/* Let's mostly put the basis function references here, since they should be relatively short */ /*! \page Basis_functionDoc Basis function \section description Description Basis_function is the base category for a number of simple three-dimensional functions that can be used in many places throughout the code, usually as expansions. The first keyword in each section is taken as the name of the origin of the function, and the second is the type of function. Further keywords are specific to the type of function. \section plugins Plugins \subpage Basis_GroupsDoc \subpage Cosine_functionDoc \subpage Cubic_splineDoc \subpage Cutoff_cuspDoc \subpage Exponent_cuspDoc \subpage Gaussian_functionDoc \subpage Mesh_functionDoc \subpage Pade_functionDoc \subpage Planewave_functionDoc \subpage Poly_pade_functionDoc \subpage Rgaussian_functionDoc \subpage Step_functionDoc */ //###################################################################### /*! \page Basis_GroupsDoc Basis groups Keyword: BASIS_GROUPS \section description Description This construct allows to represent groups of given basis functions as single basis functions. In the \ref Jastrow2_wfDoc factor, for instance, we then can have \f[ f(r)\hskip 1.5em =\hskip 1.5em\alpha_1\underbrace{\sum_i b^{(1)}_i(r)}_{ \displaystyle\hbox{basis group}} +\hskip 1.5em\alpha_2\underbrace{\sum_i b^{(2)}_i(r)}_{ \displaystyle\hbox{basis group}} +\hskip 1.5em\ldots\ , \f] where \f$ \alpha_j \f$ are coefficients of linear combination and \f$ b^{(j)}_i \f$ are basis function constituting j-th basis group. This functionality is useful for implementation of certain symmetry constraints, e.g., all plane waves representing a given shell in homogeneous gas can be restricted to have the same weight, see the description of \ref BCS_wfDoc wave function for an example. \section options Options \subsection reqopt Required
Option Type Description
BASIS_GROUP Section Define basis functions, simple sum of which will be represented as a single basis function. Syntax of this section is the same as any other \ref Basis_functionDoc input. Section is repeated as many times as many groups we want to build.
\subsection optopt Optional None. */ //###################################################################### /*! \page Cosine_functionDoc Cosine function Keyword: COSINE \section description Description Set of cos(g*r) corresponding to given g-vectors. Subset of \ref Planewave_functionDoc that has zero derivative at the origin and therefore does not interfere with cusp conditions if used in Jastrow factor. \section options Options \subsection reqopt Required
Option Type Description
GVECTOR Section List of triples of g-vectors to be used.
*/ //###################################################################### /*! \page Cubic_splineDoc Cubic spline Keyword: AOSPLINE \section description Description \section options Options One of GAMESS or SPLINE is required \subsection reqopt Required
Option Type Description
GAMESS Section input in roughly gamess format, as an expansion in Gaussians. There is no normalization, though, so it looks like
S 1
1.0 2.0
but not like
S 1 1.0
1.0 2.0
SPLINE Section Fit to a 1-D spline multiplied by spherical harmonics. For example, S
0.0 1.0
0.1 0.9
...
and so on, where the first entry is the symmetry (S,P,5D,7F, etc) followed by x,f(x) pairs.
\subsection optopt Optional
Option Type Default Description
CUSP Float None For a SPLINE input, enforce a cusp at r=0 with the derivative given. For example, for H, CUSP should be -1, for Ne -10, etc.
ZERO_DERIVATIVE Keyword off For a GAMESS input, strictly enforces derivative at r=0 (i.e. cusp) to be zero. To be used when electron-nucleus cusp conditions on all-electron atoms are treated in the Jastrow factor.
SPACING Float 0.02 Spacing with which the independent variable is discretized. The default value is a safe choice for pseudoatoms, heavier all-electron atoms might require reduced value corresponding to a finer grid.
NORENORMALIZE Keyword off prevents normalization of the basis functions to the GAMESS standard.
CUTOFF Float infinity forces a cutoff at a specified distance, with a smooth cutoff function. Otherwise, a safe cutoff is calculated automatically.
NORMTYPE string GAMESSNORM specify the normalization (GAMESSNORM or CRYSTAL)
*/ //###################################################################### /*! \page Cutoff_cuspDoc Cutoff cusp Keyword: CUTOFF_CUSP \section description Description The function \f$ f(r)=c*p/(1+\gamma*p) \f$, where \f$ p=z-z^2+z^3/3 \f$, \f$ z=r/{rcut} \f$, \f$ \gamma \f$ is the curvature, and c is the cusp. \section options Options \subsection reqopt Required
Option Type Description
CUSP Float What the derivative should be at r=0
GAMMA Float a measure of the curvature, allowed to be (-1, infinity)
RCUT Float Distance where the function should be zero.
*/ //###################################################################### /*! \page Exponent_cuspDoc Exponent cusp Keyword: EXPONENTIAL_CUSP \section description Description The function \f$ f(r)=-c*exp(-\gamma*r) \f$, where \f$ \gamma \f$ is the curvature and c is the cusp \section options Options \subsection reqopt Required
Option Type Description
CUSP Float What the derivative should be at r=0
GAMMA Float a measure of the curvature, allowed to be (0, infinity)
*/ //###################################################################### /*! \page Gaussian_functionDoc Gaussian function Keyword: GAUSSIAN \section description Description The function \f$ f(r)= e^{-\alpha*r^2} \f$ \section options Options \subsection reqopt Required
Option Type Description
ALPHA Section List of exponents to use(floats). These are treated as uncontracted Gaussians in an optimization.
\subsection optopt Optional
Option Type Default Description
CUTOFF Float infinity force cutoff of the gaussians to some distance
SMOOTHING Float 1.2 control the distance over which we smooth the cutoff
*/ //###################################################################### /*! \page Mesh_functionDoc Mesh function Keyword: MESH \section description Description Three-dimensional mesh with on-the-fly interpolation \section options Options \subsection reqopt Required
Option Type Description
VALPLT Section List of value plot files from JEEP
DXPLT Section List of x-derivative plot files from JEEP
DXPLT Section List of y-derivative plot files from JEEP
DXPLT Section List of z-derivative plot files from JEEP
LAPPLT Section List of laplacian plot files from JEEP
*/ //###################################################################### /*! \page Pade_functionDoc Pade function Keyword: PADE \section description Description Function of the form: \f[ a_n(r) = \left( \frac{\alpha_nr}{1+\alpha_nr} \right)^2 \f] where \f$ \alpha_n = \alpha_0 / 2^{k}, 0 < n < nmax \f$ \section options Options \subsection reqopt Required
Option Type Description
ALPHA0 Float alpha_0 in the above equation
NFUNC Integer Number of functions to create
*/ //###################################################################### /*! \page Planewave_functionDoc Planewave function Keyword: PLANEWAVE or CPLANEWAVE \section description Description Real version (PLANEWAVE) interleaves cos(g*r) and sin(g*r) for a set of g-vectors. Complex version (CPLANEWAVE) is a set of exp(i*g*r). See also \ref Cosine_functionDoc . \section options Options \subsection reqopt Required
Option Type Description
GVECTOR Section List of triples of g-vectors to be used.
*/ //###################################################################### /*! \page Poly_pade_functionDoc Polynomial Pade function Keyword: POLYPADE \section description Description Function of the form: \f[ a_n(r) = \frac{1-zpp(r/b_0)}{1+\beta zpp(r/b_0)} \f] where \f[ zpp(x)=x^2(6-8x+3x^2) \f] \f$ b_0 \f$ is the cutoff radius. \section options Options \subsection reqopt Required
Option Type Description
RCUT Float Cutoff radius
BETA0 Float Base curvature
NFUNC Integer Number of functions to generate
*/ //###################################################################### /*! \page Rgaussian_functionDoc Rgaussian function Keyword: RGAUSSIAN \section description Description Function of the form: \f[ a_n(r) = \sum c_i r^{n_i} e^{-\alpha_i*r^2} \f] \section options Options \subsection reqopt Required
Option Type Description
OLDQMC Section A section from Lubos's psp format, i.e.,
zeff number_l_vals
num_s num_p num_local
c n+2 alpha #for s channel
...
.. #for p channel
... ...
.. #local channel
*/ //###################################################################### /*! \page Step_functionDoc Step function Keyword: STEP \section description Description Unit step function that is one until some distance \section options Options \subsection reqopt Required
Option Type Description
Cutoff Float distance after which this function is zero
*/