf2, epsco, epsge, numintpt, pointpar1, pointpar2,

numintcr, intcurves, stat)
SISLSurf *surf1;
SISLSurf *surf2;
double epsco;
double epsge;
int *numintpt;
double **pointpar1;
double **pointpar2;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf1 - Pointer to the first surface.
surf2 - Pointer to the second surface.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar1 - Array containing the parameter values of the sin-

gle intersection points in the parameter plane of the
first surface. The points lie in sequence. Intersection
curves are stored in intcurves.

pointpar2 - Array containing the parameter values of the single
intersection points in the parameter plane of the sec-
ond surface.

numintcr - Number of intersection curves.
intcurves - Array containing description of the intersection

curves. The curves are only described by start points
and end points (guide points) in the parameter planes
of the surfaces. The curve pointers point to nothing.

7.3. FIND THE TOPOLOGY OF THE INTERSECTION 279

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

280 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLSurf *surf1;
SISLSurf *surf2;
double epsco;
double epsge;
int numintpt;
double *pointpar1;
double *pointpar2;
int numintcr;
SISLIntcurve **intcurves;
int stat;
. . .
s1859(surfl, surf2, epsco, epsge, &numintpt, &pointpar1, &pointpar2,

&numintcr, &intcurves, &stat);
. . .

}

7.4. FIND THE TOPOLOGY OF A SILHOUETTE 281

7.4 Find the Topology of a Silhouette

7.4.1 Find the topology of the silhouette curves of a surface, using
parallel projection.

NAME
s1860 - Find the silhouette curves and points of a surface when the surface

is viewed from a specific direction (i.e. parallel projection). In ad-
dition to the points and curves found by this routine, break curves
and edge-curves might be silhouette curves. Silhouette curves are
described by guide points. To produce the silhouette curves use
s1319() described on page 312.

NOTE
The silhouette curves are defined as curves on the surface where the inner
product of the surface normal and the direction vector of the viewing is 0.
This definition will include surface points where the normal is zero.

SYNOPSIS
void s1860(surf, viewdir, dim, epsco, epsge, numsilpt, pointpar, numsilcr,

silcurves, stat)

SISLSurf *surf;
double viewdir[];
int dim;
double epsco;
double epsge;
int *numsilpt;
double **pointpar;
int *numsilcr;
SISLIntcurve ***silcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
viewdir - The direction vector of the viewing.
dim - Dimension of the space in which viewdir lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numsilpt - Number of single silhouette points.

282 CHAPTER 7. SURFACE INTERROGATION

pointpar - Array containing the parameter values of the single
silhouette points in the parameter plane of the sur-
face. The points lie in sequence. Silhouette curves
are stored in silcurves.

numsilcr - Number of silhouette curves.
silcurves - Array containing the description of the silhouette

curves. The curves are only described by start points
and end points (guide points) in the parameter plane.
The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double viewdir[3];
int dim;
double epsco;
double epsge;
int numsilpt = 0;
double *pointpar = NULL;
int numsilcr = 0;
SISLIntcurve **silcurves = NULL;
int stat = 0;
. . .
s1860(surf, viewdir, dim, epsco, epsge, &numsilpt, &pointpar,

&numsilcr, &silcurves, &stat);
. . .

}

7.4. FIND THE TOPOLOGY OF A SILHOUETTE 283

7.4.2 Find the topology of the silhouette curves of a surface, using
perspective projection.

NAME
s1510 - Find the silhouette curves and points of a surface when the surface

is viewed perspectively from a specific eye point. In addition to the
points and curves found by this routine, break curves and edge-
curves might be silhouette curves. To march out the silhouette
curves, use s1514() on page 315.

SYNOPSIS
void s1510(ps, eyepoint, idim, aepsco, aepsge, jpt, gpar, jcrv, wcurve, jstat)

SISLSurf *ps;
double eyepoint[];
int idim;
double aepsco;
double aepsge;
int *jpt;
double **gpar;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Pointer to the surface.
eyepoint - The eye point vector.
idim - Dimension of the space in which eyepoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single silhouette points.
gpar - Array containing the parameter values of the single

silhouette points in the parameter plane of the sur-
face. The points lie continuous. Silhouette curves are
stored in wcurve.

jcrv - Number of silhouette curves.
wcurve - Array containing descriptions of the silhouette curves.

The curves are only described by points in the param-
eter plane. The curve-pointers points to nothing.

jstat - Status messages

284 CHAPTER 7. SURFACE INTERROGATION

> 0 : warning
= 0 : ok
< 0 : error

7.4. FIND THE TOPOLOGY OF A SILHOUETTE 285

EXAMPLE OF USE
{

SISLSurf *ps;
double eyepoint[3];
int idim = 3;
double aepsco;
double aepsge;
int jpt = 0;
double *gpar = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1510(ps, eyepoint, idim, aepsco, aepsge, &jpt, &gpar, &jcrv,

&wcurve, &jstat);
. . .

}

286 CHAPTER 7. SURFACE INTERROGATION

7.4.3 Find the topology of the circular silhouette curves of a
surface.

NAME
s1511 - Find the circular silhouette curves and points of a surface. In

addition to the points and curves found by this routine, break
curves and edge-curves might be silhouette curves. To march out
the silhouette curves use s1515() on page 318.

SYNOPSIS
void s1511(ps, qpoint, bvec, idim, aepsco, aepsge, jpt, gpar, jcrv, wcurve,

jstat)

SISLSurf *ps;
double qpoint[];
double bvec[];
int idim;
double aepsco;
double aepsge;
int *jpt;
double **gpar;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Pointer to the surface.
qpoint - A point on the spin axis.
bvec - The circular silhouette axis direction.
idim - Dimension of the space in which axis lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single silhouette points.
gpar - Array containing the parameter values of the single

silhouette points in the parameter plane of the sur-
face. The points lie continuous. Silhouette curves are
stored in wcurve.

jcrv - Number of silhouette curves.

7.4. FIND THE TOPOLOGY OF A SILHOUETTE 287

wcurve - Array containing descriptions of the silhouette curves.
The curves are only described by points in the param-
eter plane. The curve-pointers points to nothing.

jstat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *ps;
double qpoint[3];
double bvec[3];
int idim = 3;
double aepsco;
double aepsge;
int jpt = 0;
double *gpar = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1511(ps, qpoint, bvec, idim, aepsco, aepsge, &jpt, &gpar, &jcrv,

&wcurve, &jstat);
. . .

}

288 CHAPTER 7. SURFACE INTERROGATION

7.5 Marching

7.5.1 March an intersection curve between a surface and a plane.

NAME
s1314 - To march an intersection curve described by parameter pairs in an

intersection curve object, a surface and a plane. The guide points
are expected to be found by s1851(), described on page 263. The
generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1314(surf, point, normal, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, stat)
SISLSurf *surf;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point in the plane.
normal - Normal to the plane.
dim - Dimension of the space in which the plane lies.

Should be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator telling if a geometric curve is to be made:
0 - Do not make curves at all.
1 - Make only one geometric curve.
2 - Make geometric curve and curve in the

parameter plane.
graphic - Indicator telling if the function should draw the curve:

7.5. MARCHING 289

0 - Don’t draw the curve.
1 - Draw the geometric curve. If this option

is used see NOTE!

290 CHAPTER 7. SURFACE INTERROGATION

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input, only guide

points (points in parameter space) exist. These guide
points are used to guide the marching. The routine
adds intersection curve and curve in the parameter
plane to the SISLIntcurve object, according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *surf;
double point[3];
double normal[3];
int dim = 3;
double epsco;
double epsge;
double maxstep = 0.0;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int stat;
. . .
s1314(surf, point, normal, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, &stat);
. . .

7.5. MARCHING 291

}

292 CHAPTER 7. SURFACE INTERROGATION

7.5.2 March an intersection curve between a surface and a sphere.

NAME
s1315 - To march an intersection curve described by parameter pairs in an

intersection curve object, a surface and a sphere. The guide points
are expected to be found by s1852(), described on page 266. The
generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1315(surf, centre, radius, dim, epsco, epsge, maxstep, intcurve, make-

curv, graphic, stat)

SISLSurf *surf;
double centre[];
double radius;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - Center of the sphere.
radius - Radius of sphere
dim - Dimension of the space in which the sphere lies.

Should be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.
makecurv - Indicator specifying if a geometric curve is to be

made:
0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in pa-

rameter plane.
graphic - Indicator specifying if the function should draw the

curve:
0 - Don’t draw the curve.

7.5. MARCHING 293

1 - Draw the geometric curve. If this option
is used see NOTE!

294 CHAPTER 7. SURFACE INTERROGATION

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used to guide the marching. The routine
adds intersection curve and curve in the parameter
plane to the SISLIntcurve object according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out, the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *surf;
double centre[3];
double radius;
int dim = 3;
double epsco;
double epsge;
double maxstep = 0;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int stat;
. . .
s1315(surf, centre, radius, dim, epsco, epsge, maxstep, intcurve, make-

curv, graphic, &stat);
. . .

7.5. MARCHING 295

}

296 CHAPTER 7. SURFACE INTERROGATION

7.5.3 March an intersection curve between a surface and a cylinder.

NAME
s1316 - To march an intersection curve described by parameter pairs in

an intersection curve object, a surface and a cylinder. The guide
points are expected to be found by s1853() described on page 268.
The generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1316(surf, point, cyldir, radius, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, stat)
SISLSurf *surf;
double point[];
double cyldir[];
double radius;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point on the axis of the cylinder.
cyldir - The direction vector of the axis of the cylinder.
radius - Radius of the cylinder.
dim - Dimension of the space in which the cylinder lies.

Should be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be
made:

0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the

parameter plane.

7.5. MARCHING 297

graphic - Indicator specifying if the function should draw the
curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. If this option

is used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used to guide the marching. The routine
adds intersection curve and curve in the parameter
plane to the SISLIntcurve object according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out, the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *surf;
double point[3];
double cyldir[3];
double radius;
int dim = 3;
double epsco;
double epsge;
double maxstep = 0.0;
SISLIntcurve *intcurve;
int makecurv;

298 CHAPTER 7. SURFACE INTERROGATION

int graphic;
int stat = 0;
. . .
s1316(surf, point, cyldir, radius, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, &stat);
. . .

}

7.5. MARCHING 299

7.5.4 March an intersection curve between a surface and a cone.

NAME
s1317 - To march an intersection curve described by parameter pairs in an

intersection curve object, a surface and a cone. The guide points
are expected to be found by s1854() described on page 271. The
generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1317(surf, toppt, axispt, conept, dim, epsco, epsge, maxstep,

intcurve, makecurv, graphic, stat)

SISLSurf *surf;
double toppt[];
double axispt[];
double conept[];
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
toppt - The top point of the cone.
axispt - Point on the axis of the cone; axispt must be different

from toppt.
conept - A point on the cone surface that is not the top point.

dim - Dimension of the space in which the cone lies. Should
be 3.

epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge,

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be
made:

0 - Do not make curves at all.
1 - Make only a geometric curve.

300 CHAPTER 7. SURFACE INTERROGATION

2 - Make geometric curve and curve in the
parameter plane

graphic - Indicator specifying if the function should draw the
curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. If this option

is used see NOTE!
Input/Output Arguments:

intcurve - Pointer to the intersection curve. As input only guide
points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds the intersection curve and curve in the parame-
ter plane to the SISLIntcurve object according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out, the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *surf;
double toppt[3];
double axispt[3];
double conept[3];
int dim = 3;
double epsco;
double epsge;
double maxstep = 0.0;
SISLIntcurve *intcurve;
int makecurv;

7.5. MARCHING 301

int graphic;
int stat = 0;
. . .
s1317(surf, toppt, axispt, conept, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, &stat);
. . .

}

302 CHAPTER 7. SURFACE INTERROGATION

7.5.5 March an intersection curve between a surface and an elliptic
cone.

NAME
s1501 - To march an intersection curve described by parameter pairs in

an intersection curve object, a surface and an elliptic cone. The
guide points are expected to be found by s1503() described on page
273. The generated geometric curves are represented as B-spline
curves.

SYNOPSIS
void s1501(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

maxstep, intcurve, makecurv, graphic, stat)
SISLSurf *surf;
double basept[];
double normdir[];
double ellipaxis[];
double alpha;
double ratio;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
basept - Base point of the cone, centre of elliptic base.
normdir - Direction of the cone axis, normal to the elliptic base.

The default is pointing from the base point to the top
point.

ellipaxis - One of the axes of the ellipse (major or minor). The
other axis will be calculated as normdir × ellipaxis
scaled with ratio.

alpha - The opening angle in radians of the cone at the elli-
paxis.

ratio - The ratio of the major and minor axes = elli-
paxis/otheraxis.

7.5. MARCHING 303

dim - Dimension of the space in which the cone lies. Should
be 3.

epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge,

maxstep is neglected. maxstep = 0.0 is recommended.
makecurv - Indicator specifying if a geometric curve is to be

made:
0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the

parameter plane
graphic - Indicator specifying if the function should draw the

curve:
0 - Don’t draw the curve.
1 - Draw the geometric curve. If this option

is used see NOTE!
Input/Output Arguments:

intcurve - Pointer to the intersection curve. As input only guide
points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds the intersection curve and curve in the parame-
ter plane to the SISLIntcurve object according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out, the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

304 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLSurf *surf;
double basept[3];
double normdir[3];
double ellipaxis[3];
double alpha;
double ratio;
int dim = 3;
double epsco;
double epsge;
double maxstep = 0.0;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int stat = 0;
. . .
s1501(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

maxstep, intcurve, makecurv, graphic, &stat);
. . .

}

7.5. MARCHING 305

7.5.6 March an intersection curve between a surface and a torus.

NAME
s1318 - To march an intersection curve described by parameter pairs in an

intersection curve object, a surface and a torus. The guide points
are expected to be found by s1369(), described on page 276. The
generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1318(surf, centre, normal, cendist, radius, dim, epsco, epsge, maxstep,

intcurve, makecurv, graphic, stat)

SISLSurf *surf;
double centre[];
double normal[];
double cendist;
double radius;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - The centre of the torus (lying in the symmetry plane)
normal - Normal to the symmetry plane.
cendist - Distance from centre to the centre circle of torus.
radius - The radius of the torus surface.
dim - Dimension of the space in which the torus lies. Should

be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be
made:

0 - Do not make curves at all.
1 - Make only a geometric curve.

306 CHAPTER 7. SURFACE INTERROGATION

2 - Make geometric curve and curve in the
parameter plane

7.5. MARCHING 307

graphic - Indicator specifying if the function should draw the
curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. If this option

is used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds the intersection curve and curve in the parame-
ter plane to the SISLIntcurve object according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

308 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLSurf *surf;
double centre[3];
double normal[3];
double cendist;
double radius;
int dim = 3;
double epsco;
double epsge;
double maxstep = 0.0;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int stat = 0;
. . .
s1318(surf, centre, normal, cendist, radius, dim, epsco, epsge, maxstep,

intcurve, makecurv, graphic, &stat);
. . .

}

7.5. MARCHING 309

7.5.7 March an intersection curve between two surfaces.

NAME
s1310 - To march an intersection curve between two surfaces. The inter-

section curve is described by guide parameter pairs stored in an
intersection curve object. The guide points are expected to be
found by s1859() described on page 278. The generated geometric
curves are represented as B-spline curves.

SYNOPSIS
void s1310(surf1, surf2, intcurve, epsge, maxstep, makecurv, graphic, stat)

SISLSurf *surf1;
SISLSurf *surf2;
SISLIntcurve *intcurve;
double epsge;
double maxstep;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf1 - Pointer to the first surface.
surf2 - Pointer to the second surface.
epsge - Geometry resolution.
maxstep - Maximum step length. If maxstep≤0, maxstep is ig-

nored. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be
made:

0 - Do not make curves at all
1 - Make only a geometric curve.
2 - Make geometric curve and curves in the

parameter planes
graphic - Indicator specifying if the function should draw the

geometric curve:
0 - Don’t draw the curve
1 - Draw the geometric curve. If this option

is used see NOTE!

Input/Output Arguments:

310 CHAPTER 7. SURFACE INTERROGATION

intcurve - Pointer to the intersection curve. As input only guide
points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds intersection curve and curves in the parameter
planes to the SISLIntcurve object, according to the
value of makecurv.

7.5. MARCHING 311

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out, the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *surf1;
SISLSurf *surf2;
SISLIntcurve *intcurve;
double epsge;
double maxstep;
int makecurv;
int graphic;
int stat = 0;
. . .
s1310(surf1, surf2, intcurve, epsge, maxstep, makecurv, graphic,

&stat);
. . .

}

312 CHAPTER 7. SURFACE INTERROGATION

7.6 Marching of Silhouettes

7.6.1 March a silhouette curve of a surface, using parallel
projection.

NAME
s1319 - To march the silhouette curve described by an intersection curve

object, a surface and a view direction (i.e. parallel projection).
The guide points are expected to be found by s1860(), described
on page 281. The generated geometric curves are represented as
B-spline curves.

NOTE
The silhouette curves are defined as curves on the surface where the inner
product of the surface normal and the direction vector of the viewing is 0.
This definition will include surface points where the normal is zero.

SYNOPSIS
void s1319(surf, viewdir, dim, epsco, epsge, maxstep, intcurve, makecurv,

graphic, stat)
SISLSurf *surf;
double viewdir[];
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
viewdir - View direction.
dim - Dimension of the space in which vector describing the

view direction lies. Should be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

7.6. MARCHING OF SILHOUETTES 313

makecurv - Indicator specifying if a geometric curve is to be
made:

0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the

parameter plane.
graphic - Indicator specifying if the function should draw the

geometric curve:
0 - Don’t draw the curve.
1 - Draw the geometric curve. If this option

is used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input, only guide

points (points in parameter space) exist. These guide
points are used for guiding the marching. The rou-
tine adds intersection curve and curve in the parame-
ter plane to the SISLIntcurve object according to the
value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of an intersec-
tion curve may have been traced out. If no
curve is traced out the curve pointers in
the SISLIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

314 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLSurf *surf;
double viewdir[3];
int dim = 3;
double epsco;
double epsge;
double maxstep = 0.0;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int stat = 0;
. . .
s1319(surf, viewdir, dim, epsco, epsge, maxstep, intcurve, makecurv,

graphic, &stat);
. . .

}

7.6. MARCHING OF SILHOUETTES 315

7.6.2 March a silhouette curve of a surface, using perspective
projection.

NAME
s1514 - To march the perspective silhouette curve described by an inter-

section curve object, a surface and an eye point. The generated
geometric curves are represented as B-spline curves.

SYNOPSIS
void s1514(ps1, eyepoint, idim, aepsco, aepsge, amax, pintcr, icur, igraph,

jstat)
SISLSurf *ps1;
double eyepoint[]
int idim;
double aepsco;
double aepsge;
double amax;
SISLIntcurve *pintcr;
int icur;
int igraph;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to surface.
eyepoint - Eye point for perspective view
idim - Dimension of the space in which the eyepoint lies.

aepsco - Computational resolution (not used).
aepsge - Geometry resolution.
amax - Maximal allowed step length.

If amax ≤ aepsge amax is neglected.

icur - Indicator telling if a 3D curve is to be made.
= 0 : Don’t make 3D curve.
= 1 : Make 3D curve.
= 2 : Make 3D curve and curves in the param-

eter plane.

igraph - Indicator telling if the curve is to be output through
function calls:

= 0 : Don’t output curve through function call.

= 0 : Output as straight line segments through
s6move() and s6line().

316 CHAPTER 7. SURFACE INTERROGATION

7.6. MARCHING OF SILHOUETTES 317

Input/Output Arguments:
pintcr - The intersection curve. When coming in as input only

parameter values in the parameter plane exist. When
coming as output the 3D geometry and possibly the
curve in the parameter plane of the surface is added.

Output Arguments:
jstat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of intersection
curve may have been traced out. If no
curve is traced out the curve pointers in
the Intcurve object point to NULL.

> 0 : Warning.
= 0 : Ok.
< 0 : Error.
= −185 : No points produced on intersection curve.

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *ps1;
double eyepoint[3];
int idim = 3;
double aepsco;
double aepsge;
double amax;
SISLIntcurve *pintcr;
int icur;
int igraph;
int jstat = 0;
. . .
s1514(ps1, eyepoint, idim, aepsco, aepsge, amax, pintcr, icur, igraph,

&jstat);
. . .

}

318 CHAPTER 7. SURFACE INTERROGATION

7.6.3 March a circular silhouette curve of a surface.

NAME
s1515 - To march the circular silhouette curve described by an intersection

curve object, a surface, point Q and direction B i.e. solution of
f(u, v) = N(u, v) × (P (u, v) −Q) · B.
The generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1515(ps1, qpoint, bvec, idim, aepsco, aepsge, amax, pintcr, icur,

igraph, jstat)

SISLSurf *ps1;
double qpoint[];
double bvec[];
int idim;
double aepsco;
double aepsge;
double amax;
SISLIntcurve *pintcr;
int icur;
int igraph;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to surface.
qpoint - Point Q for circular silhouette.
bvec - Direction B for circular silhouette.
idim - Dimension of the space in which Q lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.
amax - Maximal allowed step length. If amax ≤ aepsge

amax is neglected.
icur - Indicator telling if a 3D curve is to be made.

= 0 : Don’t make 3D curve.
= 1 : Make 3D curve.
= 2 : Make 3D curve and curves in the param-

eter plane.

igraph - Indicator telling if the curve is to be output through
function calls:

= 0 : Don’t output curve through function call.

7.6. MARCHING OF SILHOUETTES 319

= 0 : Output as straight line segments through
s6move() and s6line().

320 CHAPTER 7. SURFACE INTERROGATION

Input/Output Arguments:
pintcr - The intersection curve. When coming in as input only

parameter values in the parameter plane exist. When
coming as output the 3-D geometry and possibly the
curve in the parameter plane of the surface is added.

Output Arguments:
jstat - Status messages

= 3 : Iteration stopped due to singular point or
degenerate surface. A part of intersection
curve may have been traced out. If no
curve is traced out the curve pointers in
the Intcurve object point to NULL.

> 0 : Warning.
= 0 : Ok.
< 0 : Error.
= −185 : No points produced on intersection curve.

NOTE
If the draw option is used the empty dummy functions s6move() and s6line()
are called. Thus if the draw option is used, make sure you have versions
of s6move() and s6line() interfaced to your graphic package. More about
s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

SISLSurf *ps1;
double qpoint[3];
double bvec[3];
int idim;
double aepsco;
double aepsge;
double amax;
SISLIntcurve *pintcr;
int icur;
int igraph;
int jstat = 0;
. . .

s1515(ps1, qpoint, bvec, idim, aepsco, aepsge, amax, pintcr, icur,
igraph, &jstat);

. . .

7.6. MARCHING OF SILHOUETTES 321

}

322 CHAPTER 7. SURFACE INTERROGATION

7.7 Check if a Surface is Closed or has Degenerate

Edges.

NAME
s1450 - To check if a surface is closed or has degenerate boundaries. The

edge numbers correspond to the following:

4 2

1

3

-(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

SYNOPSIS
void s1450(surf, epsge, close1, close2, degen1, degen2, degen3, degen4, stat)

SISLSurf *surf;
double epsge;
int *close1;
int *close2;
int *degen1;
int *degen2;
int *degen3;
int *degen4;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface that is to be checked.

epsge - Tolerance used during testing.

7.7. CHECK IF A SURFACE IS CLOSED OR HAS DEGENERATE EDGES.323

Output Arguments:
close1 - Closed indicator in the first parameter direction.

= 0 : Surface open in first direction
= 1 : Surface closed in first direction

close2 - Closed indicator in second direction
= 0 : Surface open in second direction

= 1 : Surface closed in second direction

degen1 - Degenerate indicator along standard edge 1
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

degen2 - Degenerate indicator along standard edge 2
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

degen3 - Degenerate indicator along standard edge 3
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

degen4 - Degenerate indicator along standard edge 4
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double epsge;
int close1;
int close2;
int degen1;
int degen2;
int degen3;
int degen4;
int stat;
. . .
s1450(surf, epsge, &close1, &close2, °en1, °en2, °en3,

°en4, &stat);
. . .

}

324 CHAPTER 7. SURFACE INTERROGATION

7.8 Pick the Parameter Ranges of a Surface

NAME
s1603 - To pick the parameter ranges of a surface.

SYNOPSIS
void s1603(surf, min1, min2, max1, max2, stat)

SISLSurf *surf;
double *min1;
double *min2;
double *max1;
double *max2;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface.

Output Arguments:
min1 - Start parameter in the first parameter direction.
min2 - Start parameter in the second parameter direction.
max1 - End parameter in the first parameter direction.
max2 - End parameter in the second parameter direction.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
double min1;
double min2;
double max1;
double max2;
int stat;
. . .
s1603(surf, &min1, &min2, &max1, &max2, &stat);
. . .

}

7.9. CLOSEST POINTS 325

7.9 Closest Points

7.9.1 Find the closest point between a surface and a point.

NAME
s1954 - Find the points on a surface lying closest to a given point.

SYNOPSIS
void s1954(surf, point, dim, epsco, epsge, numclopt, pointpar, numclocr,

clocurves, stat)
SISLSurf *surf;
double point[];
int dim;
double epsco;
double epsge;
int *numclopt;
double **pointpar;
int *numclocr;
SISLIntcurve ***clocurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface in the closest point problem.

point - The point in the closest point problem.
dim - Dimension of the space in which the point lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numclopt - Number of single closest points.
pointpar - Array containing the parameter values of the single

closest points in the parameter area of the surface.
The points lie in sequence. Closest curves are stored
in clocurves.

numclocr - Number of closest curves.
clocurves - Array containing the description of the closest curves.

The curves are only described by points in the param-
eter area. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

326 CHAPTER 7. SURFACE INTERROGATION

7.9. CLOSEST POINTS 327

EXAMPLE OF USE
{

SISLSurf *surf;
double point[3];
int dim = 3;
double epsco;
double epsge;
int numclopt;
double *pointpar;
int numclocr;
SISLIntcurve **clocurves;
int stat;
. . .
s1954(surf, point, dim, epsco, epsge, &numclopt, &pointpar, &num-

clocr, &clocurves, &stat);
. . .

}

328 CHAPTER 7. SURFACE INTERROGATION

7.9.2 Find the closest point between a surface and a point. Simple
version.

NAME
s1958 - Find the closest point between a surface and a point. The method

is fast and should work well in clear cut cases, but there is no
guarantee it will find the right solution. As long as it doesn’t
fail, it will find exactly one point. In other cases, use s1954() on
page 325.

SYNOPSIS
void s1958(psurf, epoint, idim, aepsco, aepsge, gpar, dist, jstat)

SISLSurf *psurf;
double epoint[];
int idim;
double aepsco;
double aepsge;
double gpar[];
double *dist;
int *jstat;

ARGUMENTS
Input Arguments:

psurf - Pointer to the surface in the closest point problem.
epoint - The point in the closest point problem.
idim - Dimension of the space in which epoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
gpar - 2D array containing the parameter values of the clos-

est point in the parameter space of the surface.
dist - The closest distance between point and the surface.
jstat - Status messages

> 2 : Warning.
= 2 : Solution at a corner.
= 1 : Solution at an edge.
= 0 : Solution in interior.
< 0 : Error.

7.9. CLOSEST POINTS 329

EXAMPLE OF USE
{

SISLSurf *psurf;
double epoint[3];
int idim = 3;
double aepsco;
double aepsge;
double gpar[2];
double dist = 0;
int jstat = 0;
. . .
s1958(psurf, epoint, idim, aepsco, aepsge, gpar, &dist, &jstat);
. . .

}

330 CHAPTER 7. SURFACE INTERROGATION

7.9.3 Local iteration to closest point bewteen point and surface.

NAME
s1775 - Newton iteration on the distance function between a surface and

a point, to find a closest point or an intersection point. If a bad
choice for the guess parameters is given in, the iteration may end
at a local, not global closest point.

SYNOPSIS
void s1775(surf, point, dim, epsge, start, end, guess, clpar, stat)

SISLSurf *surf;
double point[];
int dim;
double epsge;
double start[];
double end[];
double guess[];
double clpar[];
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the geometry.
epsge - Geometry resolution.
start - Surface parameters giving the start of the search area

(umin, vmin).
end - Surface parameters giving the end of the search area

(umax, vmax).
guess - Surface guess parameters for the closest point itera-

tion.

Output Arguments:
clpar - Resulting surface parameters from the iteration.
stat - Status messages

> 0 : A minimum distance found.
= 0 : Intersection found.
< 0 : Error.

EXAMPLE OF USE
{

7.9. CLOSEST POINTS 331

SISLSurf *surf;
double point[];
int dim;
double epsge;
double start[];
double end[];
double guess[];
double clpar[];
int *stat;
. . .
s1775(surf, point, dim, epsge, start, end, guess, clpar, stat);
. . .

}

332 CHAPTER 7. SURFACE INTERROGATION

7.10 Find the Absolute Extremals of a Surface.

NAME
s1921 - Find the absolute extremal points/curves of a surface along a given

direction.

SYNOPSIS
void s1921(ps1, edir, idim, aepsco, aepsge, jpt, gpar, jcrv, wcurve, jstat)

SISLSurf *ps1;
double edir[];
int idim;
double aepsco;
double aepsge;
int *jpt;
double **gpar;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface.
edir - The direction in which the extremal point(s) and/or

interval(s) are to be calculated. If idim = 1 a posi-
tive value indicates the maximum of the function and
a negative value the minimum. If the dimension is
greater that 1 the array contains the coordinates of
the direction vector.

idim - Dimension of the space in which the vector edir lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single extremal points.
gpar - Array containing the parameter values of the single

extremal points in the parameter area of the surface.
The points lie continuous. Extremal curves are stored
in wcurve.

jcrv - Number of extremal curves.
wcurve - Array containing descriptions of the extremal curves.

The curves are only described by points in the pa-
rameter area. The curve-pointers point to nothing.

7.10. FIND THE ABSOLUTE EXTREMALS OF A SURFACE. 333

334 CHAPTER 7. SURFACE INTERROGATION

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps1;
double edir[3];
int idim = 3;
double aepsco;
double aepsge;
int jpt = 0;
double *gpar = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1921(ps1, edir, idim, aepsco, aepsge, &jpt, &gpar, &jcrv, &wcurve,

&jstat);
. . .

}

7.11. BOUNDING BOX 335

7.11 Bounding Box

Both curves and surfaces have bounding boxes. These are boxes surrounding an
object not only parallel to the main axis, but also rotated 45 degrees around each
main axis. These bounding boxes are used by the intersection functions to decide
if an intersection is possible or not. They might also be used to find the position
of objects under other circumstances.

7.11.1 Bounding box object.

In the library a bounding box is stored in a struct SISLbox containing the following:

double *emax; Allocated array containing the minimum values of the
bounding box

double *emin; Allocated array containing the maximum values of
the bounding box

int imin; The index of the minimum coefficient ecoef[imin].
Only used in dimension one. ecoef is the control poly-
gon of the curve/surface.

int imax; The index of the maximum coefficient ecoef[imax].
Only used in dimension one. ecoef is the control poly-
gon of the curve/surface.

336 CHAPTER 7. SURFACE INTERROGATION

7.11.2 Create and initialize a curve/surface bounding box instance.

NAME
newbox - Create and initialize a curve/surface bounding box instance.

SYNOPSIS
SISLbox *newbox(idim)

int idim;

ARGUMENTS
Input Arguments:

idim - Dimension of geometry space.

Output Arguments:
newbox - Pointer to new SISLbox structure. If it is impossible

to allocate space for the structure, newbox will return
a NULL value.

EXAMPLE OF USE
{

int idim;
SISLbox *box;
. . .
box = newbox(idim);
. . .

}

7.11. BOUNDING BOX 337

7.11.3 Find the bounding box of a surface.

NAME
s1989 - Find the bounding box of a surface.

NOTE: The geometric bounding box is returned also in the ra-
tional case, that is the box in homogeneous coordinates is NOT
computed.

SYNOPSIS
void s1989(ps, emax, emin, jstat)

SISLSurf *ps;
double **emax;
double **emin;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to treat.

Output Arguments:
emin - Array of dimension idim containing the minimum val-

ues of the bounding box, i.e. bottom-left corner of the
box.

emax - Array of dimension idim containing the maximum val-
ues of the bounding box, i.e. upper-right corner of the
box.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps;
double *emax = NULL;
double *emin = NULL;
int jstat = 0;
. . .
s1989(ps, &emax, &emin, &jstat);
. . .

}

338 CHAPTER 7. SURFACE INTERROGATION

7.12 Normal Cone

Both curves and surfaces have normal cones. These are the cones that are convex
hull of all normalized tangents of a curve and all normalized normals of a surface.

These normal cones are used by the intersection functions to decide if only one
intersection is possible. They might also be used to find directions of objects for
other reasons.

7.12.1 Normal cone object.

In the library a direction cone is stored in a struct SISLdir containing the following:

int igtpi; To mark if the angle of direction cone is greater than
π.

= 0 : The direction of a surface and its bound-
ary curves or a curve is not greater than
π in any parameter direction.

= 1 : The direction of a surface or a curve is
greater than π in the first parameter di-
rection.

= 2 : The angle of direction cone of a surface
is greater than π in the second parameter
direction.

= 10 : The angle of direction cone of a bound-
ary curve in first parameter direction of a
surface is greater than π.

= 20 : The angle of direction cone of a boundary
curve in second parameter direction of a
surface is greater than π.

double *ecoef; Allocated array containing the coordinates of the cen-
tre of the cone.

double aang; The angle from the centre which describes the cone.

7.12. NORMAL CONE 339

7.12.2 Create and initialize a curve/surface direction instance.

NAME
newdir - Create and initialize a curve/surface direction instance.

SYNOPSIS
SISLdir *newdir(idim)

int idim;

ARGUMENTS
Input Arguments:

idim - Dimension of the space in which the object lies.

Output Arguments:
newdir - Pointer to new direction structure. If it is impossible

to allocate space for the structure, newdir will return
a NULL value.

EXAMPLE OF USE
{

int idim;
SISLdir *dir;
. . .
dir = newdir(idim);
. . .

}

340 CHAPTER 7. SURFACE INTERROGATION

7.12.3 Find the direction cone of a surface.

NAME
s1987 - Find the direction cone of a surface.

SYNOPSIS
void s1987(ps, aepsge, jgtpi, gaxis, cang, jstat)

SISLSurf *ps;
double aepsge;
int *jgtpi;
double **gaxis;
double *cang;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to treat.
aepsge - Geometry tolerance.

Output Arguments:
jgtpi - To mark if the angle of the direction cone is greater

than π.
= 0 : The direction cone of the surface is not

greater than π in any parameter direction.

= 1 : The direction cone of the surface is greater
than π in the first parameter direction.

= 2 : The direction cone of the surface is greater
than π in the second parameter direction.

= 10 : The direction cone of a boundary curve
of the surface is greater than π in the first
parameter direction.

= 20 : The direction cone of a boundary curve of
the surface is greater than π in the second
parameter direction.

gaxis - Allocated array containing the coordinates of the cen-
tre of the cone. It is only computed if jgtpi = 0.

cang - The angle from the centre to the boundary of the
cone. It is only computed if jgtpi = 0.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.

7.12. NORMAL CONE 341

< 0 : Error.

342 CHAPTER 7. SURFACE INTERROGATION

EXAMPLE OF USE
{

SISLSurf *ps;
double aepsge;
int jgtpi = 0;
double *gaxis = NULL;
double cang = 0.0;
int jstat = 0;
. . .
s1987(ps, aepsge, &jgtpi, &gaxis, &cang, &jstat);
. . .

}

Chapter 8

Surface Analysis

This chapter describes the Surface Analysis part.

8.1 Curvature Evaluation

8.1.1 Gaussian curvature of a spline surface.

NAME
s2500 - To compute the Gaussian curvature K(u,v) of a spline surface at

given values (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1]
<= parvalue[0] < et1[leftknot1+1] and et2[leftknot2] <= par-
value[1] < et2[leftknot2+1]. See also s2501().

SYNOPSIS
void s2500(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, gaussian,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *gaussian;
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

343

344 CHAPTER 8. SURFACE ANALYSIS

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
gaussian - Gaussian of the surface at (u,v) =

(parvalue[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is,

the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.

8.1. CURVATURE EVALUATION 345

< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *gaussian;
int *jstat;
. . .
s2500(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, gaussian,

jstat);
. . .

}

346 CHAPTER 8. SURFACE ANALYSIS

8.1.2 Mean curvature of a spline surface.

NAME
s2502 - To compute the mean curvature H(u,v) of a spline surface at given

values (u,v) = (parvalue[0],parvalue[1]), where etl[leftknot1] <=
parvalue[0] < etl[leftknot1+1] and et2[leftknot2] <= parvalue[1]
< et2[leftknot2+1].

SYNOPSIS
void s2502(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mean-

curvature, jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *meancurvature;
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

8.1. CURVATURE EVALUATION 347

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
meancurvature- Mean curvature of the surface at (u,v) = (par-

value[0],parvalue[1]).
jstat - Status messages

= 2 : Surface is degenerate at the point, that is,
the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *meancurvature;
int *jstat;
. . .
s2502(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mean-

curvature, jstat);
. . .

}

348 CHAPTER 8. SURFACE ANALYSIS

8.1.3 Absolute curvature of a spline surface.

NAME
s2504 - To compute the absolute curvature A(u,v) of a spline surface at

given values (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1]
<= parvalue[0] < et1[leftknot1+1] and et2[leftknot2] <= par-
value[1] < et2[leftknot2+1].

SYNOPSIS
void s2504(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, absCur-

vature, jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *absCurvature;
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

8.1. CURVATURE EVALUATION 349

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
absCurvature - Absolute curvature of the surface at (u,v) = (par-

value[0],parvalue[1]).
jstat - Status messages

= 2 : Surface is degenerate at the point, that is,
the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *absCurvature;
int *jstat;
. . .
s2504(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, absCur-

vature, jstat);
. . .

}

350 CHAPTER 8. SURFACE ANALYSIS

8.1.4 Total curvature of a spline surface.

NAME
s2506 - To compute the total curvature T(u,v) of a surface at given val-

ues (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1] <= par-
value[0] < et1[leftknot1+1] and et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1].

SYNOPSIS
void s2506(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, totalCur-

vature, jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *totalCurvature;
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

8.1. CURVATURE EVALUATION 351

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
totalCurvature- Total curvature of the surface at (u,v) = (par-

value[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is,

the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *totalCurvature;
int *jstat;
. . .
s2506(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, totalCur-

vature, jstat);
. . .

}

352 CHAPTER 8. SURFACE ANALYSIS

8.1.5 Second order Mehlum curvature of a spline surface.

NAME
s2508 - To compute the second order Mehlum curvature M(u,v) of

a surface at given values (u,v) = (parvalue[0],parvalue[1]),
where et1[leftknot1] <= parvalue[0] < et1[leftknot1+1] and
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. See also s2509().

SYNOPSIS
void s2508(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *mehlum;
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

8.1. CURVATURE EVALUATION 353

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
mehlum - The second order Mehlum curvature of the surface at

(u,v) = (parvalue[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is,

the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *mehlum;
int *jstat;
. . .
s2508(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum,

jstat);
. . .

}

354 CHAPTER 8. SURFACE ANALYSIS

8.1.6 Third order Mehlum curvature of a spline surface.

NAME
s2510 - To compute the third order Mehlum curvature M(u,v) of a

surface at given values (u,v) = (parvalue[0],parvalue[1]), where
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1], et2[leftknot2]
<= parvalue[1] < et2[leftknot2+1].

SYNOPSIS
void s2510(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *mehlum;
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

8.1. CURVATURE EVALUATION 355

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
mehlum - Third order Mehlum curvature of the surface at (u,v)

= (parvalue[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is,

the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *mehlum;
int *jstat;
. . .
s2510(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum,

jstat);
. . .

}

356 CHAPTER 8. SURFACE ANALYSIS

8.1.7 Gaussian curvature of a B-spline or NURBS surface as a
NURBS surface.

NAME
s2532 - To interpolate or approximate the Gaussian curvature of a B-spline

or NURBS surface by a NURBS surface. The desired continuity
of the Gaussian curvature surface is input and this may lead to a
patchwork of output surfaces. Interpolation results in a high order
surface. If the original surface is a B-spline surface of order k, the
result is of order 8k − 11, in the NURBS case, order 32k − 35.
To avoid instability beacuse of this, a maximum order is applied.
This may lead to an approximation rather than an interpolation.

SYNOPSIS
void s2532(surf, u continuity, v continuity, u surfnumb, v surfnumb,

gauss surf, stat)
SISLSurf *surf;
int u continuity;
int v continuity;
int *u surfnumb;
int *v surfnumb;
SISLSurf ***gauss surf;
int *stat;

ARGUMENTS
Input Arguments:

surf - The original surface.

u continuity - Desired continuity of the Gaussian curvature surfaces
in the u direction: 0 implies positional continuity, 1
implies tangential continuity, and so on. SISL only
accepts surfaces of continuity 0 or higher. If the sur-
face is to be intersected with another, the continuity
must be 1 or higher to find all the intersection curves.

v continuity - Desired continuity of the Gaussian curvature surfaces
in the v direction: 0 implies positional continuity, 1
implies tangential continuity, and so on. SISL only
accepts surfaces of continuity 0 or higher. If the sur-
face is to be intersected with another, the continuity
must be 1 or higher to find all the intersection curves.

Output Arguments:

8.1. CURVATURE EVALUATION 357

u surfnumb - Number of Gaussian curvature surface patches in the
u direction.

v surfnumb - Number of Gaussian curvature surface patches in the
v direction.

gauss surf - The Gaussian curvature interpolation surfaces. This
will be a pointer to an array of length u surfnum *
v surfnumb of SISLSurf pointers, where the indexing
runs fastest in the u direction.

stat - Status messages
> 0 : Warning.
= 2 : The surface is degenerate.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int u continuity;
int v continuity;
int *u surfnumb;
int *v surfnumb;
SISLSurf ***gauss surf;
int *stat;
. . .
s2532(surf, u continuity, v continuity, u surfnumb, v surfnumb,

gauss surf, stat);
. . .

}

358 CHAPTER 8. SURFACE ANALYSIS

8.1.8 Mehlum curvature of a B-spline or NURBS surface as a
NURBS surface.

NAME
s2536 - To interpolate or approximate the Mehlum curvature of a B-spline

or NURBS surface by a NURBS surface. The desired continuity
of the Mehlum curvature surface is input and this may lead to a
patchwork of output surfaces. Interpolation results in a high order
surface. If the original surface is a B-spline surface of order k, the
result is of order 12k − 17, in the NURBS case, order 48k − 53.
To avoid instability beacuse of this, a maximum order is applied.
This may lead to an approximation rather than an interpolation.

SYNOPSIS
void s2536(surf, u continuity, v continuity, u surfnumb, v surfnumb,

mehlum surf, stat)
SISLSurf *surf;
int u continuity;
int v continuity;
int *u surfnumb;
int *v surfnumb;
SISLSurf ***mehlum surf;
int *stat;

ARGUMENTS
Input Arguments:

surf - The original surface.

u continuity - Desired continuity of the Mehlum curvature surfaces
in the u direction: 0 implies positional continuity, 1
implies tangential continuity, and so on. SISL only
accepts surfaces of continuity 0 or higher. If the sur-
face is to be intersected with another, the continuity
must be 1 or higher to find all the intersection curves.

v continuity - Desired continuity of the Mehlum curvature surfaces
in the v direction: 0 implies positional continuity, 1
implies tangential continuity, and so on. SISL only
accepts surfaces of continuity 0 or higher. If the sur-
face is to be intersected with another, the continuity
must be 1 or higher to find all the intersection curves.

Output Arguments:

8.1. CURVATURE EVALUATION 359

u surfnumb - Number of Mehlum curvature surface patches in the
u direction.

v surfnumb - Number of Mehlum curvature surface patches in the
v direction.

mehlum surf - The Mehlum curvature interpolation surfaces. This
will be a pointer to an array of length u surfnum *
v surfnumb of SISLSurf pointers, where the indexing
runs fastest in the u direction.

stat - Status messages
> 0 : Warning.
= 2 : The surface is degenerate.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int u continuity;
int v continuity;
int *u surfnumb;
int *v surfnumb;
SISLSurf ***mehlum surf;
int *stat;
. . .
s2536(surf, u continuity, v continuity, u surfnumb, v surfnumb,

mehlum surf, stat);
. . .

}

360 CHAPTER 8. SURFACE ANALYSIS

8.1.9 Curvature on a uniform grid of a NURBS surface.

NAME
s2540 - To compute a set of curvature values on a uniform grid in a selected

subset of the parameter domain of a NURBS surface.

SYNOPSIS
void s2540(surf, curvature type, export par val, pick subpart, boundary[],

n u, n v, garr, stat)
SISLSurf *surf;
int curvature type;
int export par val;
int pick subpart;
double boundary[];
int n u;
int n v;
double **garr;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface to evaluate.

curvature - The type of curvature:

0 : Gaussian curvature.
1 : Mean curvature.
2 : Absolute curvature.
3 : Total curvature.
4 : Second order Mehlum curvature.
5 : Third order Mehlum curvature.

export - Flag indicating whether the parameter values of the
grid points are to be exported:

0 : False, do not export parameter values.
1 : True, do export parameter values.

pick - Flag indicating whether the grid is to be calculated
on a subpart of the surface:

0 : False, calculate grid on the complete surface.
1 : True, calculate grid on a part of the surface.

boundary - A rectangular subset of the parameter domain.

0 : Minmum value in the first parameter.
1 : Minmum value in the second parameter.
2 : Maximum value in the first parameter.

8.1. CURVATURE EVALUATION 361

3 : Maximum value in the second parameter.
ONLY USED WHEN pick subpart = 1. If
pick subpart = 0 the parameter area of surf is re-
turned here.

n u - Number of segments in the first parameter.

n v - Number of segments in the second parameter.

Output Arguments:
garr - Array containing the computed values on the grid.

The allocation is done internally and the dimension
is 3*(n u+1)*(n v+1) if export par val is true, and
(n u+1)*(n v+1) if export par val is false. Each grid-
point consists of a triple (ui, vj , curvature(ui, vj)) or
only curvature(u,vj). The sequence runs first in the
first parameter.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int curvature type;
int export par val;
int pick subpart;
double boundary[];
int n u;
int n v;
double **garr;
int *stat;
. . .
s2540(surf, curvature type, export par val, pick subpart, boundary[],

n u, n v, garr, stat);
. . .

}

362 CHAPTER 8. SURFACE ANALYSIS

8.1.10 Principal curvatures of a spline surface.

NAME
s2542 - To compute principal curvatures (k1,k2) with corresponding

principal directions (d1,d2) of a spline surface at given values
(u,v) = (parvalue[0],parvalue[1]), where etl[leftknot1] <= par-
value[0] < etl[leftknot1+1] and et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1].

SYNOPSIS
void s2542(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, k1, k2,

d1, d2, jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *k1;
double *k2;
double d1[];
double d2[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the principal curvature in the
first parameter is to be calculated from the left or
from the right:

< 0 : calculate curvature from the left hand side.
>= 0 : calculate curvature from the right hand side.

iside2 - Flag indicating whether the principal curvature in the
second parameter is to be calculated from the left or
from the right:

8.1. CURVATURE EVALUATION 363

< 0 : calculate curvature from the left hand side.
>= 0 : calculate curvature from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
k1 - Max. principal curvature.
k2 - Min. principal curvature.
d1 - Max. direction of the principal curvature k1, given in

local coordinates (with regard to Xu,Xv). Dim. = 2.
d2 - Min. direction of the principal curvature k2, given in

local coordinates (with regard to Xu,Xv). Dim. = 2.
jstat - Status messages

= 2 : Surface is degenerate at the point, that is,
the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;

364 CHAPTER 8. SURFACE ANALYSIS

int *leftknot2;
double *k1;
double *k2;
double d1[];
double d2[];
int *jstat;
. . .
s2542(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, k1, k2,

d1, d2, jstat);
. . .

}

8.1. CURVATURE EVALUATION 365

8.1.11 Normal curvature of a spline surface.

NAME
s2544 - To compute the Normal curvature of a splne surface at

given values (u,v) = (parvalue[0],parvalue[1]) in the direc-
tion (parvalue[2],parvalue[3]) where et1[leftknot1] <= par-
value[0] < et1[leftknot1+1] and et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1].

SYNOPSIS
void s2544(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, norcurv,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double norcurv[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only imple-
mented for ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second
parameter direction are to be calculated from the left
or from the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate plus the direc-
tion. Dimension of parvalue is 4.

366 CHAPTER 8. SURFACE ANALYSIS

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that
is: et1[leftknot1] <= parvalue[0] < et1[leftknot1+1].
leftknot1 should be set equal to zero at the first call
to the routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that
is: et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].
leftknot2 should be set equal to zero at the first call
to the routine.

Output Arguments:
gaussian - Normal curvature and derivatives of normal curvature

of the surface at (u,v) = (parvalue[0],parvalue[1]) in
the direction (parvalue[2],parvalue[3]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is,

the surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double norcurv[];
int *jstat;
. . .
s2544(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, norcurv,

jstat);
. . .

8.1. CURVATURE EVALUATION 367

}

368 CHAPTER 8. SURFACE ANALYSIS

8.1.12 Focal values on a uniform grid of a NURBS surface.

NAME
s2545 - To compute a set of focal values on a uniform grid in a selected

subset of the parameter domain of a NURBS surface. A focal
value is a surface position offset by the surface curvature.

SYNOPSIS
void s2545(surf, curvature type, export par val, pick subpart, boundary[],

n u, n v, scale, garr, stat)
SISLSurf *surf;
int curvature type;
int export par val;
int pick subpart;
double boundary[];
int n u;
int n v;
double scale;
double **garr;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface to evaluate.

curvature - The type of curvature:

0 : Gaussian curvature.
1 : Mean curvature.
2 : Absolute curvature.
3 : Total curvature.
4 : Second order Mehlum curvature.
5 : Third order Mehlum curvature.

export - Flag indicating whether the parameter values of the
grid points are to be exported:

0 : False, do not export parameter values.
1 : True, do export parameter values.

pick - Flag indicating whether the grid is to be calculated
on a subpart of the surface:

0 : False, calculate grid on the complete surface.
1 : True, calculate grid on a part of the surface.

boundary - A rectangular subset of the parameter domain.

0 : Minmum value in the first parameter.

8.1. CURVATURE EVALUATION 369

1 : Minmum value in the second parameter.
2 : Maximum value in the first parameter.
3 : Maximum value in the second parameter.
ONLY USED WHEN pick subpart = 1. If
pick subpart = 0 the parameter area of surf is re-
turned here.

n u - Number of segments in the first parameter.

n v - Number of segments in the second parameter.

scale - Scaling factor.

Output Arguments:
garr - Array containing the computed values on the grid.

The allocation is done internally and the dimen-
sion is (dim+2)*(n u+1)*(n v+1) if export par val
is true, and dim*(n u+1)*(n v+1) if export par val
is false. Each gridpoint consists of dim + 2
values (ui, vj , x(ui, vj), ...) or only the focal points
(x(ui, vj),). The sequence runs first in the first
parameter.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int curvature type;
int export par val;
int pick subpart;
double boundary[];
int n u;
int n v;
double scale;
double **garr;
int *stat;
. . .
s2545(surf, curvature type, export par val, pick subpart, boundary[],

n u, n v, scale, garr, stat);
. . .

}

370 CHAPTER 8. SURFACE ANALYSIS

Chapter 9

Surface Utilities

This chapter describes the Surface Utilities. These are common to both the Surface
Definition and Surface Interrogation modules.

9.1 Surface Object

In the library both B-spline and NURBS surfaces are stored in a struct SISLSurf
containing the following:

int ik1; Order of surface in first parameter direction.
int ik2; Order of surface in second parameter direction.
int in1; Number of coefficients in first parameter direction.
int in2; Number of coefficients in second parameter direction.
double *et1; Pointer to knot vector in first parameter direction.
double *et2; Pointer to knot vector in second parameter direction.
double *ecoef; Pointer to array of non-rational coefficients of the sur-

face, size in1× in2× idim.

double *rcoef; Pointer to the array of rational vertices and weights,
size in1× in2× (idim+ 1).

int ikind; Type of surface
= 1 : Polynomial B-spline tensor-product surface.
= 2 : Rational B-spline (nurbs) tensor-product surface.
= 3 : Polynomial Bezier tensor-product surface.
= 4 : Rational Bezier tensor-product surface.

int idim; Dimension of the space in which the surface lies.

371

372 CHAPTER 9. SURFACE UTILITIES

int icopy; Indicates whether the arrays of the surface are allo-
cated and copied or referenced when the surface was
created.
= 0 : Pointer set to input arrays. The arrays

are not deleted by freeSurf.
= 1 : Array allocated and copied. The arrays

are deleted by freeSurf.
= 2 : Pointer set to input arrays, but the arrays

are to be treated as allocated and copied.
The arrays are deleted by freeSurf.

SISLdir *pdir; Pointer to a SISLdir object used for storing surface
direction.

SISLbox *pbox; Pointer to a SISLbox object used for storing the sur-
rounded boxes.

int cuopen 1; Open/closed/periodic flag for the first parameter di-
rection.
= −1 : Closed curve with periodic (cyclic) pa-

rameterization and overlapping end ver-
tices.

= 0 : Closed curve with k-tuple end knots and
coinciding start/end vertices.

= 1 : Open curve (default).

int cuopen 2; Open/closed/periodic flag for the second parameter
direction.
= −1 : Closed curve with periodic (cyclic) pa-

rameterization and overlapping end ver-
tices.

= 0 : Closed curve with k-tuple end knots and
coinciding start/end vertices.

= 1 : Open curve (default).

When using a surface, do not declare a Surface but a pointer to a Surface, and
initialize it to point to NULL. Then you may use the dynamic allocation func-
tions newSurface and freeSurface, which are described below, to create and delete
surfaces.

There are two ways to pass coefficient and knot arrays to newSurf. By setting
icopy = 1, newSurf allocates new arrays and copies the given ones. But by setting
icopy = 0 or 2, newSurf simply points to the given arrays. Therefore it is IMPOR-
TANT that the given arrays have been allocated in free memory beforehand.

9.1. SURFACE OBJECT 373

9.1.1 Create a new surface object.

NAME
newSurf - Create and initialize a surface object instance.

SYNOPSIS
SISLSurf *newSurf(number1, number2, order1, order2, knot1, knot2, coef,

kind, dim, copy)
int number1;
int number2;
int order1;
int order2;
double knot1[];
double knot2[];
double coef[];
int kind;
int dim;
int copy;

ARGUMENTS
Input Arguments:

number1 - Number of vertices in the first parameter direction of
new surface.

number2 - Number of vertices in the second parameter direction
of new surface.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.
knot1 - Knot vector of surface in first parameter direction.
knot2 - Knot vector of surface in second parameter direction.

coef - Vertices of surface. These may either be the dim di-
mensional non-rational vertices or the (dim+1) di-
mensional rational vertices.

kind - Type of surface.
= 1 : Polynomial B-spline surface.
= 2 : Rational B-spline (nurbs) surface.
= 3 : Polynomial Bezier surface.
= 4 : Rational Bezier surface.

dim - Dimension of the space in which the surface lies.
copy - Flag

= 0 : Set pointer to input arrays.
= 1 : Copy input arrays.
= 2 : Set pointer and remember to free arrays.

374 CHAPTER 9. SURFACE UTILITIES

Output Arguments:
newSurf - Pointer to new surface. If it is impossible to allocate

space for the surface, newSurface returns NULL.

9.1. SURFACE OBJECT 375

EXAMPLE OF USE
{

SISLSurf *surf = NULL;
int number1 = 5;
int number2 = 4;
int order1 = 4;
int order2 = 3;
double knot1[9];
double knot2[7];
double coef[60];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
surf = newSurf(number1, number2, order1, order2, knot1, knot2,

coef, kind, dim, copy);
. . .

}

376 CHAPTER 9. SURFACE UTILITIES

9.1.2 Make a copy of a surface object.

NAME
copySurface - Make a copy of a SISLSurface object.

SYNOPSIS
SISLSurf *copySurface(psurf)

SISLSurf *psurf;

ARGUMENTS
Input Arguments:

psurf - Surface to be copied.

Output Arguments:
copySurface - The new surface.

EXAMPLE OF USE
{

SISLSurf *surfcopy = NULL;
SISLSurf *surf = NULL;
int number1 = 5;
int number2 = 4;
int order1 = 4;
int order2 = 3;
double knot1[9];
double knot2[7];
double coef[60];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
surf = newSurf(number1, number2, order1, order2, knot1, knot2,

coef, kind, dim, copy);
. . .
surfcopy = copySurface(surf);
. . .

}

9.1. SURFACE OBJECT 377

9.1.3 Delete a surface object.

NAME
freeSurf - Free the space occupied by the surface. Before using freeSurf,

make sure that the surface object exists.
SYNOPSIS

void freeSurf(surf)

SISLSurf *surf;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to delete.

EXAMPLE OF USE
{

SISLSurf *surf = NULL;
int number1 = 5;
int number2 = 4;
int order1 = 4;
int order2 = 3;
double knot1[9];
double knot2[7];
double coef[60];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
surf=newSurf(number1, number2, order1, order2, knot1, knot2,

coef, kind, dim, copy);
. . .
freeSurf(surf);
. . .

}

378 CHAPTER 9. SURFACE UTILITIES

9.2 Evaluation

9.2.1 Compute the position, the derivatives and the normal of a
surface at a given parameter value pair.

NAME
s1421 - Evaluate the surface at a given parameter value pair. Compute

der derivatives and the normal if der ≥ 1. See also s1424() on
page 381.

SYNOPSIS
void s1421(surf, der, parvalue, leftknot1, leftknot2, derive, normal, stat)

SISLSurf *surf;
int der;
double parvalue[];
int *leftknot1;
int *leftknot2;
double derive[];
double normal[];
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.
der - Number (order) of derivatives to evaluate.

< 0 : No derivatives evaluated.
= 0 : Position evaluated.
> 0 : Position and derivatives evaluated.

parvalue - Parameter value at which to evaluate. Dimension of
parvalue is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in first pa-

rameter direction where parvalue[0] is found. The
relation

etl[leftknot1] ≤ parvalue[0] < etl[leftknot1 + 1],

where etl is the knot vector, should hold. leftknot1
should be set equal to zero at the first call to the
routine. Do not change leftknot during a section of
calls to s1421().

9.2. EVALUATION 379

leftknot2 - Corresponding to leftknot1 in the second parameter
direction.

380 CHAPTER 9. SURFACE UTILITIES

Output Arguments:
derive - Array where the derivatives of the surface in parvalue

are placed. The sequence is position, first derivative
in first parameter direction, first derivative in second
parameter direction, (2,0) derivative, (1,1) derivative,
(0,2) derivative, etc. The expresion

dim∗(1+2+. . .+(der+1)) = dim∗(der+1)(der+2)/2

gives the dimension of the derive array.

normal - Normal of surface. Is evaluated if der ≥ 1. Dimension
is dim. The normal is not normalised.

stat - Status messages
= 2 : Surface is degenerate at the point, normal

has zero length.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int der = 2;
double parvalue[2];
int leftknot1 = 0;
int leftknot2 = 0;
double derive[18];
double normal[3];
int stat;
. . .
s1421(surf, der, parvalue, &leftknot1, &leftknot2, derive, normal,

&stat);
. . .

}

9.2. EVALUATION 381

9.2.2 Compute the position and derivatives of a surface at a given
parameter value pair.

NAME
s1424 - Evaluate the surface the parameter value (parvalue[0], par-

value[1]). Compute the der1 × der2 first derivatives. The deriva-
tives that will be computed are Di,j, i = 0, 1, . . . , der1, j =
0, 1, ..., der2.

SYNOPSIS
void s1424(surf, der1, der2, parvalue, leftknot1, leftknot2, derive, stat)

SISLSurf *surf;
int der1;
int der2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double derive[];
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.
der1 - Number (order) of derivatives to be evaluated in first

parameter direction, where 0 ≤ der1.

der2 - Number (order) of derivatives to be evaluated in sec-
ond parameter direction, where 0 ≤ der2.

parvalue - Parameter-value at which to evaluate. The dimension
of parvalue is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in first pa-

rameter direction where parvalue[0] is found. The
relation

etl[leftknot1] ≤ parvalue[0] < etl[leftknot1 + 1],

where etl is the knot vector, should hold. leftknot1
should be set equal to zero at the first call to the
routine. Do not change the value of leftknot1 between
calls to the routine.

382 CHAPTER 9. SURFACE UTILITIES

leftknot2 - Corresponding to leftknot1 in the second parameter
direction.

9.2. EVALUATION 383

Output Arguments:
derive - Array of size d(der1 + 1)(der2 + 1) where the posi-

tion and the derivative vectors of the surface in (par-
value[0], parvalue[1]) is placed. d = surf → dim is
the number of elements in each vector and is equal
to the geometrical dimension. The vectors are stored
in the following order: First the d components of the
position vector, then the d components of the D1,0

vector, and so on up to the d components of the
Dder1,0 vector, then the d components of the D0,1

vector etc. If derive is considered to be a three di-
mensional array, then its declaration in C would be
derive[der2 + 1][der1 + 1][d].

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf;
int der1 = 2;
int der2 = 1;
double parvalue[2];
int leftknot1 = 0;
int leftknot2 = 0;
double derive[18];
int stat;
. . .
s1424(surf, der1, der2, parvalue, &leftknot1, &leftknot2, derive,

&stat);
. . .

}

384 CHAPTER 9. SURFACE UTILITIES

9.2.3 Compute the position and the left- or right-hand derivatives
of a surface at a given parameter value pair.

NAME
s1422 - Evaluate and compute the left- or right-hand derivatives of a sur-

face at a given parameter position.

SYNOPSIS
void s1422(ps1, ider, iside1, iside2, epar, ilfs, ilft, eder, enorm, jstat)

SISLSurf *ps1;
int ider;
int iside1;
int iside2;
double epar[];
int *ilfs;
int *ilft;
double eder[];
double enorm[];
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface to evaluate.
ider - Number of derivatives to calculate.

< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated.

etc.
iside1 - Indicator telling if the derivatives in the first param-

eter direction is to be calculated from the left or from
the right:
< 0 : Calculate derivative from the left hand

side.
≥ 0 : Calculate derivative from the right hand

side.
iside2 - Indicator telling if the derivatives in the second pa-

rameter direction is to be calculated from the left or
from the right:
< 0 : Calculate derivative from the left hand

side.
≥ 0 : Calculate derivative from the right hand

side.

9.2. EVALUATION 385

epar - Parameter value at which to calculate. Dimension of
epar is 2.

386 CHAPTER 9. SURFACE UTILITIES

Input/Output Arguments:
ilfs - Pointer to the interval in the knotvector in first pa-

rameter direction where epar[0] is found. The relation

et1[ilfs] ≤ epar[0] < et1[ilfs+ 1],

where et1 is the knotvektor, should hold. ilfs is set
equal to zero at the first call to the routine.

ilft - Corresponding to ilfs in the second parameter direc-
tion.

Output Arguments:
eder - Array where the derivative of the curve in apar is

placed. The sequence is position, first derivative in
first parameter direction, first derivative in second
parameter direction, (2,0) derivative, (1,1) derivative,
(0,2) derivative, etc. The expression

idim ∗ (1 + 2 + ...+ (ider + 1))

gives the dimension of the eder array.

enorm - Normal of surface. Is calculated if ider ≥ 1. Dimen-
sion is idim. The normal is not normalized.

jstat - Status messages
= 2 : Surface is degenerate at the point, normal

has zero length.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the
angular tolerance.

= 0 : Ok.
< 0 : Error.

9.2. EVALUATION 387

EXAMPLE OF USE
{

SISLSurf *ps1;
int ider = 1;
int iside1;
int iside2;
double epar[2];
int ilfs = 0;
int ilft = 0;
double eder[9];
double enorm[3];
int jstat = 0;
. . .
s1422(ps1, ider, iside1, iside2, epar, &ilfs, &ilft, eder, enorm, &jstat);
. . .

}

388 CHAPTER 9. SURFACE UTILITIES

9.2.4 Compute the position and the derivatives of a surface at a
given parameter value pair.

NAME
s1425 - To compute the value and ider1× ider2 first derivatives of a ten-

sor product surface at the point with parameter value (epar[0],
epar[1]). The derivatives that will be computed are D(i, j),
i = 0, 1, . . . , ider1, j = 0, 1, . . . , ider2. The calculations are from
the right hand or left hand side.

SYNOPSIS
void s1425(ps1, ider1, ider2, iside1, iside2, epar, ileft1, ileft2, eder, jstat)

SISLSurf *ps1;
int ider1;
int ider2;
int iside1;
int iside2;
double epar[];
int *ileft1;
int *ileft2;
double eder[];
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface for which position and deriva-
tives are to be computed.

ider1 - The number of derivatives to be computed with re-
spect to the first parameter direction.

< 0 : Error, no derivative calculated.
= 0 : No derivatives with respect to the

first parameter direction will be com-
puted. (Only derivatives of the type
D(0, 0), D(0, 1), . . . , D(0, ider2)).

= 1 : Derivatives up to first order with respect
to the first parameter direction will be
computed.

etc.

9.2. EVALUATION 389

ider2 - The number of derivatives to be computed with re-
spect to the second parameter direction.

< 0 : Error, no derivative calculated.
= 0 : No derivatives with respect to the sec-

ond parameter direction will be com-
puted. (Only derivatives of the type
D(0, 0), D(1, 0), . . . , D(ider1, 0)).

= 1 : Derivatives up to first order with respect
to the second parameter direction will be
computed.

etc.
iside1 - Indicator telling if the derivatives in the first param-

eter direction is to be calculated from the left or from
the right:
< 0 : Calculate derivative from the left hand

side.
≥ 0 : Calculate derivative from the right hand

side.
iside2 - Indicator telling if the derivatives in the second pa-

rameter direction is to be calculated from the left or
from the right:
< 0 : Calculate derivative from the left hand

side.
≥ 0 : Calculate derivative from the right hand

side.
epar - Array of dimension 2 containing the parameter values

of the point at which the position and derivatives are
to be computed.

Input/Output Arguments:

390 CHAPTER 9. SURFACE UTILITIES

ileft1 - Pointer to the interval in the knot vector in the first
parameter direction where epar[0] is located. If et1 is
the knot vector in the first parameter direction, the
relation

et1[ileft] ≤ epar[0] < et1[ileft+ 1],

should hold. (If epar[0] = et1[in1] then ileft should
be in1− 1. Here in1 is the number of B-spline coeffi-
cients associated with et1.) If ileft1 does not have the
right value upon entry to the routine, its value will be
changed to the value satisfying the above condition.

ileft2 - Pointer to the interval in the knot vector in the second
parameter direction where epar[1] is located. If et2
is the knot vector in the second parameter direction,
the relation

et2[ileft] ≤ epar[1] < et2[ileft+ 1],

should hold. (If epar[1] = et2[in2] then ileft should
be in2− 1. Here in2 is the number of B-spline coeffi-
cients associated with et2.) If ileft2 does not have the
right value upon entry to the routine, its value will be
changed to the value satisfying the above condition.

Output Arguments:
eder - Array of dimension (ider2 + 1) ∗ (ider1 + 1) ∗ idim

containing the position and the derivative vectors
of the surface at the point with parameter value
(epar[0], epar[1]). (idim is the number of compo-
nents of each B-spline coefficient, i.e. the dimen-
sion of the Euclidean space in which the surface lies.)
These vectors are stored in the following order: First
the idim components of the position vector, then the
idim components of the D(1, 0) vector, and so on
up to the idim components of the D(ider1, 0) vec-
tor, then the idim components of the D(1, 1) vector
etc. Equivalently, if eder is considered to be a three
dimensional array, then its declaration in C would be
eder[ider2 + 1, ider1 + 1, idim].

jstat - Status messages
> 0 : Warning.

9.2. EVALUATION 391

= 0 : Ok.
< 0 : Error.

392 CHAPTER 9. SURFACE UTILITIES

EXAMPLE OF USE
{

SISLSurf *ps1;
int ider1 = 1;
int ider2 = 1;
int iside1;
int iside2;
double epar[2];
int ileft1 = 0;
int ileft2 = 0;
double eder[12];
int jstat = 0;
. . .
s1425(ps1, ider1, ider2, iside1, iside2, epar, &ileft1, &ileft2, eder, &js-

tat);
. . .

}

9.2. EVALUATION 393

9.2.5 Evaluate the surface pointed at by ps1 over an m1 * m2 grid
of points (x[i],y[j]). Compute ider derivatives and normals
if suitable.

NAME
s1506 - Evaluate the surface pointed at by ps1 over an m1 * m2 grid of

points (x[i],y[j]). Compute ider derivatives and normals if suitable.

SYNOPSIS
void s1506(ps1, ider, m1, x, m2, y, eder, norm, jstat)

SISLSurf *ps1;
int ider;
int m1;
double *x;
int m2;
double *y;
double eder[];
double norm[];
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface to evaluate.
ider - Number of derivatives to calculate.

< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated.
etc.

m1 - Number of grid points in first direction.
x - Array of x values of the grid.
m2 - Number of grid points in first direction.
y - Array of y values of the grid.

Output Arguments:
eder - Array where the derivatives of the surface are placed,

dimension idim * ((ider+1)(ider+2) / 2) * m1 * m2.
The sequence is position, first derivative in first pa-
rameter direction, first derivative in second parame-
ter direction, (2,0) derivative, (1,1) derivative, (0,2)
derivative, etc. at point (x[0],y[0]), followed by the
same information at (x[1],y[0]), etc.

394 CHAPTER 9. SURFACE UTILITIES

norm - Normals of surface. Is calculated if ider ¿= 1. Dimen-
sion is idim*m1*m2. The normals are not normalized.

jstat - status messages
= 2 : Surface is degenerate at some point,

normal has zero length.
= 1 : Surface is close to degenerate at some point.

Angle between tangents, less than angular tolerance.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps1;
int ider;
int m1;
double *x;
int m2;
double *y;
double eder[];
double norm[];
int *jstat;
. . .
s1506(ps1, ider, m1, x, m2, y, eder, norm, jstat);
. . .

}

9.3. SUBDIVISION 395

9.3 Subdivision

9.3.1 Subdivide a surface along a given parameter line.

NAME
s1711 - Subdivide a surface along a given internal parameter line.

SYNOPSIS
void s1711(surf, pardir, parval, newsurf1, newsurf2, stat)

SISLSurf *surf;
int pardir;
double parval;
SISLSurf **newsurf1;
SISLSurf **newsurf2;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to subdivide.
pardir - Value used to indicate in which parameter direction

the subdivision is to take place.

= 1 : First parameter direction.
= 2 : Second parameter direction.

parval - Parameter value at which to subdivide.

Output Arguments:
newsurf1 - First part of the subdivided surface.
newsurf2 - Second part of the subdivided surface.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
int pardir;
double parval;
SISLSurf *newsurf1;
SISLSurf *newsurf2;
int stat;
. . .

396 CHAPTER 9. SURFACE UTILITIES

s1711(surf, pardir, parval, &newsurf1, &newsurf2, &stat);
. . .

}

9.3. SUBDIVISION 397

9.3.2 Insert a given set of knots, in each parameter direction, into
the description of a surface.

NAME
s1025 - Insert a given set of knots in each parameter direction into the

description of a surface.
NOTE : When the surface is periodic in one direction, the input
parameter values in this direction must lie in the half-open interval
[et[kk−1], et[kn), the function will automatically update the extra
knots and coeffisients.

SYNOPSIS
void s1025(ps, epar1, inpar1, epar2, inpar2, rsnew, jstat)

SISLSurf *ps;
double epar1[];
int inpar1;
double epar2[];
int inpar2;
SISLSurf **rsnew;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to be refined.
epar1 - Knots to insert in first parameter direction.
inpar1 - Number of new knots in first parameter direction.
epar2 - Knots to insert in second parameter direction.
inpar2 - Number of new knots in second parameter direction.

Output Arguments:
rsnew - The new, refined surface.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

398 CHAPTER 9. SURFACE UTILITIES

EXAMPLE OF USE
{

SISLSurf *ps;
double epar1[3];
int inpar1 = 3;
double epar2[4];
int inpar2 = 4;
SISLSurf *rsnew = NULL;
int jstat = 0;
. . .
s1025(ps, epar1, inpar1, epar2, inpar2, &rsnew, &jstat);
. . .

}

9.4. PICKING CURVES FROM A SURFACE 399

9.4 Picking Curves from a Surface

9.4.1 Pick a curve along a constant parameter line in a surface.

NAME
s1439 - Make a constant parameter curve along a given parameter direc-

tion in a surface.

SYNOPSIS
void s1439(ps1, apar, idirec, rcurve, jstat)

SISLSurf *ps1;
double apar;
int idirec;
SISLCurve **rcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface.
apar - Parameter value to use when picking out constant

parameter curve.

idirec - Parameter direction in which to pick (must be 1 or 2).

Output Arguments:
rcurve - Constant parameter curve.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps1;
double apar;
int idirec;
SISLCurve *rcurve = NULL;
int jstat = 0;
. . .
s1439(ps1, apar, idirec, &rcurve, &jstat);
. . .

}

400 CHAPTER 9. SURFACE UTILITIES

9.4.2 Pick the curve lying in a surface, described by a curve in
the parameter plane of the surface.

NAME
s1383 - To create a 3D approximation to the curve in a surface, traced

out by a curve in the parameter plane. The output is represented
as a B-spline curve.

SYNOPSIS
void s1383(surf, curve, epsge, maxstep, der, newcurve1, newcurve2,

newcurve3, stat)

SISLSurf *surf;
SISLCurve *curve;
double epsge;
double maxstep;
int der;
SISLCurve **newcurve1;
SISLCurve **newcurve2;
SISLCurve **newcurve3;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface object
curve - The input curve in the parameter plane.
epsge - Maximal deviation allowed between true 3D curve ly-

ing in the surface, and the approximated 3D curve.
maxstep - Maximum step length. Is neglected if maxstep ≤

epsge If maxstep ≤ 0.0 the 3D box of the surface is
used to estimate the maximum step length.

der - Derivative indicator
= 0 : Calculate only position curve.
= 1 : Calculate position + derivative curves.

Output Arguments:
newcurve1 - Pointer to the B-spline curve approximating the po-

sition curve.
newcurve2 - Pointer to the B-spline curve approximating the

derivative curve along the position curve in the first
parameter direction of the surface.

newcurve3 - Pointer to the B-spline curve approximating deriva-
tive curve in the second parameter direction of the
surface, along the position curve.

stat - Status messages

9.4. PICKING CURVES FROM A SURFACE 401

> 0 : warning
= 0 : ok
< 0 : error

402 CHAPTER 9. SURFACE UTILITIES

EXAMPLE OF USE
{

SISLSurf *surf;
SISLCurve *curve;
double epsge;
double maxstep;
int der;
SISLCurve *newcurve1;
SISLCurve *newcurve2;
SISLCurve *newcurve3;
int stat;
. . .
s1383(surf, curve, epsge, maxstep, der, &newcurve1, &newcurve2,

&newcurve3, &stat);
. . .

}

9.5. PICK A PART OF A SURFACE. 403

9.5 Pick a Part of a Surface.

NAME
s1001 - To pick a part of a surface. The surface produced will always be

k-regular, i.e. with k-tupple start/end knots.

SYNOPSIS
void s1001(ps, min1, min2, max1, max2, rsnew, jstat)

SISLSurf *ps;
double min1;
double min2;
double max1;
double max2;
SISLSurf **rsnew;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to pick a part of.
min1 - Minimum value in first parameter direction.
min2 - Minimum value in second parameter direction.
max1 - Maximum value in first parameter direction.
max2 - Maximum value second parameter direction.

Output Arguments:
rsnew - The new, picked surface.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps;
double min1;
double min2;
double max1;
double max2;
SISLSurf *rsnew = NULL;
int jstat = 0;
. . .

404 CHAPTER 9. SURFACE UTILITIES

s1001(ps, min1, min2, max1, max2, &rsnew, &jstat);
. . .

}

9.6. TURN THE DIRECTION OF THE SURFACE NORMAL VECTOR. 405

9.6 Turn the Direction of the Surface Normal Vector.

NAME
s1440 - Interchange the two parameter directions used in the mathemat-

ical description of a surface and thereby change the direction of
the normal vector of the surface.

SYNOPSIS
void s1440(surf, newsurf, stat)

SISLSurf *surf;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the original surface.
Output Arguments:

newsurf - Pointer to the surface where the parameter directions
are interchanged.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf;
SISLSurf *newsurf;
int stat;
. . .
s1440(surf, &newsurf, &stat);
. . .

}

406 CHAPTER 9. SURFACE UTILITIES

9.7 Drawing

9.7.1 Draw a sequence of straight lines.

NAME
s6drawseq - Draw a broken line as a sequence of straight lines described

by the array points. For dimension 3.

SYNOPSIS
void s6drawseq(points, numpoints)

double points[];
int numpoints;

ARGUMENTS
Input Arguments:

points - Points stored in sequence. i.e.
(x0, y0, z0, x1, y1, z1, . . .).

numpoints - Number of points in the sequence.

NOTE
s6drawseq() is device dependent, it calls the empty dummy functions
s6move() and s6line(). Before using it, make sure you have a version of
these two functions interfaced to your graphic package.
More about s6move() and s6line() on pages 407 and 408.

EXAMPLE OF USE
{

double points[30];
int numpoints = 10;
. . .
s6drawseq(points, numpoints)
. . .

}

9.7. DRAWING 407

9.7.2 Basic graphics routine template - move plotting position.

NAME
s6move - Move the graphics plotting position to a 3D point.

SYNOPSIS
void s6move(point)

double point[];

ARGUMENTS
Input Arguments:

point - A 3D point, i.e. (x, y, z), to move the graphics plotting
position to.

NOTE
The functionality of s6move() is device dependent,
so it is only an empty (printf() call) dummy rou-
tine. Before using it, make sure you have a version of
s6move() interfaced to your graphic package.

EXAMPLE OF USE
{

double point[3];
. . .
s6move(point)
. . .

}

408 CHAPTER 9. SURFACE UTILITIES

9.7.3 Basic graphics routine template - plot line.

NAME
s6line - Plot a line between the current 3D graphics plotting position and

a given 3D point.

SYNOPSIS
void s6line(point)

double point[];

ARGUMENTS
Input Arguments:

point - A 3D point, i.e. (x, y, z), to draw a line to, from the
current graphics plotting position.

NOTE
The functionality of s6line() is device dependent, so it
is only an empty (printf() call) dummy routine. Be-
fore using it, make sure you have a version of s6line()
interfaced to your graphic package.

EXAMPLE OF USE
{

double point[3];
. . .
s6line(point)
. . .

}

9.7. DRAWING 409

9.7.4 Draw constant parameter lines in a surface using piecewise
straight lines.

NAME
s1237 - Draw constant parameter lines in a surface. The distance between

the surface and the straight lines is less than a tolerance epsge.
Also see NOTE!

SYNOPSIS
void s1237(surf, numline1, numline2, epsge, stat)

SISLSurf *surf;
int numline1;
int numline2;
double epsge;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
numline1 - Number of constant parameter lines to be drawn in

the first parameter direction.
numline2 - Number of constant parameter lines to be drawn in

the second parameter direction.
epsge - The maximal distance allowed between the drawn

curves and the surface.

Output Arguments:
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

NOTE
This function calls s6drawseq() which is device dependent. Before using
the function make sure you have a version of s6drawseq() interfaced to your
graphic package. More about s6drawseq() on page 406.

410 CHAPTER 9. SURFACE UTILITIES

EXAMPLE OF USE
{

SISLSurf *surf;
int numline1;
int numline2;
double epsge;
int stat;
. . .
s1237(surf, numline1, numline2, epsge, &stat);
. . .

}

9.7. DRAWING 411

9.7.5 Draw constant parameter lines in a surface bounded by a
closed curve in the parameter plane of the surface.

NAME
s1238 - Draw constant parameter lines in a surface. The lines are limited

by a closed curve lying in the parameter plane of the surface, i.e.
a 2D curve. All lines are drawn as piecewise straight lines. Also
see NOTE!

SYNOPSIS
void s1238(surf, curve, numline1, numline2, epsco, epsge, stat)

SISLSurf *surf;
SISLCurve *curve;
int numline1;
int numline2;
double epsco;
double epsge;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
curve - The 2D curve, in the parameter plane of the surface,

bounding the part of the surface that is to be drawn.

numline1 - Number of constant parameter lines to be drawn in
the first parameter direction.

numline2 - Number of constant parameter lines to be drawn in
the second parameter direction.

epsco - Not in use!
epsge - The maximal distance allowed between the drawn

curves and the surface.
Output Arguments:

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

NOTE
This function calls s6drawseq() which is device dependent. Before using
the function make sure you have a version of s6drawseq() interfaced to your
graphic package. More about s6drawseq() on page 406.

412 CHAPTER 9. SURFACE UTILITIES

EXAMPLE OF USE
{

SISLSurf *surf;
SISLCurve *curve;
int numline1;
int numline2;
double epsco;
double epsge;
int stat;
. . .
s1238(surf, curve, numline1, numline2, epsco, epsge, &stat);
. . .

}

Chapter 10

Data Reduction

10.1 Curves

10.1.1 Data reduction: B-spline curve as input.

NAME
s1940 - To remove as many knots as possible from a spline curve without

perturbing the curve more than a given tolerance.

SYNOPSIS
void s1940(oldcurve, eps, startfix, endfix, iopen, itmax, newcurve, maxerr,

stat)
SISLCurve *oldcurve;
double eps[];
int startfix;
int endfix;
int iopen;
int itmax;
SISLCurve **newcurve;
double maxerr[];
int *stat;

ARGUMENTS
Input Arguments:

oldcurve - pointer to the original spline curve.

413

414 CHAPTER 10. DATA REDUCTION

eps - double array giving the desired absolute accuracy of
the final approximation as compared to oldcurve. If
oldcurve is a spline curve in a space of dimension dim,
then eps must have length dim. Note that it is not rel-
ative, but absolute accuracy that is being used. This
means that the difference in component i at any pa-
rameter value, between the given curve and the ap-
proximation, is to be less than eps[i]. Note that in
such comparisons the same parametrization is used
for both curves.

startfix - the number of derivatives to be kept fixed at the be-
ginning of the knot interval. The 0, . . . , (startfix−1)
derivatives will be kept fixed. If startfix < 0, this rou-
tine will set it to 0. If startfix< the order of the curve,
this routine will set it to the order.

endfix - the number of derivatives to be kept fixed at the end
of the knot interval. The 0, . . . , (endfix − 1) deriva-
tives will be kept fixed. If endfix < 0, this routine
will set it to 0. If endfix < the order of the curve, this
routine will set it to the order.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.

itmax - maximum number of iterations. The routine will fol-
low an iterative procedure trying to remove more and
more knots. The process will almost always stop af-
ter less than 10 iterations and it will often stop after
less than 5 iterations. A suitable value for itmax is
therefore usually in the region 3-10.

Output Arguments:
-

newcurve - the spline approximation on the reduced knot vector.
maxerr - double array containing an upper bound for the point-

wise error in each of the components of the spline ap-
proximation. The two curves oldcurve and newcurve
are compared at the same parameter value, i.e., if old-
curve is f and newcurve is g, then |f(t)−g(t)| <= eps
in each of the components.

stat - Status messages
> 0 : Warning.

10.1. CURVES 415

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *oldcurve;
double eps[];
int startfix;
int endfix;
int iopen;
int itmax;
SISLCurve **newcurve;
double maxerr[];
int *stat;
. . .
s1940(oldcurve, eps, startfix, endfix, iopen, itmax, newcurve, maxerr,

stat);
. . .

}

416 CHAPTER 10. DATA REDUCTION

10.1.2 Data reduction: Point data as input.

NAME
s1961 - To compute a spline-approximation to the data given by the points

ep, and represent it as a B-spline curve with parameterization de-
termined by the parameter ipar. The approximation is determined
by first forming the piecewise linear interpolant to the data, and
then performing knot removal on this initial approximation.

SYNOPSIS
void s1961(ep, im, idim, ipar, epar, eeps, ilend, irend, iopen, afctol, itmax,

ik, rc, emxerr, jstat)
double ep[];
int im;
int idim;
int ipar;
double epar[];
double eeps[];
int ilend;
int irend;
int iopen;
double afctol;
int itmax;
int ik;
SISLCurve **rc;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim ∗ im) containing the points to be
approximated.

im - The no. of data points.
idim - The dimension of the euclidean space in which the

data points lie, i.e. the number of components of
each data point.

ipar - Flag indicating the type of parameterization to be
used:
= 1 : Paramterize by accumulated cord length.
(Arc length parametrization for the piecewise
linear interpolant.)
= 2 : Uniform parameterization.

10.1. CURVES 417

= 3 : Parametrization given by epar.
If ipar < 1 or ipar > 3, it will be set to 1.

epar - Array (length im) containing a parametrization of the
given data.

eeps - Array (length idim) containing the tolerance to be
used during the data reduction stage. The final ap-
proximation to the data will deviate less than eeps
from the piecewise linear interpolant in each of the
idim components.

ilend - The no. of derivatives that are not allowed to change
at the left end of the curve. The 0, . . . , (ilend − 1)
derivatives will be kept fixed. If ilend< 0, this routine
will set it to 0. If ilend < ik, this routine will set it
to ik.

irend - The no. of derivatives that are not allowed to change
at the right end of the curve. The 0, . . . , (irend −
1) derivatives will be kept fixed. If irend < 0, this
routine will set it to 0. If irend < ik, this routine will
set it to ik.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.
If a closed or periodic curve is to be produced and the
start- and endpoint is more distant than the length of
the tolerance, a new point is added. Note that if the
parametrization is given as input, the parametriza-
tion if the last point will be arbitrary.

afctol - Number indicating how the tolerance is to be shared
between the two data reduction stages. For the linear
reduction, a tolerance of afctol ∗ eeps will be used,
while a tolerance of (1−afctol)∗eeps will be used dur-
ing the final data reduction. (Similarly for edgeps.)

itmax - Max. no. of iterations in the data-reduction routine.
ik - The polynomial order of the approximation.

Output Arguments:
rc - Pointer to curve.
emxerr - Array (length idim) (allocated outside this routine.)

containing for each component an upper bound on
the max. deviation of the final approximation from
the initial piecewise linear interpolant.

418 CHAPTER 10. DATA REDUCTION

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[];
int im;
int idim;
int ipar;
double epar[];
double eeps[];
int ilend;
int irend;
int iopen;
double afctol;
int itmax;
int ik;
SISLCurve **rc;
double emxerr[];
int *jstat;
. . .
s1961(ep, im, idim, ipar, epar, eeps, ilend, irend, iopen, afctol, itmax,

ik, rc, emxerr, jstat);
. . .

}

10.1. CURVES 419

10.1.3 Data reduction: Points and tangents as input.

NAME
s1962 - To compute the approximation to the data given by the points

ep and the derivatives (tangents) ev, and represent it as a B-
spline curve with parametrization determined by the parameter
ipar. The approximation is determined by first forming the cubic
hermite interpolant to the data, and then performing knot removal
on this initial approximation.

SYNOPSIS
void s1962(ep, ev, im, idim, ipar, epar, eeps, ilend, irend, iopen, itmax, rc,

emxerr, jstat)
double ep[];
double ev[];
int im;
int idim;
int ipar;
double epar[];
double eeps[];
int ilend;
int irend;
int iopen;
int itmax;
SISLCurve **rc;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim*im) comtaining the points to be
approximated.

ev - Array (length idim*im) containing the derivatives of
the points to be approximated.

im - The no. of data points.
idim - The dimension of the euclidean space in which the

curve lies.
ipar - Flag indicating the type of parameterization to be

used:
= 1 : Paramterize by accumulated cord length.
(Arc length parametrization for the piecewise
linear interpolant.)

420 CHAPTER 10. DATA REDUCTION

= 2 : Uniform parameterization.
= 3 : Parametrization given by epar.
If ipar < 1 or ipar > 3, it will be set to 1.

epar - Array (length im) containing a parameterization of
the given data.

eeps - Array (length idim) giving the desired accuracy of the
spline-approximation in each component.

ilend - The no. of derivatives that are not allowed to change
at the left end of the curve. The 0, . . . , (ilend − 1)
derivatives will be kept fixed. If ilend< 0, this routine
will set it to 0. If ilend < ik, this routine will set it
to ik.

irend - The no. of derivatives that are not allowed to change
at the right end of the curve. The 0, . . . , (irend −
1) derivatives will be kept fixed. If irend < 0, this
routine will set it to 0. If irend < ik, this routine will
set it to ik.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.
If a closed or periodic curve is to be produced and the
start- and endpoint is more distant than the length of
the tolerance, a new point is added. Note that if the
parametrization is given as input, the parametriza-
tion if the last point will be arbitrary.

itmax - Max. no. of iteration.

Output Arguments:
rc - Pointer to curve.
emxerr - Array (length idim) (allocated outside this routine.)

containing an upper bound for the pointwise error in
each of the components of the spline-approximation.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[];

10.1. CURVES 421

double ev[];
int im;
int idim;
int ipar;
double epar[];
double eeps[];
int ilend;
int irend;
int iopen;
int itmax;
SISLCurve **rc;
double emxerr[];
int *jstat;
. . .
s1962(ep, ev, im, idim, ipar, epar, eeps, ilend, irend, iopen, itmax, rc,

emxerr, jstat);
. . .

}

422 CHAPTER 10. DATA REDUCTION

10.1.4 Degree reduction: B-spline curve as input.

NAME
s1963 - To approximate the input spline curve by a cubic spline curve with

error less than eeps in each of the kdim components.

SYNOPSIS
void s1963(pc, eeps, ilend, irend, iopen, itmax, rc, jstat)

SISLCurve *pc;
double eeps[];
int ilend;
int irend;
int iopen;
int itmax;
SISLCurve **rc;
int *jstat;

ARGUMENTS
Input Arguments:

pc - Pointer to curve.

eeps - Array (length kdim) giving the desired accuracy of
the spline-approximation in each component.

ilend - The no. of derivatives that are not allowed to change
at the left end of the curve. The 0, . . . , (ilend − 1)
derivatives will be kept fixed. If ilend< 0, this routine
will set it to 0. If ilend < ik, this routine will set it
to ik.

irend - The no. of derivatives that are not allowed to change
at the right end of the curve. The 0, . . . , (irend −
1) derivatives will be kept fixed. If irend < 0, this
routine will set it to 0. If irend < ik, this routine will
set it to ik.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.

itmax - Max. no. of iterations.

Output Arguments:
rc - Pointer to curve.
jstat - Status messages

10.1. CURVES 423

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc;
double eeps[];
int ilend;
int irend;
int iopen;
int itmax;
SISLCurve **rc;
int *jstat;
. . .
s1963(pc, eeps, ilend, irend, iopen, itmax, rc, jstat);
. . .

}

424 CHAPTER 10. DATA REDUCTION

10.2 Surfaces

10.2.1 Data reduction: B-spline surface as input.

NAME
s1965 - To remove as many knots as possible from a spline surface without

perturbing the surface more than the given tolerance. The error
in continuity over the start and end of a closed or periodic surface
is only guaranteed to be within edgeps.

SYNOPSIS
void s1965(oldsurf, eps, edgefix, iopen1, iopen2, edgeps, opt, itmax, new-

surf, maxerr, stat)
SISLSurf *oldsurf;
double eps[];
int edgefix[4];
int iopen1;
int iopen2;
double edgeps[];
int opt;
int itmax;
SISLSurf **newsurf;
double maxerr[];
int *stat;

ARGUMENTS
Input Arguments:

oldsurf - pointer to the original spline surface. Note if the poly-
nomial orders of the surface are k1 and k2, then the
two knot vectors are assumed to have knots of multi-
plicity k1 and k2 at the ends.

eps - double array of length dim (the number of compo-
nents of the surface, typically three) giving the de-
sired accuracy of the final approximation compared
to oldcurve. Note that in such comparisons the two
surfaces are not reparametrized in any way.

10.2. SURFACES 425

edgefix - integer array of dimension (4) giving the number of
derivatives to be kept fixed along each edge of the
surface. The numbering of the edges is the same
as for edgeps below. All the derivatives of order
< nend(i)− 1 will be kept fixed along edge i. Hence
nend(i) = 0 indicates that nothing is to be kept fixed
along edge i. NB! TO BE KEPT FIXED HERE
MEANS TO HAVE ERROR LESS THAN EDGEPS.
IN GENERAL, IT IS IMPOSSIBLE TO REMOVE
KNOTS AND KEEP AN EDGE COMPLETELY
FIXED.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface

edgeps - double array of length 4*dim ([4,dim]) (dim is the
number of components of each coefficient) contain-
ing the maximum deviation which is acceptable along
the edges of the surface. edgeps[0]− edgeps[dim− 1]
gives the tolerance along the edge corresponding to
x1 (the first parameter) having it’s minimum value.
edgeps[dim]− edgeps[2 ∗ dim− 1] gives the tolerance
along the edge corresponding to x1 (the first param-
eter) having it’s maximum value. edgeps[2 ∗ dim] −
edgeps[3 ∗dim− 1] gives the tolerance along the edge
corresponding to x2 (the second parameter) having
it’s minimum value. edgeps[3∗dim]−edgeps[4∗dim−
1] gives the tolerance along the edge corresponding to
x2 (the second parameter) having its maximum value.
NB! EDGEPS WILL ONLY HAVE ANY SIGNIF-
ICANCE IF THE CORRESPONDING ELEMENT
OF EDGEFIX IS POSITIVE.

426 CHAPTER 10. DATA REDUCTION

itmax - maximum number of iterations. The routine will fol-
low an iterative procedure trying to remove more and
more knots, one direction at a time. The process will
almost always stop after less than 10 iterations and it
will often stop after less than 5 iterations. A suitable
value for itmax is therefore usually in the region 3-10.

opt - integer indicating the order in which the knot removal
is to be performed.

1 : remove knots in parameter 1 only.
2 : remove knots in parameter 2 only.
3 : remove knots first in parameter 1 and then 2.
4 : remove knots first in parameter 2 and then 1.

Output Arguments:
newsurf - the approximating surface on the reduced knot vec-

tors.
maxerr - double array of length dim containing an upper bound

for the pointwise error in each of the components
of the spline approximation. The two surfaces old-
surf and newsurf are compared at the same param-
eter vaues, i.e., if oldsurf is f and newsurf is g then
|f(u, v)− g(u, v)| <= eps in each of the components.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *oldsurf;
double eps[];
int edgefix[4];
int iopen1;
int iopen2;
double edgeps[];
int opt;
int itmax;
SISLSurf **newsurf;
double maxerr[];
int *stat;
. . .

10.2. SURFACES 427

s1965(oldsurf, eps, edgefix, iopen1, iopen2, edgeps, opt, itmax, new-
surf, maxerr, stat);

. . .
}

428 CHAPTER 10. DATA REDUCTION

10.2.2 Data reduction: Point data as input.

NAME
s1966 - To compute a tensor-product spline-approximation of order

(ik1,ik2) to the rectangular array of idim-dimensional points given
by ep.

SYNOPSIS
void s1966(ep, im1, im2, idim, ipar, epar1, epar2, eeps, nend, iopen1,

iopen2, edgeps, afctol, iopt, itmax, ik1, ik2, rs, emxerr, jstat)
double ep[];
int im1;
int im2;
int idim;
int ipar;
double epar1[];
double epar2[];
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
double afctol;
int iopt;
int itmax;
int ik1;
int ik2;
SISLSurf **rs;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim*im1*im2) containing the points
to be approximated.

im1 - The no. of points in the first parameter.

im2 - The no. of points in the second parameter.

idim - The no. of components of each input point. The
approximation will be a parametric surface situated
in idim-dimensional Euclidean space (usually 3).

10.2. SURFACES 429

ipar - Flag determining the parametrization of the data
points:

= 1 : Mean accumulated cord-length parameterization.
= 2 : Uniform parametrization.
= 3 : Parametrization given by epar1 and epar2.

epar1 - Array (length im1) containing a parametrization in
the first parameter. (Will only be used if ipar = 3).

epar2 - Array (length im2) containing a parametrization in
the second parameter. (Will only be used if ipar = 3).

eeps - Array (length idim) containing the max. permissi-
ble deviation of the approximation from the given
data points, in each of the components. More specif-
ically, the approximation will not deviate more than
eeps(kdim) in component no. kdim, from the bilinear
approximation to the data.

nend - Array (length 4) giving the no. of derivatives to be
kept fixed along each edge of the bilinear interpolant.
The numbering of the edges is the same as for edgeps
below. All the derivatives of order < (nend(i) − 1)
will be kept fixed along the edge i. Hence nend(i) = 0
indicates that nothing is to be kept fixed along edge
i. To be kept fixed here means to have error less than
edgeps. In general, it is impossible to remove any
knots and keep an edge completely fixed.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the
first and last column of data points are (approxi-
mately) equal.

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the
first and last row of data points are (approximately)
equal.

430 CHAPTER 10. DATA REDUCTION

edgeps - Array (length idim*4) containing the max. deviation
from
the bilinear interpolant which is acceptable along the
edges of the surface. edgeps(1,i):edgeps(idim,i) gives
the tolerance along the edge corresponding to the i-th
parameter having one of it‘s extremal-values.

i = 1: min value of first parameter.
i = 2: max value of first parameter.
i = 3: min value of second parameter.
i = 4: max value of second parameter.
edgeps(kp,i) will only have significance if nend(i) > 0.

afctol - 0.0 >= afctol <= 1.0. Afctol indicates how the
tolerance is to be shared between the two data-
reduction stages. For the linear reduction, a toler-
ance of afctol ∗ eeps will be used, while a tolerance
of (1.0 − afctol) ∗ eeps will be used during the final
data reduction (similarly for edgeps.) Default is 0.

iopt - Flag indicating the order in which the data-reduction
is to be performed:

= 1: Remove knots in parameter 1 only.
= 2: Remove knots in parameter 2 only.
= 3: Remove knots first in parameter 1 and then in 2.
= 4: Remove knots first in parameter 2 and then in 1.

itmax - Max. no. of iterations in the data-reduction..

ik1 - The order of the approximation in the first parameter.

ik2 - The order of the approximation in the second param-
eter.

Output Arguments:
rs - Pointer to surface.

emxerr - Array (length idim) (allocated outside this routine.)
containing the error in the approximation to the data.
This is a guaranteed upper bound on the max. devi-
ation in each component, between the final approxi-
mation and the bilinear spline- pproximation to the
original data.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

10.2. SURFACES 431

EXAMPLE OF USE
{

double ep[];
int im1;
int im2;
int idim;
int ipar;
double epar1[];
double epar2[];
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
double afctol;
int iopt;
int itmax;
int ik1;
int ik2;
SISLSurf **rs;
double emxerr[];
int *jstat;
. . .
s1966(ep, im1, im2, idim, ipar, epar1, epar2, eeps, nend, iopen1,

iopen2, edgeps, afctol, iopt, itmax, ik1, ik2, rs, emxerr, jstat);
. . .

}

432 CHAPTER 10. DATA REDUCTION

10.2.3 Data reduction: Points and tangents as input.

NAME
s1967 - To compute a bicubic hermite spline-approximation to the position

and derivative data given by ep,etang1,etang2 and eder11.

SYNOPSIS
void s1967(ep, etang1, etang2, eder11, im1, im2, idim, ipar, epar1, epar2,

eeps, nend, iopen1, iopen2, edgeps, iopt, itmax, rs, emxerr, js-
tat)

double ep[];
double etang1[];
double etang2[];
double eder11[];
int im1;
int im2;
int idim;
int ipar;
double epar1[];
double epar2[];
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
int iopt;
int itmax;
SISLSurf **rs;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim*im1*im2) containing the points
to be approximated.

etang1 - Array (length idim*im1*im2) containing the deriva-
tives (tangents) in the first parameter-direction at the
data-points.

etang2 - Array (length idim*im1*im2) containing the deriva-
tives (tangents) in the second parameter-direction at
the data-points.

10.2. SURFACES 433

eder11 - Array (length idim*im1*im2) containing the cross
(twist) derivatives at the data-points.

im1 - The no. of points in the first parameter.

im2 - The no. of points in the second parameter.

idim - The no. of components of each input point. The
approximation will be a parametric surface situated
in idim-dimensional Euclidean space (usually 3).

ipar - Flag determining the parametrization of the data
points:

= 1 : Mean accumulated cord-length parameterization.
= 2 : Uniform parametrization.
= 3 : Parametrization given by epar1 and epar2.

epar1 - Array (length im1) containing a parametrization in
the first parameter. (Will only be used if ipar = 3).

epar2 - Array (length im2) containing a parametrization in
the second parameter. (Will only be used if ipar = 3).

eeps - Array (length idim) containing the maximum devia-
tion which is acceptable in each of the idim compo-
nents of the surface (except possibly along the edges).

nend - Array (length 4) giving the no. of derivatives to be
kept fixed along each edge of the bilinear interpolant.
The numbering of the edges is the same as for edgeps
below. All the derivatives of order < (nend(i) − 1)
will be kept fixed along the edge i. Hence nend(i) = 0
indicates that nothing is to be kept fixed along edge
i. To be kept fixed here means to have error less than
edgeps. In general, it is impossible to remove any
knots and keep an edge completely fixed.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the
first and last column of data points are (approxi-
mately) equal.

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface

434 CHAPTER 10. DATA REDUCTION

NB! The surface will be closed/periodic only if the
first and last row of data points are (approximately)
equal.

edgeps - Array (length idim*4) containing the max. deviation
from
the bilinear interpolant which is acceptable along the
edges of the surface. edgeps(1,i):edgeps(idim,i) gives
the tolerance along the edge corresponding to the i-th
parameter having one of it‘s extremal-values.

i = 1: min value of first parameter.
i = 2: max value of first parameter.
i = 3: min value of second parameter.
i = 4: max value of second parameter.
edgeps(kp,i) will only have significance if nend(i) > 0.

iopt - Flag indicating the order in which the data reduction
is to be performed:

= 1: Remove knots in parameter 1 only.
= 2: Remove knots in parameter 2 only.
= 3: Remove knots first in parameter 1 and then in 2.
= 4: Remove knots first in parameter 2 and then in 1.

itmax - Max. no. of iterations in the data reduction.

Output Arguments:
rs - Pointer to surface.

emxerr - Array (length idim) (allocated outside this routine.)
containing an upper bound for the error comitted in
each component during the data reduction.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[];
double etang1[];
double etang2[];
double eder11[];
int im1;
int im2;

10.2. SURFACES 435

int idim;
int ipar;
double epar1[];
double epar2[];
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
int iopt;
int itmax;
SISLSurf **rs;
double emxerr[];
int *jstat;
. . .
s1967(ep, etang1, etang2, eder11, im1, im2, idim, ipar, epar1, epar2,

eeps, nend, iopen1, iopen2, edgeps, iopt, itmax, rs, emxerr, js-
tat);

. . .
}

436 CHAPTER 10. DATA REDUCTION

10.2.4 Degree reduction: B-spline surface as input.

NAME
s1968 - To compute a cubic tensor-product spline approximation to a

given tensor product spline surface of arbitrary order, with er-
ror less than eeps in each of the idim components. The error in
continuity over the start and end of a closed or periodic surface is
only guaranteed to be within edgeps.

SYNOPSIS
void s1968(ps, eeps, nend, iopen1, iopen2, edgeps, iopt, itmax, rs, jstat)

SISLSurf *ps;
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
int iopt;
int itmax;
SISLSurf **rs;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Pointer to surface.
eeps - Array (length idim) containing the max. permissi-

ble deviation of the approximation from the given
data points, in each of the components. More specif-
ically, the approximation will not deviate more than
eeps(kdim) in component no. kdim, from the bilinear
approximation to the data.

nend - Array (length 4) giving the no. of derivatives to be
kept fixed along each edge of the bilinear interpolant.
The numbering of the edges is the same as for edgeps
below. All the derivatives of order < (nend(i) − 1)
will be kept fixed along the edge i. Hence nend(i) = 0
indicates that nothing is to be kept fixed along edge
i. To be kept fixed here means to have error less than
edgeps. In general, it is impossible to remove any
knots and keep an edge completely fixed.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.

10.2. SURFACES 437

= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the
first and last column of data points are (approxi-
mately) equal.

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the
first and last row of data points are (approximately)
equal.

edgeps - Array (length idim*4) containing the max. deviation
from
the bilinear interpolant which is acceptable along the
edges of the surface. edgeps(1,i):edgeps(idim,i) gives
the tolerance along the edge corresponding to the i-th
parameter having one of it‘s extremal-values.

i = 1: min value of first parameter.
i = 2: max value of first parameter.
i = 3: min value of second parameter.
i = 4: max value of second parameter.
edgeps(kp,i) will only have significance if nend(i) > 0.

iopt - Flag indicating the order in which the data-reduction
is to be performed:

= 1: Remove knots in parameter 1 only.
= 2: Remove knots in parameter 2 only.
= 3: Remove knots first in parameter 1 and then in 2.
= 4: Remove knots first in parameter 2 and then in 1.

itmax - Max. no. of iterations in the data-reduction..

Output Arguments:
rs - Pointer to surface.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

438 CHAPTER 10. DATA REDUCTION

SISLSurf *ps;
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
int iopt;
int itmax;
SISLSurf **rs;
int *jstat;
. . .
s1968(ps, eeps, nend, iopen1, iopen2, edgeps, iopt, itmax, rs, jstat);
. . .

}

Chapter 11

Appendix: Error Codes

For reference, here is a list of the error codes used in SISL. They can be useful
for diagnosing problems encountered when calling SISL routines. However please
note that a small number of SISL routines use their own convention.

Label Value Description

--

err101 -101 Error in memory allocation.

err102 -102 Error in input. Dimension less than 1.

err103 -103 Error in input. Dimension less than 2.

err104 -104 Error in input. Dimension not equal 3.

err105 -105 Error in input. Dimension not equal 2 or 3.

err106 -106 Error in input. Conflicting dimensions.

err107 -107

err108 -108 Error in input. Dimension not equal 2.

err109 -109 Error in input. Order less than 2.

err110 -110 Error in Curve description. Order less than 1.

err111 -111 Error in Curve description. Number of vertices less than order.

err112 -112 Error in Curve description. Error in knot vector.

439

440 CHAPTER 11. APPENDIX: ERROR CODES

err113 -113 Error in Curve description. Unknown kind of Curve.

err114 -114 Error in Curve description. Open Curve when expecting closed.

err115 -115 Error in Surf description. Order less than 1.

err116 -116 Error in Surf description. Number of vertices less than order.

err117 -117 Error in Surf description. Error in knot vector.

err118 -118 Error in Surf description. Unknown kind of Surf.

err119 -119

err120 -120 Error in input. Negative relative tolerance.

err121 -121 Error in input. Unknown kind of Object.

err122 -122 Error in input. Unexpected kind of Object found.

err123 -123 Error in input. Parameter direction does not exist.

err124 -124 Error in input. Zero length parameter interval.

err125 -125

err126 -126

err127 -127 Error in input. The whole curve lies on axis.

err128 -128

err129 -129

err130 -130 Error in input. Parameter value is outside parameter area.

err131 -131

err132 -132

441

err133 -133

err134 -134

err135 -135 Error in data structure.

Intersection point exists when it should not.

err136 -136 Error in data structure.

Intersection list exists when it should not.

err137 -137 Error in data structure.

Expected intersection point not found.

err138 -138 Error in data structure.

Wrong number of intersections on edges/endpoints.

err139 -139 Error in data structure.

Edge intersection does not lie on edge/endpoint.

err140 -140 Error in data structure. Intersection interval crosses

subdivision line when not expected to.

err141 -141 Error in input. Illegal edge point requested.

err142 -142

err143 -143

err144 -144 Unknown kind of intersection curve.

err145 -145 Unknown kind of intersection list (internal format).

err146 -146 Unknown kind of intersection type.

err147 -147

err148 -147

err149 -149

err150 -150 Error in input. NULL pointer was given.

442 CHAPTER 11. APPENDIX: ERROR CODES

err151 -151 Error in input. One or more illegal input values.

err152 -152 Too many knots to insert.

err153 -153 Lower level routine reported error. SHOULD use label "error".

err154 -154

err155 -155

err156 -156 Illegal derivative requested. Change this label to err178.

err157 -157

err158 -158 Intersection point outside Curve.

err159 -159 No of vertices less than 1. SHOULD USE err111 or err116.

err160 -160 Error in dimension of interpolation problem.

err161 -161 Error in interpolation problem.

err162 -162 Matrix may be noninvertible.

err163 -163 Matrix part contains diagonal elements.

err164 -164 No point conditions specified in interpolation problem.

err165 -165 Error in interpolation problem.

err166 -166

err167 -167

err168 -168

err169 -169

err170 -170 Internal error: Error in moving knot values.

443

err171 -171 Memory allocation failure: Could not create curve or surface.

err172 -172 Input error, inarr < 1 || inarr > 3.

err173 -173 Direction vector zero length.

err174 -174 Degenerate condition.

err175 -175 Unknown degree/type of implicit surface.

err176 -176 Unexpected iteration situation.

err177 -177 Error in input. Negative step length requested.

err178 -178 Illegal derivative requested.

err179 -179 No. of Curves < 2.

err180 -180 Error in torus description.

err181 -181 Too few points as input.

err182 -182

err183 -183 Order(s) specified to low.

err184 -184 Negative tolerance given.

err185 -185 Only degenerate or singular guide points.

err186 -186 Special error in traversal of curves.

err187 -187 Error in description of input curves.

err188 -188

err189 -189

err190 -190 Too small array for storing Curve segments.

err191 -191 Error in inserted parameter number.

444 CHAPTER 11. APPENDIX: ERROR CODES

err192 -192

err193 -193

err194 -194

err195 -195

err196 -196

err197 -197

err198 -198

err199 -199 Error in vectors?

Index

copyCurve(), 131

copySurface(), 376

freeCurve(), 132
freeIntcrvlist(), 230

freeIntcurve(), 229

freeSurf(), 377

newbox(), 113, 336

newCurve(), 129

newdir(), 116, 339
newIntcurve(), 227

newSurf(), 373

s1001(), 403

s1011(), 72

s1012(), 74

s1013(), 104
s1014(), 41

s1015(), 43

s1016(), 46

s1017(), 146

s1018(), 147
s1021(), 217

s1022(), 222

s1023(), 215

s1024(), 219

s1025(), 397

s1221(), 135
s1225(), 137

s1226(), 140

s1227(), 133

s1233(), 157

s1237(), 409

s1238(), 411

s1240(), 90

s1241(), 108

s1243(), 110

s1302(), 201

s1303(), 52

s1310(), 309

s1314(), 288

s1315(), 292

s1316(), 296

s1317(), 299

s1318(), 305

s1319(), 312

s1327(), 81

s1328(), 255

s1332(), 199

s1356(), 21

s1357(), 25

s1360(), 59

s1363(), 93

s1364(), 91

s1365(), 203

s1369(), 276

s1371(), 83, 234

s1372(), 237

s1373(), 240

s1374(), 86

s1375(), 245

s1379(), 30

s1380(), 28

s1383(), 400

s1386(), 214

s1387(), 213

445

446 INDEX

s1388(), 207

s1389(), 64

s1390(), 188

s1391(), 191

s1401(), 194

s1421(), 378

s1422(), 384

s1424(), 381

s1425(), 388

s1439(), 399

s1440(), 405

s1450(), 322

s1451(), 92

s1501(), 302

s1502(), 243

s1503(), 273

s1506(), 393

s1508(), 187

s1510(), 283

s1511(), 286

s1514(), 315

s1515(), 318

s1518(), 253

s1522(), 70

s1529(), 177

s1530(), 179

s1534(), 171

s1535(), 174

s1536(), 163

s1537(), 167

s1538(), 181

s1539(), 184

s1542(), 143

s1600(), 63

s1601(), 206

s1602(), 19

s1603(), 324

s1606(), 49

s1607(), 32

s1608(), 34

s1609(), 38

s1611(), 55

s1613(), 62

s1620(), 196

s1630(), 57

s1706(), 156

s1710(), 144

s1711(), 395

s1712(), 150

s1713(), 151

s1714(), 149

s1715(), 152

s1716(), 154

s1720(), 69

s1730(), 65

s1731(), 209

s1732(), 66

s1733(), 210

s1750(), 68

s1774(), 99

s1775(), 330

s1850(), 79, 231

s1851(), 263

s1852(), 266

s1853(), 268

s1854(), 271

s1855(), 257

s1856(), 250

s1857(), 88

s1858(), 260

s1859(), 278

s1860(), 281

s1870(), 247

s1871(), 77

s1920(), 105

s1921(), 332

s1940(), 413

s1953(), 94

s1954(), 325

s1955(), 101

s1957(), 97

s1958(), 328

INDEX 447

s1961(), 416
s1962(), 419
s1963(), 422
s1965(), 424
s1966(), 428
s1967(), 432
s1968(), 436
s1986(), 117
s1987(), 340
s1988(), 114
s1989(), 337
s2500(), 343
s2502(), 346
s2504(), 348
s2506(), 350
s2508(), 352
s2510(), 354
s2532(), 356
s2536(), 358
s2540(), 360
s2542(), 362
s2544(), 365
s2545(), 368
s2550(), 119
s2553(), 121
s2556(), 122
s2559(), 123
s2562(), 125
s6drawseq(), 159, 406
s6line(), 161, 408
s6move(), 160, 407
SISLBox(), 112, 335
SISLCurve(), 127
SISLdir(), 115, 338
SISLIntcurve(), 225
SISLSurf(), 371

