CAVAv1l.1.1l

documentation

CONTENTS
1 TNTRODUCTION —=————————————— 2
2 INSTALLATION —-————————————— 2
3 RUNNING CAVA —————————————— 2
4 CONFIGURATION FILE —-——————-— 3
5 INPUT FILE - ——————————————— 5
6 REFERENCE GENOME —————————-— 6
7 TRANSCRIPT DATABASE ——————-— 6
8 DBSNP DATABASE ———————————— 6
9 VARIANT ANNOTATION ——————-—-— 6
10 THE CLASS ONTOLOGY ——=———-— 10
11 OUTPUT —-—-——————————————— — 13
12 VARIANT CALL FILTERING --15
13 THE DBRPREP TOOL, ————————-— 17
14 DEFAULT TRANSCRIPT

AND DRBRSNP DATABASE —-————- 19
15 RUN TIMES ——————————————— 20
16 1.0G FILLE ———————————————— 20
17 EXAMPILES ———————————————— 20

18 CONTACT —-——————————————— 27

Page 1 of 34

1 INTRODUCTION

CAVA (Clinical Annotation of Variants) is a lightweight, flexible, fast, easy-to-use
variant annotation tool specializing in gene- (transcript-) level variant call
annotation. This detailed documentation describes all features of CAVA and its
accompanying database preparation tool, dbprep. After first introducing its user
interface and discussing its functionalities, some examples are presented in the
second part of this documentation.

2 INSTALLATION

CAVA can be downloaded from www.well.ox.ac.uk/cava
After unpacking the tar.gz file, CAVA is ready for variant annotation.

The tar.gz file also contains the database preparation tool, dbprep, and a
template configuration file.

Additional files (i.e. default whole exome transcript and dbSNP databases) can be
downloaded from the same webpage.

2.1 Dependencies

CAVA v1.1.1 requires Python (version 2.7 or later) and the Pysam module
(version 0.7.7 or later) (together with its dependency; cython) to be installed:
https://github.com/pysam-developers/pysam

3 RUNNING CAVA

Once downloaded with dependencies correctly installed (see above), CAVA can
be run with the following simple command:

python path/to/cava/cava.py -c config.txt -i input.vcf -o output

The program requires three command line arguments: the name of the
configuration file (-c), the name of the input file (-i) and the prefix of the output
file name (-o).

The configuration file should contain all user-specified settings (see below). The
input file should contain the set of variant calls to be annotated. This file can be
in standard VCF format or a TXT file (see below for possible input formats).
Finally, the output prefix is used to create the name of the output file and the log
file.

Page 2 of 34

Optionally, by using option -s, the annotated variant set will be written to the
standard output (stdout) rather than to an output file (however, a log file will
still be created, if required).

Optionally, CAVA can be run with multithreading using option -t (see Section
3.1).

Alternatively, help information on the command line arguments can be
requested using the -h argument:

python path/to/cava/cava.py -h

3.1 Multithreading

CAVA has a built-in multithreading feature meaning that variant annotation can
be performed in multiple parallel processes resulting in significant speedup.
Each process generates a temporary output file, which are then automatically
merged to create the final output. To use multithreading, one only needs to apply
command line option flag -t and specify the number of processes.

For example, using 4 processes:
python path/to/cava/cava.py -c config.txt -i input.vcf -o output -t 4

(See Section 15 for an example how parallel processing of variants speeds up
CAVA)

4 CONFIGURATION FILE

As mentioned above, the configuration file should contain all user-specified
options. Here we describe the list of possible option flags (see more detailed
discussions in next sections). Example configuration files are also given in
Section 17 (and in the cava-v1.1.1.tar.gz file).

Each option set in the configuration file should be given in the format of

@flagname = value

CAVA understands the following option flags (some are required and some are
optional with the default values shown below):

@inputformat
Input file format. (Optional. Possible values: VCF or TXT. Default value: VCF)

@outputformat
Output file format. (Optional. Possible values: VCF or CSV. Default value: VCF)

Page 3 of 34

@reference
Name of reference genome file. (Required.)

@ensembl
Name of Ensembl transcript database file. (Optional. If not given, no transcript-
based annotation will be performed.)

@dbsnp
Name of dbSNP database file. (Optional. If not given, no SNP-based annotation
will be performed.)

Note: using at least one of @ensembl or @dbsnp options is required!

@nonannot

Boolean flag specifying if variants which received neither transcript nor dbSNP
annotations are to be included in the output. (Optional. Possible values: TRUE or
FALSE. Default value: TRUE)

@filter
Boolean flag specifying if only records with PASS filter value are included in the
output. (Optional. Possible values: TRUE or FALSE. Default value: FALSE)

@type
Types of variants to be annotated. (Optional. Possible values: ALL,
SUBSTITUTION, INDEL, INSERTION, DELETION or COMPLEX. Default value: ALL)

@target
Name of compressed BED file specifying genomic regions variant annotation is
restricted to. (Optional.)

@genelist
Name of file providing a list of the gene identifiers variant annotation is
restricted to. Gene identifiers are to be given on separate lines in the file.
(Optional.)

@transcriptlist

Name of file providing a list of the transcript identifiers variant annotation is
restricted to. Transcript identifiers are to be given on separate lines in the file.
(Optional.)

@snplist
Name of file providing a list of the dbSNP identifiers variant annotation is
restricted to. dbSNP identifiers are to be given on separate lines in the file.
(Optional.)

@logfile

Boolean flag specifying if log file is written. (Optional. Possible values: TRUE or
FALSE. Default value: FALSE)

Page 4 of 34

@ontology
Which ontology is used for reporting functional class assignment. (Optional.
Possible values: CLASS, SO or BOTH. Default value: BOTH)

@impactdef
Definition of variant impact levels (reported by the IMPACT annotation flag)

@givealt
Boolean flag specifying if alternative most 5’ and CLASS/SO annotations are to be
outputted. (Optional. Possible values: TRUE or FALSE. Default value: TRUE)

@ssrange
Number of bases into the intron defined as the splice site region (as used in the
CLASS flag). (Optional. Possible values: integer >= 6. Default value: 8)

5 INPUT FILE

The input file (defined by command line argument -i) contains all variant calls to
be annotated. It may follow two formats, VCF or TXT (specified in the
configuration file by option @inputformat).

5.1 Input in VCF format

If VCF format is used, the input file should follow the standard VCF 4.1
specification. A single VCF record can describe a multiallelic variant which will
be considered by CAVA as multiple different variant calls. VCF records may also
include genotype call information.

5.2 Input in TXT format

If TXT format is used, the input file must be written in the following tab-
delimited 5-column format describing the variant ID, chromosome name,
genomic position, reference allele and comma-separated alternative alleles:

#ID CHROM POS REF ALT
1 13 1324552 G ATC

Note that this format does not contain information about the filter value,
therefore filter=PASS will be set for each variant.

Page 5 of 34

6 REFERENCE GENOME

In order to annotate variants, CAVA requires a reference genome sequence. The
reference genome (specified in the configuration file by option @reference) must
be a FASTA file indexed with samtools faidx. Both the FASTA file and the index

file (e.g. hg19.fa and hg19.fa.fai) should be available in the same directory.
Chromosome names in the FASTA file can either be of the format '14' or 'chr14'.

7 TRANSCRIPT DATABASE

To perform Ensembl transcript-based annotation, CAVA requires a local
transcript database that contains all relevant information about each transcript
(strandedness, genomic positions of exons etc.). The transcript database file
needs to have a special format, compressed with bgzip and indexed with Tabix. A
simple tool (dbprep) is provided to generate the compressed and Tabix-indexed
transcript database file based on an arbitrary list of transcript IDs (see Section
13 for a detailed description of the dbprep tool). Alternatively, one can use the
readily available whole exome transcript database (see Section 14) which can be
downloaded from www.well.ox.ac.uk/cava.

The name of the transcript database file is specified in the configuration file by
the option @ensembl. Note that at least one of @ensembl or @dbsnp must be
given.

8 DBSNP DATABASE

In order to perform SNP annotation, CAVA requires a local dbSNP database that
contains information about each SNP (i.e. its identifier and genomic position).
The dbSNP database file needs to have a special format compressed with bgzip
and indexed with Tabix. As with the case of transcript database discussed above,
the simple tool dbprep can be used to generate the compressed and Tabix-
indexed dbSNP database file based on an arbitrary list of dbSNP IDs (see Section
13 for a detailed description of the dbprep tool). Alternatively, one can use the
readily available dbSNP database files (see Section 14), which can be
downloaded from www.well.ox.ac.uk/cava.

The name of the dbSNP database file is specified in the configuration file by
option @dbsnp. Note that at least one of @ensembl or @dbsnp must be given.

9 VARIANT ANNOTATION

CAVA outputs information about variant calls in various annotation flags. Two
types of variant annotation are supported: transcript-based and SNP-based. In

Page 6 of 34

transcript-based annotation, variant calls are annotated based on the
information stored in the local Ensembl transcript database file. In SNP-based
annotation, variants are annotated based on the local dbSNP database file.
This section discusses all components of variant annotation. Section 11 describes
the exact way these components are written into different output formats.

One annotation flag which is always outputted (regardless of performing
transcript-based or SNP-based annotation) is "TYPE' which refers to the type of
variant call (e.g. TYPE=SUBSTITUTION). This annotation flag has four possible
values: SUBSTITUTION, INSERTION, DELETION, and COMPLEX, referring to base
substitutions, insertions, deletions, and complex variants, respectively.

9.1 Transcript-based annotation

If option flag @ensembl is set in the configuration file, CAVA will search the
transcript database for each variant call to find Ensembl transcripts that overlap
with the variant. Note that CAVA allows overlapping transcripts and a variant
may overlap with multiple Ensembl transcripts (see Section 11.1.2).

9.1.1 The ENST, GENE and TRINFO annotation flags

Variant calls overlapping with at least one transcript are annotated with the
Ensembl transcript identifiers in the annotation flag 'ENST' (e.g.
ENST=ENST00000380152).

Transcript-overlapping variants are also annotated with the corresponding gene
names (i.e. HGNC symbols) in the annotation flag 'GENE' (e.g. GENE=BRCA2).
Basic information about the transcripts (strandedness, length of transcript,
number of exons and length of coding DNA, respectively) are added in the
'"TRINFO' annotation flag (e.g. TRINFO=+/319.1kb/6/5.3kb). For example, a
TRINFO annotation flag value of ‘+/319.1kb/6/5.3kb’ means that the transcript
is forward stranded (+), with a total sequence length of 319.1 kb, including 6
exons which together cover 5.3 kb of coding region.

9.1.2 The LOC annotation flag

The location of the variant within the transcript is added in the annotation flag
'LOC' (e.g. LOC=Ex8). As exemplified below, the LOC flag may refer to an exon, an
intron, a UTR3 or a UTR5 region.

Alternatively, if a variant overlaps the boundary between two different regions
(e.g. exon and intron), this is referred to as 'LOC=L1-L2', where L1 and L2 are the
locations of the two endpoints of the variant.

Examples:

Variant within exon 12: LOC=Ex12

Variant within the intron separating exons 5 and 6: LOC=In5/6

Variant within 5" untranslated region: LOC=UTR5

Variant within 3" untranslated region: LOC=UTR3

Variant overlapping the 3' boundary of exon 7: LOC=Ex7-In7/8

Variant overlapping exon 28 and the 3' untranslated region: LOC=Ex28-UTR3

Page 7 of 34

Note that some Ensembl transcripts contain artificial introns of very short length
(1,2,4 or 5 bp) called ‘frameshift introns’, added by the Ensembl genebuild. Since
these may indicate errors in either the reference genome assembly or in the
aligned cDNA, variants overlapping frameshift introns may actually be exonic or
not real. CAVA thus flags variants affecting these introns, reporting this
information in the LOC annotation flag, e.g. LOC=fsIn8/9 is a reference to
frameshift intron 8/9.

9.1.3 The CSN, CLASS, SO, IMPACT and ALTFLAG annotation flags
The CSN flag:

The Clinical Sequencing Nomenclature (CSN) v1.0 is used for clinical variant
annotation. It is based on the Human Genome Variation Society (HGVS) with
minor amendments to allow high-volume automated outputs from NGS
pipelines. The CSN is described in detail in the appendix.

The CSN annotation of a variant affecting a transcript is outputted in the
annotation flag 'CSN' (e.g. CSN=c.421A>G_p.Thr141Ala). For indels, CSN is
created based on the correctly aligned (strand-aware) representation of the
variant. Note that the CSN annotation is given both on DNA (c.) and protein (p.)
level if appropriate (otherwise only c. is given).

The CLASS and SO flags:

Variants are also classified according to a simple ontology and the class of
variant is outputted in the annotation flag 'CLASS' (e.g. CLASS=SY). See Section
10 for detailed description of the CLASS ontology and the definition of different
classes. Alternatively, one can output the Sequence Ontology (SO) annotation
instead of the CLASS ontology or both ontologies can be reported. One can use
the @ontology flag in the configuration file to control which ontologies are
outputted. The @ontology flag has three possible values: CLASS, SO or BOTH,
specifying that the CLASS ontology, the SO ontology or both are reported,
respectively. The default value is BOTH, thus by default both CLASS and SO are
outputted. For the description of the SO classification, please refer to the
Sequence Ontology website: http://www.sequenceontology.org/. For a
comparison of the CLASS and SO ontologies, see the table in Section 10.

The IMPACT flag:

CAVA can also stratify variants into groups of likely similar impact based on their
CLASS annotations. This information is reported in the IMPACT annotation flag.
The value of the IMPACT flag is an integer indicating decreasing level of impacts,
with the following default corresponding CLASS values:

Page 8 of 34

IMPACT | CLASS

1 ESS, FS, SG

2 NSY, SS5, IF, IM, SL, EE
3 SY, SS, INT, 5PU, 3PU

Furthermore, one can define a custom mapping from CLASS terms to IMPACT
values by using the @impactdef option flag in the configuration file. Different
impact levels are separated by | and a comma-separated list of CLASS terms must
be given for each level. For example, the following line defines the default
mapping described above:

@impactdef=ESS,FS,SG | NSY, SS5,IF,IM,SL,EE | SY,SS,3PU,5PU,INT

Note that the IMPACT annotation flag is always outputted unless “@impactdef=."
is set in the configuration file. The IMPACT flag is reported even if the CLASS flag
is not outputted (i.e. @ontology=S0).

The ALTFLAG flag:

Some indels have alternative representations which may even change their
CLASS or SO annotations. CAVA recognizes variants with alternative annotations
and outputs this information in the annotation flag 'ALTFLAG' (e.g.
ALTFLAG=None). If, for example, only the CLASS ontology is reported, the
ALTFLAG flag has three possible values: 'None', 'AnnNotClass’ and
'AnnAndClass’. If the variant has the same annotation regardless of its left or
right alignment, ALTFLAG=None is given. If an indel has an alternative
annotation but the same CLASS annotation for both representations,
ALTFLAG=AnnNotClass is given. Finally, if the indel has different CLASS
annotations depending on its annotation, ALTFLAG=AnnAndClass is outputted,
referring to the fact that the different representations may be interpreted as
having different functional consequences.

Similarly, when only the SO ontology is reported, the ALTFLAG annotation flag
has the following three possible values: 'None', 'AnnNotSO' and 'AnnAndSO'.

If both CLASS and SO ontologies are reported, the possible values of ALTFLAG
are: ‘None’, ‘AnnNotClassNotSO’, ‘AnnAndClassNotSO’, ‘AnnAndSONotClass’,
‘AnnAndClassAndS0Q’, indicating whether the different indel representations
would result in the same annotation and same CLASS and/or SO annotations.

9.1.4 Outputting alternative annotations: ALTANN and ALTCLASS/ALTSO

If the @givealt option flag is set to TRUE in the configuration file, CAVA will
output the most 5’ alternative sequence and CLASS and/or SO annotations
instead of just indicating that alternative annotations exist. If the @givealt option
is switched on, additional annotation flags (ALTANN and ALTCLASS and/or
ALTSO) are given for each variant, providing these alternative sequence and
CLASS and/or SO annotations (if any), respectively. If relevant, the most 3’ effect
on the protein is outputted in the ALTANN annotation. Note, that if @givealt is
used, the ALTFLAG annotation flag described above is not reported.

Page 9 of 34

9.1.5 Variants located outside transcripts

Note that the transcript-based annotations described above are only given if
both endpoints of the variant are located within the transcript. If there is only
partial overlap between the variant and the transcript (e.g. the starting position
of a deletion lies within the transcript but the ending position lies outside), the
partial overlap is reported in the following way:

The ENST, GENE and TRINFO flags describing the transcript are given as above,
however LOC=0UT is reported and empty CSN, CLASS, SO, ALTFLAG, ALTANN,
ALTCLASS and ALTSO flag values are outputted (e.g. CSN=.).

If no transcripts are found in the transcript database with which the variant call
overlaps, all transcript-specific annotation flags (ENST, GENE, TRINFO, LOC, CSN,
CLASS, SO, ALTFLAG, ALTANN, ALTCLASS and ALTSO) will have empty value
(e.g. ENST=.).

9.2 SNP-based annotation

If option flag @dbsnp is set in the configuration file, for each base substitution
CAVA will search the dbSNP database file to find registered SNPs. If a variant is
identified as a known SNP, the annotation flag 'DBSNP' will output its dbSNP
identifier (e.g. DBSNP=rs206437).

10 THE CLASS ONTOLOGY

As discussed in Section 9.1, variant calls overlapping with transcripts can be
annotated with the 'CLASS' flag which refers to a simple ontology describing
different types of variants. This ontology is described here in detail.

The values of the CLASS flag are described in the table below:

CLASS | Description

SG Stop-gain variant caused by base substitution.

ESS Any variant that alters essential splice-site base (+1, +2, -1, -2).

SS5 Any variant that alters the +5 splice-site base but not an ESS base.

SS Any variant that alters splice-site base within the first @ssrange
intronic bases flanking exon (i.e. +@ssrange to -@ssrange) but not an
ESS or SS5 base.

EE Variant that alters the first or last 3 bases of an exon (i.e. the exon end),
but not the frame of the coding sequence.

ES Frameshifting insertion and/or deletion. It alters length and frame of
coding sequence.

IM Variant that alters initiating methionine start codon.

SL Variant that causes a stop-loss (i.e. the stop codon is altered).

[F Inframe insertion and/or deletion. It alters length but not frame of
coding sequence.

Page 10 of 34

NSY Nonsynonymous variant. It alters amino acid(s) but not coding
sequence length.

SY Synonymous variant. It does not alter amino acid or coding sequence
length.
INT Any variant in an intron that does not alter splice-site bases.

5PU Any variant in 5’ untranslated region

3PU Any variant in 5’ untranslated region

Notes:

- A variant can only have one CAVA class. If a variant could potentially be
included in more than one class the first class in the list is assigned. For example,
a frameshifting deletion that alters the start codon would be CAVA class FS (not
IM).

- Nonsynonymous is also known as missense. Stop-gain is also known as
nonsense.

- NSY and SY variants include complex variants that delete some bases from the
coding sequence and insert different bases of an equal number. As a result, the
length of coding sequence is not altered, therefore these variants are not the IF
or FS classes.

- Indel variants that affect an exon-intron boundary are always classified as ESS
variants.

- The @ssrange option in the configuration file can be used to define the size of
the splice site region: i.e. the number of bases into the intron used as splice site
in CLASS annotation. The parameter affects SS/INT boundary. The default value
of @ssrange is 8 in order to make CLASS and SO ontologies comparable.

- Duplications overlapping the boundary of the 3’ splice site region of an intron
are classified as INT as they do not alter splice site region: e.g. ¢.10-12dupC or
c.10-13_10-11dupTGC (if @ssrange=12).

The values of the CLASS flag have corresponding SO terms, with some noted
exceptions, presented in the table below:

CLASS SO term Exception
SG stop_gained
ESS splice_acceptor_variant, The SO term is provided as

splice_donor_variant

appropriate for variants
altering splice acceptor and
splice donor sites, however
the same CLASS value is
returned for both types of
variants.

SS5

splice_donor_5th_base_variant

SS

intron_variant|splice_region_variant

The SO term is always
provided up to 8 bases into
the intron to match the SO
definition, however the CLASS
value is provided according to
@ssrange, so this will not be a

Page 11 of 34

one-to-one mapping when
@ssrange value is not 8.

EE splice_region_variant|inframe_deletion, The SO term is provided as
splice_region_variant|inframe_insertion, appropriate for inframe
splice_region_variant|synonymous_variant, | deletions and insertions and
splice_region_variant|missense_variant base substitutions which
affect the first and last three
bases of the exon, however
the same CLASS value is
returned for all of these types
of variants.
FS frameshift_variant, The SO term is provided as
splice_region_variant|frameshift_variant appropriate for frameshifting
indels which do and do not
affect the first and last three
bases of the exon, however
the same CLASS value is
returned for both types of
variants.
IM initiator_codon_variant
SL stop_lost
IF inframe_deletion, inframe_insertion The SO term is provided as
appropriate for inframe
deletions and insertions,
however the same CLASS
value is returned for both
types of variants.
NSY missense_variant
SY synonymous_variant
INT intron_variant The SO term is always
provided beyond 8 bases into
the intron to match the SO
definition, however the CLASS
value is provided according to
@ssrange, so this will not be a
one-to-one mapping when
@ssrange is not 8.

5PU 5_prime_UTR _variant

3PU 3_prime_UTR _variant

Page 12 of 34

11 OUTPUT
Variant annotations discussed in Section 9 can be outputted by CAVA in two
different file formats; VCF and CSV. The output format is specified in the

configuration file by option flag @outputformat. The structure of output files are
described in this section.

11.1 Output in VCF format

If VCF output format is used, variant call annotations are added to the INFO field
of the VCF file. Following the VCF specification, annotation flags are separated by
semicolons in the INFO field. For example:

TYPE=SUBSTITUTION;ENST=ENST00000379410;GENE=PLEKHN1;TRINFO=+/8.6kb/1
6/2.4kb;LOC=3UTR;CSN=c.*483A>G;CLASS=3PU;ALTFLAG=None;DBSNP=rs668558

If the input is a VCF file, the variant annotation flags are appended to the original
INFO field values of each variant. The ID, CHROM, POS, REF and ALT fields in the
output VCF file will be the same as the ID, chromosome, position, reference and
alternative allele values in the input file; i.e. even if indels are left or right aligned
in some transcript, the original genomic coordinates and alleles are given in the
output. The QUAL and FILTER field values are also copied from the input file.
Furthermore, if the input VCF file contains the FORMAT column and sample-
specific genotype calls, these are also present in the output file.

11.1.1 Multiallelic VCF records

Multiallelic variant calls represented in a single VCF record in the input are also
outputted in the same VCF record in the output. Each alternative allele has
different TYPE, LOC, CSN, CLASS, SO, ALTFLAG, ALTANN, ALTCLASS, ALTSO and
DBSNP flag values. If reported in a single VCF record, the multiple annotations
corresponding to the different alternative alleles are comma-separated in the
TYPE, LOC, CSN, CLASS, SO, ALTFLAG, ALTANN, ALTCLASS, ALTSO and DBSNP
flags. For example, for the following triallelic VCF record describing a 1-base
deletion and a 1-base insertion

#CHROM POS ID REF ALT
8 3443799 . GA G,GAA

the TYPE and CSN annotation flags are given as follows:

TYPE=Deletion,Insertion;
CSN=c.1098-18delT,c.1098-18dupT;

11.1.2 Variants overlapping with multiple transcripts

Variants that overlap with multiple transcripts have different ENST, GENE,
TRINFO, LOC, CSN, CLASS, SO, ALTFLAG, ALTANN, ALTCLASS and ALTSO
annotation flag values corresponding to the different transcripts. In this case, the
multiple annotations values are colon-separated in these annotation flags. For

Page 13 of 34

instance, the following biallelic substitution overlaps with two transcripts in the
whole exome database; ENST00000438763 and ENST00000452392.

#CHROM POS ID REF ALT
6 32784783 . C T

The ENST, CSN and CLASS annotations corresponding to the two transcripts are
given as follows:

ENST=ENST00000438763:ENST00000452392;
CSN=c.-55G>A:c.1933-54G>A;
CLASS=5PU:INT;

11.1.3 Multiallelic calls overlapping with multiple transcripts

If a VCF record describes a multiallelic variant call that overlaps with multiple
transcripts, the two rules above are combined: annotation values referring to
different transcripts are colon-separated and values corresponding to different
alternative alleles are comma-separated. For example, the following triallelic
substitution overlaps with two transcripts in the whole exome set;
ENST00000325203 and ENST00000344683.

#CHROM POS ID REF ALT
8 6389889 . C GA

The GENE, LOC and CSN annotation flags are given as follows:

GENE=ANGPT2:MCPH1,ANGPT2:MCPH1;
LOC=Ex2:In12/13,Ex2:In12/13;
CSN=c.408G>C_p.=:c.2214+32439C>G,c.408G>T_p.=:c.2214+32439C>A

Note that both alternative alleles in both genes (ANGPT2 and MCPH1) cause
synonymous and intronic changes, respectively.

11.2 Output in CSV format

If CSV output format is used, variant call annotations are written to a TAB-
delimited TXT file that by default contains the following 17 columns:

1.ID (i.e. Variant call ID taken from the input file)
2. CHROM (i.e. chromosome of variant)

3. POS (i.e. genomic position of variant)

4. REF (i.e. reference allele of variant)

5. ALT (i.e. alternative allele of variant)

6. QUAL (i.e. QUAL value in the input VCF record)
7, FILTER (i.e. FILTER value in the input VCF record)
8. TYPE (i.e. value of TYPE annotation flag)

9. ENST (i.e. value of ENST annotation flag)

10. GENE (i.e. value of GENE annotation flag)

11. TRINFO (i.e. value of TRINFO annotation flag)
12. LOC (i.e. value of LOC annotation flag)

Page 14 of 34

13. CSN (i.e. value of CSN annotation flag)

14. CLASS (i.e. value of CLASS annotation flag)

15. SO (i.e. value of SO annotation flag)

16. IMPACT (i.e. value of IMPACT annotation flag)

17. ALTFLAG (i.e. value of ALTFLAG annotation flag)
18. ALTCLASS (i.e. value of ALTCLASS annotation flag)
19. ALTSO (i.e. value of ALTSO annotation flag)

20. DBSNP (i.e. value of DBSNP annotation flag)

11.2.1 Multiallelic calls and/or multiple transcripts

Every line of the output CSV file represents a single variant call. Unlike in the VCF
format, annotation information for multiallelic variant calls are split to multiple
lines. If a variant call overlaps with multiple transcripts, the information is also
split into multiple records. Two examples are shown below.

For the single VCF record in Section 11.1.1, two lines will be added to the output
CSV file:

8 3443799 GA G 42 PASS Deletion ENST00000537824 CSMD1 ...
8 3443799 GA GAA 42 PASS Insertion ENST00000537824 CSMD1 ...

Another example is the single VCF record in Section 11.1.3 which will be
represented by four lines in the output CSV file:

8 6389889 C G 200 PASS SUBSTITUTION ENST00000325203
ANGPT2 ..

8 6389889 C G 200 PASS SUBSTITUTION ENST00000344683
MCPH1

8 6389889 C A 200 PASS SUBSTITUTION ENST00000325203
ANGPT2 ..

8 6389889 C A 200 PASS SUBSTITUTION ENST00000344683
MCPH1

12 VARIANT CALL FILTERING

CAVA offers a number of different options to filter the input variant set so that
only the selected subset of calls are annotated and written to the output file.

12.1 Filtering by variant type

Specified in the configuration file by flag @type, this option can be used to select
only a particular variant type: substitutions, insertions, deletions, complex or all
indels. Alternatively, setting the value to 'ALL' makes CAVA annotate and output
every variant calls regardless of their type.

Page 15 of 34

12.2 Filtering by VCF filter

CAVA can filter out variant call records based on the FILTER field of the input
VCF file. If this option is switched on in the configuration file by the boolean flag
@filter, CAVA will only annotate VCF records that have a PASS filter value.

12.3 Filtering by BED file

CAVA can apply a filter on variant calls based on a BED file describing a set of
genomic regions of interest. If this option is used, the program will only annotate
and output variants which overlap with any of the genomic regions specified in
the BED file. The BED file should use 0-based genomic coordinates. It must be
compressed by bgzip and indexed by Tabix. Both the bgzipped BED file and the
index file (e.g. panel.bed.gz and panel.bed.gz.tbhi) should be available in the same
directory. The name of the BED file should be given in the configuration file at
option flag @target.

12.4 Filtering by gene list

Another option CAVA offers for filtering is restricting variant annotations to a
subset of genes of interest. In this case, only variant calls overlapping with
particular genes are annotated and outputted. The list of gene (HGNC) symbols
of interest should be given in a simple txt file (see an example below). The name
of the txt file must be specified in the configuration file by option flag @genelist.

Example gene list txt file:
BRCA1

BRCA2

FANCD2

12.5 Filtering by transcript list

Similarly to filtering by gene list, CAVA can restrict variant annotations to a
subset of transcripts of interest. In this case, only variant calls overlapping with
particular transcripts are annotated and outputted. The list of Ensembl
transcript IDs (ENST) should be given in a simple txt file (see an example below).
The name of the txt file must be specified in the configuration file by option flag
@transcriptlist.

Example transcript list txt file:
ENST00000380152
ENST00000358533
ENST00000338591

Page 16 of 34

12.6 Filtering by SNP list

Finally, CAVA can filter variant annotations based on a list of selected SNPs. In
this case, only base substitutions annotated with particular dbSNP identifiers are
outputted. The list of dbSNP IDs should be given in a simple txt file (see an
example below). The name of the txt file must be specified in the configuration
file by option flag @snplist.

Example SNP list txt file:
rs4104967

rs206437

rs149472673

Note that if both @genelist and @transcriptlist are specified, in order to be
outputted, variants have to satisfy both requirements: i.e. both their ENST and
GENE annotations should be in the @transcriptlist and @genelist files,
respectively. If @snplist is set, variants with DNSNP annotation found in the
@snplist file are outputted regardless of whether their ENST and/or GENE
annotations are listed in the @transcriptlist and @genelist files.

12.7 Filtering non-annotated calls

Some variants may neither overlap with any of the transcripts in the local
Ensembl transcript dataset nor correspond to any SNPs in the local dbSNP
dataset. These non-annotated variants get only one non-empty annotation flag;
the TYPE flag. CAVA offers an option to filter out these non-annotated calls. If the
option is switched on in the configuration file by option flag @nonannot, only
variant calls with either non-empty ENST or DBSNP annotation flags are
outputted.

13 THE DBPREP TOOL

As discussed above, CAVA relies on local database files to perform transcript-
based or SNP-based variant annotations. Both the Ensembl transcripts and
dbSNP databases used by CAVA have specific formats and are compressed and
indexed with Tabix. A simple tool, dbprep, is provided to generate the correct
database files given a user-specified set of Ensembl or dbSNP identifiers.

13.1 Creating transcript database file with dbprep

This section describes how to generate the transcript database file given a list of
Ensembl identifiers. The list of ENST IDs should be given in a text file. For
example, let the file transcripts.txt contain:

ENST00000398334
ENST00000263121

Page 17 of 34

ENST00000314074

dbprep will download the Ensembl trasncript database via FTP and retrieve
relevant information about these transcripts. To generate the transcript
database file, one can use the following command:

python dbprep.py -i transcripts.txt -e 65 -0 output

Option -i specifies the name of input file containing the transcript IDs of interest.
Note that if no input file is given, dbprep will retrieve all transcripts from the
Ensembl database. Option -o defines the name of output file to be created by
dbprep. Finally, option -e specifies the version of the Ensembl database. In the
above example, Ensembl release 65 is used.

By default, dbprep downloads the transcript database created based on the
human reference genome build GRCh37. It is possible to use a different reference
genome build specified by the -g command line flag. (Note that genome build
GRCh38 can only be used with Ensembl release 76 or later.) For example:

python dbprep.py -i transcripts.txt -e 78 -g GRCh38 -o output

Running the above example, dbprep will create an output file named output.gz,
which is already the compressed and Tabix-indexed database file (an index file
output.gz.thi is also created). Running CAVA, one can refer to this database file in
the configuration file by option flag @ensembl (see Section 4):

@ensembl = output.gz

13.2 Creating dbSNP database file with dbprep

dbprep can also be used to generate the correct dbSNP database file required by
CAVA given a list of dbSNP identifiers. The list of dbSNP IDs should be given in a
text file. For example, let the file SNPs.txt contain:

rs113145990
rs112294815
rs77918077

dbprep also requires the appropriate compressed VCF file (00-All.vcf.gz) released
by NCBI containing all data about the entire set of SNPs in the dbSNP database.
This file can be downloaded from the official FTP site of dbSNP:
ftp://ftp.ncbi.nih.gov/snp/organisms/

In order to generate the dbSNP database file used by CAVA, given for instance
dbSNP release 137, one can run the following command:

python dbprep.py -i SNPs.txt -s 137 -d 00-All.vcf.gz -0 output
Page 18 of 34

where option -i specifies the name of the input file containing the dbSNP IDs of
interest, option -s specifies the version of the dbSNP release, option -d refers to
the name of the vcf.gz file downloaded from the dbSNP FTP site and -o defines
the name of the output file.

Running this command, dbprep will create an output file named output.gz, which
is already the compressed and Tabix-indexed database file (an index file
output.gz.thi is also created). Running CAVA, one can refer to this database file in
the configuration file by option flag @dbsnp (see Section 4):

@dbsnp = output.gz

14 DEFAULT TRANSCRIPT AND DBSNP DATABASE

Although the dbprep tool gives the user flexibility to create any transcript and
SNP database files, default transcript and SNP databases can also be downloaded
from the project's webpage. The default transcript databases available include a
whole human exome transcript set and a SNP set based on version 138 of the
dbSNP database.

14.1 Whole exome transcript database file

The default exome_ 65_GRCh37.gz (and exome_65_GRCh37.gz.tbi) file contains
19650 transcripts from Ensembl release 65 (GRCh37 reference genome)
representing the whole exome (the procedure of selecting these transcripts is
described in detail in the CAVA publication and the list of Ensembl transcript
identifiers can be downloaded from the CAVA website). The size of the database
fileis 1.9 MB.

As described above, the transcript database can be specified in the configuration
file as

@ensembl = exome_65_GRCh37.gz

14.2 dbSNP138 database file

The default dbSNP138.gz (and dbSNP138.gz.tbi) file contains all SNP records
from the dbSNP database release 138. A total number of 52405710 SNPs are
included. The size of the file is 424 MB.

As described above, the SNP database can be specified in the configuration file as

@dbsnp = dbSNP138.gz

Page 19 of 34

15 RUN TIMES

Measured on a 2.9 GHz Intel Core i7 machine, CAVA was able to annotate 49291
VCF records per minute (approx. 3 million record per hour), or 106166 VCF
records per minute (approx. 6.4 million record per hour) using multithreading.

16 LOG FILE

If switched on in the configuration file by option flag @log, CAVA creates a log
file during the annotation process, writing out status information and possible
error messages. The name of the log file is created from the output file prefix
defined at the command line (-0) to which the "log' file extension is added.

17 EXAMPLES

Three examples are presented in this final section explaining the configuration
file, input file(s) and output file for each. Example 1 and 2 describe the scenario
of annotating high quality variants overlapping gene transcripts from exome
data, while Example 3 illustrates annotation of variants from a targeted panel.

17.1 Example 1

17.1.1 Configuration file
In the first example, the configuration file (config.txt) is as follows (see
explanation below):

@inputformat = VCF
@outputformat = VCF
@reference = hg19.fa
@ensembl = exome_65_GRCh37.gz
@dbsnp =.
@nonannot = TRUE
@filter = FALSE
@type = ALL

@target =.

@genelist = .
@transcriptlist = .
@snplist=.

@logfile = FALSE
@givealt = FALSE
@ontology = CLASS

Page 20 of 34

Both the input and output formats are set to VCF by option flags @inputformat
and @outputformat, respectively. The reference genome (hg19.fa) located in the
current directory is specified by option flag @reference. Transcript-based
annotation is switched on (based on the default whole exome transcript
database specified by option flag @ensembl). On the other hand, SNP-based
annotation is switched off as @dbsnp is empty. Since option flag @nonannot is
set to True, even variants that do not overlap with any transcripts are outputted.
No filtering will be performed based on the FILTER field of the input VCF file as
@filter is set to False. CAVA will output all types of variants (@type=ALL). Since
@target, @genelist, @transcriptlist and @snplist are all set empty, no further
variant filtering is carried out. Only the CLASS ontology will be reported for
variants (@ontology=CLASS). Alternative most 5’ sequence and CLASS
annotations are not reported, only the ALTFLAG flag is outputted
(@givealt=FALSE). Finally, as option flag @log is set to False, no log file is
created.

17.1.2 Input file
The input file (input.vcf) is in VCF format containing 3 records, one of which
represents a triallelic variant call:

#CHROM POS ID REF ALT QUAL FILTER INFO

9 137735017 1 T TAGGG 200 PASS ANYFLAG=1
13 32915330 2 GTGGGTAAGT G 926 PASS ANYFLAG=4
3 197566254 3 T CA 200 PASS ANYFLAG=2

Note that these input VCF records already have information in their INFO field
(“ANYFLAG").

17.1.3 Running CAVA

CAVA is run by the following command; command line argument -c specifying
the configuration file name, argument -i specifying the input file name and -o
specifying the prefix of output file name:

python path/to/cava/cava.py -c config.txt -i input.vcf -o output

17.1.4 Output file

The output file (output.vcf) created by CAVA follows VCF format and it contains
the same CHROM, POS, ID, REF, ALT, QUAL and FILTER values as the input VCF
file. However, the INFO fields of the three VCF records contain additional
information about the results of variant annotation.

INFO field of first VCF record:
ANYFLAG=1;TYPE=Insertion;ENST=ENST00000371817;GENE=COL5A1;TRINFO=+/203
.1kb/66/8.5kb;LOC=3UTR;CSN=c.*870_*873dupGGGA;CLASS=3PU;IMPACT=3;ALTFLAG
=AnnNotClass

Explanation: According to the INFO field, the first VCF record describes a 4-base
insertion (duplication) in the gene COL5A1 affecting the 3’ untranslated region of
the ENST00000371817 transcript. The transcript is forward-stranded, has a

Page 21 of 34

length of 203.1 kb including 66 exons which together make up 8.5 kb of coding
sequence. The CSN annotation of the variant is ‘c.*870_*873dupGGGA’. The
insertion is classified as a 3PU (3’ UTR) variant with an impact level of 3, and has
an alternative indel representation.

INFO field of second VCF record:
ANYFLAG=4;TYPE=Deletion;ENST=ENST00000380152;GENE=BRCA2;TRINFO=+/83.7k
b/27/10.9kb;LOC=Ex11-In11/12;CSN=c.6839_6841+6del9;CLASS=ESS;IMPACT=1;
ALTFLAG=None

Explanation: According to the INFO field, the second VCF record describes a 9-
base deletion in the gene BRCA2 overlapping the boundary of Exon 11 and
Intron 11/12 in the ENST00000380152 transcript. The transcript is forward-
stranded, has a length of 83.7 kb including 27 exons which together make up
10.9 kb of coding sequence. The CSN annotation of the variant is
‘c.6839_6841+6del9’. The deletion is classified as an ESS (essential splice site)
variant, because the +1 and +2 bases are deleted with an impact level of 1, and
has only one indel representation.

INFO field of third VCF record:

ANYFLAG=2;TYPE=SUBSTITUTION,
SUBSTITUTION;ENST=ENST00000334859,ENST00000334859;GENE=LRCH3,LRCH3;T
RINFO=+/80.3kb/19/2.3Kkb,+/80.3kb/19/2.3kb;LOC=Ex10,Ex10;CSN=c.1314T>C_p.=,c.
1314T>A_p.Tyr438X;CLASS=SY,SG;IMPACT=3,1;ALTFLAG=None,None

Explanation: According to the INFO field, the third VCF record describes a
triallelic variant with both alternative alleles representing a base substitution.
The substitutions are located within the gene LRCH3, in Exon 10 of the
ENST00000334859 transcript. The transcript is forward-stranded, has a length
of 80.3 kb including 19 exons which together make up 2.3 kb of coding sequence.
The two alternative alleles are flagged with different CSN and CLASS annotations.
The CSN annotation of the first base substitution is ‘c.1314T>C_p.=" and it is
classified as a SY (synonymous) variant with an impact level of 3. By contrast, the
CSN annotation of the second substitution is ‘c.1314T>A_p.Tyr438X’ and it is
classified as an SG (stop-gain) variant as amino acid Tyr438 changes into a stop
codon and has impact level of 1).

17.2 Example 2

17.2.1 Configuration file
In the second example, the configuration file (config.txt) is as follows (see
explanation below):

@inputformat = VCF
@outputformat = CSV

@reference = hg19.fa

@ensembl = exome_65_GRCh37.gz
@dbsnp = dbSNP138.gz
@nonannot = FALSE

Page 22 of 34

@filter = TRUE

@type = DELETION
@target =.

@genelist = genelist.txt
@transcriptlist = .
@snplist=.

@givealt = FALSE
@logfile = TRUE
@ontology = CLASS

The input format is set to VCF, the output format is set to CSV by option flags
@inputformat and @outputformat, respectively. The reference genome (hg19.fa)
is specified by option flag @reference. Both transcript-based and SNP-based
annotations are performed (using the default whole exome transcript database
and the dbSNP138 database specified by option flags @ensembl and @dbsnp,
respectively). Unlike in the previous example, non-annotated variants are not
written to the output file (@nonannot=FALSE). In addition, records with no PASS
value in their VCF FILTER field are also filtered out (@filter=TRUE). As set by
option flag @type, only deletions are considered for annotation. Furthermore, a
text file containing a list of gene identifiers is provided (specified by option flag
@genelist). Only variants that overlap with at least one gene found on this list
are outputted. Only the CLASS ontology will be reported for variants
(@ontology=CLASS). Alternative most 5’ sequence and CLASS annotations are
not reported, only the ALTFLAG flag is outputted (@givealt=FALSE). Finally,
since option flag @log is set to TRUE, a log file is being created during variant
annotation.

17.2.2 Input file
The input file (input.vcf) is in VCF format containing 7 records; 6 deletions and 1
base substitution:

#CHROM POS ID REF ALT QUAL FILTER INFO
1 152192825 1 C T 200 PASS

1 152195728 2 AT A 200 PASS

5 176070830 3 GC G 78 PASS

5 176071205 4 AG A 106 PASS

7 25266569 5 TTAA T 200 PASS

17 15341736 6 CAG C 54 SomeFilter

17 15670733 7 CA C 20 PASS

17.2.3 Gene list file
Furthermore, let the gene list file (genelist.txt) contain the following four gene
symbols:

HRNR
EIF4E1B
BRCA1
BRCAZ2

Page 23 of 34

17.2.4 Running CAVA

The same as in Section 17.1.3.

17.2.5 Output file

The output file (output.txt) created by CAVA follows the TAB-separated CSV

format:

ID | CHROM POS ALT | QUAL | FILTER | TYPE

ENST GENE TRINFO Loc CSN

IMPACT

ALTFLAG

DBSNP

)
-

152195728 | AT [A 200 | PASS Deletion

ENST00000368801 | HRNR -/12.1kb/3/9.6kb | Ex2 c.ldelA

1

AnnAndClass | .

w
«

176070830 | GC [G 78 | PASS Deletion

ENST00000318682 | EIF4E1B | +/16.0kb/9/2.0kb | In5/6

€.296+97delC

4

AnnNotClass | .

-~
«

176071205 | AG A 106 | PASS Deletion

ENST00000318682 | EIF4E1B | +/16.0kb/9/2.0kb | In5/6

€.297-170delG

4

AnnNotClass | .

Out of the seven input VCF records, only three variant calls are outputted. Record
1 is not included in the output because it is a substitution and only deletions are
annotated in this example. Record 5 is filtered out because this deletion affects
the gene NPVF which is not present on the list in genelist.txt. Record 6 is
excluded because it has a non-PASS FILTER value in the input VCF file. Finally,
record 7 does not overlap with any Ensembl transcript so it is filtered out as a

non-annotated variant.

The first variant in the output file (record 2) describes a single base deletion
within the gene HRNR, in Exon 2 of the ENST00000368801 transcript. The
transcript is reverse-stranded, has a length of 12.1 kb including 3 exons which
together make up 9.6 kb of coding sequence. The CSN annotation of the variant is
‘c.1delA’. The deletion is classified as an FS (frame-shift) variant and has an
alternative indel representation which affects its class. The other two outputted
variants are also single base deletions, both within the gene EIF4E1B, in Intron
5/6 of the ENST00000318682 transcript. The transcript is forward-stranded,
has a length of 16.0 kb including 9 exons which together make up 2.0 kb of
coding sequence. The CSN annotations of the two deletions are ‘c.296+97delC’
and ‘c.297-170delG’, respectively. Both are classified as INT (intronic) variants
and have alternative indel representations.

17.2.6 Log file

The following log file (output.log) is written during variant annotation:

2014-04-03 12:52:47,850 INFO:
2014-04-03 12:52:47,850 INFO:
2014-04-03 12:52:47,850 INFO:
2014-04-03 12:52:47,850 INFO:
2014-04-03 12:52:47,851 INFO:
2014-04-03 12:52:47,851 INFO:
2014-04-03 12:52:47,851 INFO:
2014-04-03 12:52:47,851 INFO:
2014-04-03 12:52:47,851 INFO:
2014-04-03 12:52:47,851 INFO:
2014-04-03 12:52:47,852 INFO:
2014-04-03 12:52:47,864 INFO:
2014-04-03 12:52:47,866 INFO:

CAVA v1.1.1 started.
Configuration file - config.txt
Input file (VCF) - input.vcf
Output file (CSV) - output.txt
Connected to reference genome.
Connected to Ensembl database.
Connected to dbSNP database.
Gene list loaded.

7 records to be annotated.
Variant annotation started.

10% of records annotated.

20% of records annotated.

30% of records annotated.

Page 24 of 34

2014-04-03 12:52:47,868 INFO: 40% of records annotated.
2014-04-03 12:52:47,872 INFO: 50% of records annotated.
2014-04-03 12:52:47,873 INFO: 60% of records annotated.
2014-04-03 12:52:47,874 INFO: 100% of records annotated.
2014-04-03 12:52:47,874 INFO: Output file = 0.4 Kbyte
2014-04-03 12:52:47,874 INFO: CAVA successfully finished.

17.3 Example 3

17.3.1 Database preparation

The third example illustrates how one can generate and use custom transcript
and SNP databases instead of using the default sets. Let the file transcripts.txt
contain the following Ensembl transcript identifiers of interest:

ENST00000327337
ENST00000358821
ENST00000369902

The dbprep tool is used to generate the corresponding transcript database
(based on Ensembl release 65):

python path/to/cava/dbprep.py -i transcripts.txt —-e 65 -0 custom_transcripts
Similarly, let the file snps.txt contain the following dbSNP identifiers of interest:

rs11147489
rs4263028
rs111588517

The corresponding SNP database (based on dbSNP version 138) is generated by

python path/to/cava/dbprep.py -i snps.txt -s 138 -d 00-All.vcf.gz
-0 custom_SNPs

17.3.2 Configuration file
The configuration file (config.txt) is as follows (see explanation below):

@inputformat = TXT
@outputformat = VCF
@reference = hg19.fa
@ensembl = custom_transcripts.gz
@dbsnp = custom_SNPs.gz
@nonannot = FALSE
@filter = FALSE

@type = SNP

@target =.

@genelist =
@transcriptlist = .
@snplist=.

Page 25 of 34

@logfile = FALSE
@givealt = FALSE
@ontology = CLASS

The input format is set to TXT, the output format is set to VCF by option flags
@inputformat and @outputformat, respectively. Both transcript-based and SNP-
based annotations are performed, using the custom transcript and dbSNP
databases generated above (custom_transcripts.gz and custom_SNPs.gz). As in the
previous example, non-annotated variants are not written to output
(@nonannot=FALSE). Finally, only base substitutions are annotated and
outputted (@type=SUBSTITUTION).

17.3.3 Input file
The input file (input.txt) is in TXT format (see Section 5.2) containing five
records, one of which describes a triallelic call.

#ID CHROM POS REF ALT
1 12 50745863 C AG
2 12 50759433 AAATG A
3 13 32906980 A G
4 13 32929478 C T
5 18 72228124 A G

17.3.4 Running CAVA
The extension of input file is changed to TXT:

python path/to/cava/cava.py -c config.txt -i input.txt -o output

17.3.5 Output file

The output file (output.vcf) created by CAVA follows VCF format and the results
of variant annotation are reported in the INFO field. Out of the 5 input records
only 3 are present in the output. Record 2 is filtered out as it is not a substitution.
Record 3 is excluded because, although it is a substitution affecting BRCA2, this
gene is not included in the custom transcript database, therefore the variant is
considered non-annotated. Record 4 is written to the output because its dbSNP
identifier is included in the custom SNP database. As records 1 and 5 describe
substitutions in the FAM186A and CNDP1 genes which are included in the
custom transcript database, these variants are written to the output file.

As shown by the INFO field of record 1, this triallelic substitution is located
within the gene FAM1864, in Exon 4 of the ENST00000327337 transcript. The
transcript is reverse-stranded, has a length of 69.2 kb including 8 exons which
together make up 7.1 kb of coding sequence. The CSN annotations for the
different alternative alleles are ‘c.4752G>T_p.=" and ‘c.4752G>C_p.=,
respectively. Both are classified as SY (synonymous) variants.

The INFO field of record 2 reports that this substitution does not overlap with
any transcripts in the custom database but has a dbSNP identifier (rs11147489).

Page 26 of 34

Finally, as shown by the INFO field of record 5, this substitution is located within
the gene CNDP1, in Exon 4 of the ENST00000358821 transcript. The transcript is
forward-stranded, has a length of 50.6 kb including 12 exons which together
make wup 2.2 kb of coding sequence. The CSN annotation is
‘c.337A>G_p.lle113Val’ and the variant is classified as NSY (non-synonymous)
variant. It also has a dbSNP identifier reported (rs4263028)

18 CONTACT

Please send any bug reports, comments or feature requests for CAVA to Marton
Miinz (marton.munz@well.ox.ac.uk) or Elise Ruark (Elise.Ruark@icr.ac.uk).

Page 27 of 34

APPENDIX - THE CLINICAL SEQUENCING NOMENCLATURE (CSN) v1.0

Background

A fixed, standardized, versioned nomenclature for reporting clinical sequence data, identical for all
mutation detection platforms and readily interchangeable with historic data is of vital importance. It
allows integration of sequencing data from multiple sources and facilitates more accurate clinical
interpretation of genomic information. The Clinical Sequencing Nomenclature (CSN) aims to achieve
this. It follows the principles of the existing HGVS nomenclature [1], with minor amendments to
ensure compatibility and integration of historical clinical sequence data, whilst also allowing high-

volume automated output from NGS platforms.

The aims of CSN

The aims of CSN are
* To provide a fixed, standardized system in which each variant has a single notation
* To use a logical terminology understandable to non-experts
* To provide a nomenclature that allows easy visual discrimination between the major classes

of variant in clinical genomics

Description of CSN

The CSN is described in detail below. General points:
* (SN provides nomenclature for three basic types of variant, defined at the nucleotide level
o Substitution: a change of one base to another
o Indel: insertion or deletion of one or more bases
o Complex: a change involving consecutive base other than simple loss or gain of
sequence.
¢ Other types of variation exist (e.g. inversions, conversions, or translocations) but are not
currently encompassed by the CSN.
¢ All CSN descriptions represent a variant in a single allele.
¢ All CSN variants are reported with a single descriptor. Nucleotide and amino acid level

descriptions are joined with an underscore.
Use of the CSN requires the following:

* Reference sequence transcript

* Variant sequence to be annotated

Narca 70 ~£724

The reference sequence transcript

The reference sequence transcript is the nucleotide (DNA) and amino acid (protein) sequence

against which variation in the sequence being annotated is described.

The nucleotide sequence defines the amino acid sequence according to the genetic triplet code:

three nucleotides (termed a ‘codon’) code for one amino acid [2].

The transcript includes:

Exons — regions of sequence which are translated into the protein. The protein code starts
with a methionine and ends with a stop codon.

Introns — regions of sequence between exons that are ‘spliced’ out and not included in the
protein

UTR —regions that are transcribed but not translated — the region before the protein starts is
called the 5’ UTR and the region after the protein ends is called the 3’ UTR.

Reference sequence position numbering

The sequence is numbered from the 5’ to 3’ direction of the transcript.

Nucleotide (DNA) sequence level positions are prefaced with “c.”

Amino acid (protein) sequence level positions are prefaced with “p.”

“c.1” is always the first protein-coding base: “A” of the initiating methionine.

“p.1” is always the initiating methionine.

Positions within the intron and UTR are numbered in relation to the nearest exon. Positions
5’ of the nearest exon are denoted with “-”. Positions 3’ of the nearest exon are denoted
with “+”.

A base that occupies the central position within an intron comprised of an odd number of

bases, i.e. equidistant from neighboring exons, is assigned “+”.

Examples:
c.10T The tenth protein-coding base.
c.-10T The tenth base position in the sequence situated 5’ of the translation initiation
codon.
c.+10T The tenth base position in the sequence situated 3’ of the translation termination

codon.

¢.100+10T Position c.100 is the final coding base of the exon.

The base indicated is the tenth intronic base, situated 3’ from the splice donor site.

c.101-10G Position c.101 is the first coding base of the exon.

The base indicated is the tenth intronic base, situated 5’ to the splice acceptor site.

Naca 7N A£D4

Variant description

* The CSN uses the three letter code to describe amino acids [2] with the exception of ‘X’
which is used to describe any stop codon.

* Asingle descriptor with the nucleotide and amino acid (if appropriate) level changes, linked
with an underscore is given.

* Variants that do not change the amino acid (synonymous) are described at the amino acid
level with “p.="

* Variants that change the amino acid (nonsynonymous, also called missense) are described at
the amino acid level with the reference amino acid(s), the position, and the variant amino
acid(s).

* Stop-gain variants (also called nonsense) are designated at the amino acid level with ‘X’.

* Variants which change the initiating methionine codon are described at the amino acid level
as “p.Met1?”

* Variants which result in loss of the termination codon (stop-loss variants) are described at
the amino acid level as “p.extX” followed by either the length of the predicted amino acid
extension when a subsequent stop codon exists within the continued reading frame, or “?”
when no subsequent stop codon exists within the 3’ UTR sequence along the continued
reading frame.

* Only nucleotide level information is provided for variants in UTR or intronic sequence.

* Indel variants and complex variants which alter the protein sequence length can either shift
the reading frame (frameshifting) or leave the reading frame unaltered (inframe).

* Only a nucleotide level description is given for frameshifting variants. Most lead to nmRNA
decay and removal of the transcript, rather than a truncated protein [3]

* Indels and complex variants with multiple possible representations according to the

reference sequence are described in the CSN at the most 3’ position in the coding transcript.

Narca 2N A£D2A4

Substitution variants

Substitution variants are those in which one base is ‘substituted’ for another base. They are

described at the nucleotide level with the position, followed by the reference base(s), “>”, and the

variant base(s) and at the amino acid level according to the impact.

Examples:

Cc.99A>C p.=

C is substituted for base 99 (A). There is no change to the amino acid
(synonymous variant).

€c.99A>C_p.GIn33His

C is substituted for base 99 (A), resulting in histidine replacing glutamine
(nonsynonymous variant).

c.78-3G>T

T is substituted for the base positioned three bases 5’ of the first base
(78) of the nearest exon. This is an intronic variant.

¢c.97A>T_p.Lys33X

T is substituted for base 97, resulting in a stop codon replacing lysine with
a stop codon (stop-gain variant).

C.999A>C_p.extX?

C is substituted for base 999, resulting in a change in the termination
codon and no new stop codon exists within the 3’ UTR sequence along
the continued reading frame (stop-loss variant).

C.999A>C_p.extX12

C is substituted for base 999, resulting in a change in the termination
codon with a predicted extension by 12 amino acids where the next stop
codon exists within the continued reading frame (stop-loss variant).

c.3G>A_p.Met?

A is substituted for base 3, resulting in a change in the initiating
methionine codon.

Narca P21 A£D24

Indel variants

Indel variants can be further classified into three categories: deletions, insertions and duplications.

Each category is described below.

Deletions

Deletions are described at the nucleotide level with the position of the deleted bases followed by

“del” and either the deleted bases (deletions of 1-4 bases) or the number of deleted bases (deletions

of 5 or more bases).

When more than one base is deleted, the positions of the deleted bases are described as the first

and last deleted positions separated by an underscore.

Examples:

¢.100delG The single base 100 is deleted causing a
frameshift.

c.121+5delG The base positioned five bases 3’ of the final

base (121) of the nearest exon is deleted. This
is an intronic variant.

¢.100_102delTTT_p.Phe34del

Three bases are deleted, resulting in an
inframe deletion of phenylalanine.

¢.100_108del9 p.Phe34_ Met36del

Nine bases are deleted, resulting in an inframe
deletion of three amino acids.

¢.107_109delTGC_p.Met36_Pro37delinsThr

Three bases are deleted, resulting in threonine
replacing methionine and proline.

Narca D A£924

Insertions

Insertions are described at the nucleotide level with the position of the insertion followed by “ins”

and the inserted bases.

The position of the insertion is described by the two flanking bases of the reference sequence

separated by an underscore, thus the numbers presented are always consecutive.

Examples:

c.76_77insT

T is inserted between bases 76 and 77 causing a
frameshift.

c.77+4_77+5insAA

AA is inserted between the fourth and fifth bases
3’ of the final base (77) of the nearest exon. This
is an intronic variant.

¢.101_102insCTG_p.Phe34_Thr35insCys Three bases are inserted between bases 101 and

102, resulting in an inframe insertion of cysteine.

¢.103_104insGGT_p.Thr35delinsArgSer Three bases are inserted between bases 103 and

104, resulting in arginine and serine replacing
threonine.

Duplications:

Duplications are a specific category of insertion where the inserted base sequence is a duplication of

the immediately preceding reference sequence.

¢ Duplications can comprise any number of bases, but the category does not include an

inserted sequence that duplicates a preceding reference sequence motif more than once.

¢ Duplications are described at the nucleotide level with the positions of the duplicated

sequence followed by “dup” and either the duplicated bases (duplications of 1-4 bases) or

the number of duplicated bases (duplications of 5 or more bases).

* The positions of the duplicated sequence are defined by reference to the duplicated

reference positions, not the point of insertion.

* When more than one base is duplicated, the positions of the duplicated bases are described

as the first and last duplicated positions separated by an underscore.

Examples:
c.5dupT The single base 5 is duplicated causing a frameshift.
c.5_9dup5 The five bases 5-9 are duplicated causing a frameshift.

c.7_12dup6_p.His3_Pro4dup

The six bases 7-12 are duplicated, resulting in the duplication
of histidine and proline.

Narca P A£724

Complex variants

Complex variants are those which involve consecutive bases but are not simple deletions or

insertions. They are described at the nucleotide level with the positions of the deleted bases

followed by “delins” and the inserted nucleotides.

Variants involving consecutive bases are described as a single complex variant rather than
separate multiple events such as a deletion followed by a substitution.

Complex variants may or may not result in a change in sequence length.

Complex variants can be frameshifting or inframe variants (complex indel) or result in no
change in sequence length (complex substitution).

The positions of the deleted bases are described by the range of bases that are lost and
being replaced.

When more than one base is deleted, the positions of the deleted bases are described as the

first and last deleted positions separated by an underscore.

Examples:

c.2854 2855delinsAT_p.Ala952Met The two bases 2854-2855 are replaced
with AT, resulting in methionine
replacing alanine (complex substitution).

c.112_116delinsTG The five bases 112-116 are replaced with
TG resulting in a frameshift (complex
indel).

¢.100_102delinsGTTAAG_p.Ser34delinsVallLys The three bases 100-102 are replaced
with six bases, resulting in valine and
lysine replacing serine (complex indel).
Contact

Please send any comments or requests to Nazneen Rahman (rahmanlab@well.ox.ac.uk) or Elise
Ruark (Elise.Ruark@icr.ac.uk).

References

1. den Dunnen,].T. and S.E. Antonarakis, Nomenclature for the description of human
sequence variations. Hum Genet, 2001. 109(1): p. 121-4.

2. Codons and amino acids (Nomenclature for the description of sequence variants: codons
and amino acids) http://www.hgvs.org/mutnomen/codon.html

3. Chang, Y. F; Imam,]J. S and Wilkinson, M. F. (2007). The nonsense-mediated decay RNA

surveillance pathway. Annual Review of Biochemistry, 2007 76: 51-74.

Narca P4 ~A£DA4

