intel.

Intel® OpenlImage Denoise

High-Performance Denoising Library
for Ray Tracing

Version 1.4.3
February 14,2022

Contents

1 Overview

5.8

1.1 Supportand Contact
1.2 VersionHistory
2 Compilation
2.1 Prerequisites
2.2 Compiling on Linux/macOS
2.3 EntitlementsonmacOS L.,
24 CompilingonWindows L.
2.5 CMake Configuration
3 Open Image Denoise API
3.1 Exampleso
3.1.1 Basic denoising (C99 API)
3.1.2 Basic denoising (C++11API).
3.1.3 Denoising with prefiltering (C++11 API)
32 Device
321 ErrorHandling
33 Buffer.
33.1 DataFormat.....................
3.4 Filter
341 RT .. o
342 RTLightmap
4 Examples
4.1 oidnDenoise L
42 oidnBenchmark L L.
5 Training
5.1 Prerequisites
52 Devices
53 Datasets
5.4 Preprocessing (preprocess.py) o« oo vo oo
5.5 Training (trainpy)o o
5.6 Inference (inferpy)
5.7 Exporting Results (export.py)

Image Conversion and Comparison

12
12
12
13
13
14
15
16
17
18
20
24

26
26
26

Chapter |

Overview

Intel Open Image Denoise is an open source library of high-performance, high-
quality denoising filters for images rendered with ray tracing. Intel Open Image
Denoise is part of the Intel® oneAPI Rendering Toolkit and is released under the
permissive Apache 2.0 license.

The purpose of Intel Open Image Denoise is to provide an open, high-quality,
efficient, and easy-to-use denoising library that allows one to significantly reduce
rendering times in ray tracing based rendering applications. It filters out the
Monte Carlo noise inherent to stochastic ray tracing methods like path tracing,
reducing the amount of necessary samples per pixel by even multiple orders of
magnitude (depending on the desired closeness to the ground truth). A simple
but flexible C/C++ API ensures that the library can be easily integrated into most
existing or new rendering solutions.

At the heart of the Intel Open Image Denoise library is a collection of efficient
deep learning based denoising filters, which were trained to handle a wide range
of samples per pixel (spp), from 1 spp to almost fully converged. Thus it is suit-
able for both preview and final frame rendering. The filters can denoise images
either using only the noisy color (beauty) buffer, or, to preserve as much detail as
possible, can optionally utilize auxiliary feature buffers as well (e.g. albedo, nor-
mal). Such buffers are supported by most renderers as arbitrary output variables
(AOVs) or can be usually implemented with little effort.

Although the library ships with a set of pre-trained filter models, it is not
mandatory to use these. To optimize a filter for a specific renderer, sample count,
content type, scene, etc., it is possible to train the model using the included train-
ing toolkit and user-provided image datasets.

Intel Open Image Denoise supports Intel® 64 architecture compatible CPUs
and Apple Silicon, and runs on anything from laptops, to workstations, to com-
pute nodes in HPC systems. It is efficient enough to be suitable not only for
offline rendering, but, depending on the hardware used, also for interactive ray
tracing.

Intel Open Image Denoise internally builds on top of Intel oneAPI Deep Neu-
ral Network Library (oneDNN), and automatically exploits modern instruction
sets like Intel SSE4, AVX2, and AVX-512 to achieve high denoising performance.
A CPU with support for at least SSE4.1 or Apple Silicon is required to run Intel
Open Image Denoise.

https://software.intel.com/en-us/oneapi/render-kit
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN

Overview

1.1 Support and Contact

Intel Open Image Denoise is under active development, and though we do our
best to guarantee stable release versions a certain number of bugs, as-yet-missing
features, inconsistencies, or any other issues are still possible. Should you find
any such issues please report them immediately via the Intel Open Image De-
noise GitHub Issue Tracker (or, if you should happen to have a fix for it, you can
also send us a pull request); for missing features please contact us via email at
openimagedenoise@googlegroups.com.

Join our mailing list to receive release announcements and major news re-
garding Intel Open Image Denoise.

1.2 Version History

Changesinvl4.3:

« Fixed hardcoded library paths in installed macOS binaries

« Disabled VTune profiling support of oneDNN kernels by default, can be
enabled using CMake options if required (DNNL_ENABLE_JIT_PROFILING
and DNNL_ENABLE_ITT_TASKS)

« Upgraded to oneTBB 2021.5.0 in the official binaries

Changesinvl.4.2:

« Added support for 16-bit half-precision floating-point images

+ Added oidnGetBufferData and oidnGetBufferSize functions

« Fixed performance issue on x86 hybrid architecture CPUs (e.g. Alder Lake)
« Fixed build error when using OpenlmagelO 2.3 or later

« Upgraded to oneTBB 2021.4.0 in the official binaries

Changesinvl4.l:

« Fixed crash when in-place denoising images with certain unusual resolu-
tions

« Fixed compile error when building for Apple Silicon using some unofficial
builds of ISPC

Changesinv1.4.0:

« Improved fine detail preservation

+ Added the cleanAux filter parameter for further improving quality when
the auxiliary feature (albedo, normal) images are noise-free

+ Added support for denoising auxiliary feature images, which can be used
together with the new cleanAux parameter for improving quality when
the auxiliary images are noisy (recommended for final frame denoising)

« Normals are expected to be in the [-1, 1] range (but still do not have to be
normalized)

+ Added the oidnUpdateFilterData function which must be called when
the contents of an opaque data parameter bound to a filter (e.g. weights)
has been changed after committing the filter

« Added the oidnRemoveFilterImage and oidnRemoveFilterData func-
tions for removing previously set image and opaque data parameters of
filters

« Reduced the overhead of oidnCommitFilter to zero in some cases (e.g. when
changing already set image buffers/pointers or the inputScale parame-
ter)

https://github.com/OpenImageDenoise/oidn/issues
https://github.com/OpenImageDenoise/oidn/issues
mailto:openimagedenoise@googlegroups.com
https://groups.google.com/d/forum/openimagedenoise/

Overview

Reduced filter memory consumption by about 35%

Reduced total memory consumption significantly when using multiple fil-
ters that belong to the same device

Reduced the default maximum memory consumption to 3000 MB

Added the OIDN_FILTER_RT and OIDN_FILTER_RTLIGHTMAP CMake op-
tions for excluding the trained filter weights from the build to significantly
decrease its size

Fixed detection of static TBB builds on Windows

Fixed compile error when using future glibc versions

Added oidnBenchmark option for setting custom resolutions

Upgraded to oneTBB 2021.2.0 in the official binaries

Changesinv1.3.0:

Improved denoising quality

— Improved sharpness of fine details / less blurriness
— Fewer noisy artifacts

Slightly improved performance and lowered memory consumption
Added directional (e.g. spherical harmonics) lightmap denoising to the RT-
Lightmap filter
Added inputScale filter parameter which generalizes the existing (and
thus now deprecated) hdrScale parameter for non-HDR images
Added native support for Apple Silicon and the BNNS library on macOS
(currently requires rebuilding from source)
Added OIDN_NEURAL_RUNTIME CMake option for setting the neural net-
work runtime library
Reduced the size of the library binary
Fixed compile error on some older macOS versions
Upgraded release builds to use oneTBB 2021.1.1
Removed tbbmalloc dependency
Appended the library version to the name of the directory containing the
installed CMake files
Training:

— Faster training performance

— Added mixed precision training (enabled by default)
Added efficient data-parallel training on multiple GPUs
Enabled preprocessing datasets multiple times with possibly different
options
Minor bugfixes

Changesinvl.2.4:

Added OIDN_API_NAMESPACE CMake option that allows to put all API
functions inside a user-defined namespace

Fixed bug when TBB_USE_GLIBCXX_VERSION is defined

Fixed compile error when using an old compiler which does not support
OpenMP SIMD

Added compatibility with oneTBB 2021

Export only necessary symbols on Linux and macOS

Changesinv1.2.3:

Fixed incorrect detection of AVX-512 on macOS (sometimes causing a
crash)

Fixed inconsistent performance and costly initialization for AVX-512
Fixed JIT ed AVX-512 kernels not showing up correctly in VTune

Overview

Changesinvl.2.2:
« Fixed unhandled exception when canceling filter execution from the progress
monitor callback function
Changesinvl1.2.l:

« Fixed tiling artifacts when in-place denoising (using one of the input im-
ages as the output) high-resolution (> 1080p) images

« Fixed ghosting/color bleeding artifacts in black regions when using albedo/normal

buffers

« Fixed error when building as a static library (OIDN_STATIC_LIB option)

« Fixed compile error for ISPC 1.13 and later

« Fixed minor TBB detection issues

« Fixed crash on pre-SSE4 CPUs when using some recent compilers (e.g. GCC
10)

« Link C/C++ runtime library dynamically on Windows too by default

« Renamed example apps (oidnDenoise, oidnTest)

+ Added benchmark app (oidnBenchmark)

« Fixed random data augmentation seeding in training

« Fixed training warning with PyTorch 1.5 and later

Changesinv1.2.0:

« Added neural network training code

« Added support for specifying user-trained models at runtime

« Slightly improved denoising quality (e.g. less ringing artifacts, less blurri-
ness in some cases)

« Improved denoising speed by about 7-38% (mostly depending on the com-
piler)

« Added OIDN_STATIC_RUNTIME CMake option (for Windows only)

+ Added support for OpenlmagelO to the example apps (disabled by default)

+ Added check for minimum supported TBB version

« Find debug versions of TBB

« Added testing

Changesinvl.1.0:

« Added RTLightmap filter optimized for lightmaps
+ Added hdrScale filter parameter for manually specifying the mapping of
HDR color values to luminance levels

Changesin v1.0.0:
« Improved denoising quality

— More details preserved
— Less artifacts (e.g. noisy spots, color bleeding with albedo/normal)

+ Added maxMemoryMB filter parameter for limiting the maximum memory
consumption regardless of the image resolution, potentially at the cost of
lower denoising speed. This is internally implemented by denoising the
image in tiles

« Significantly reduced memory consumption (but slightly lower perfor-
mance) for high resolutions (> 2K) by default: limited to about 6 GB

« Added alignment and overlap filter parameters that can be queried for
manual tiled denoising

Overview

« Added verbose device parameter for setting the verbosity of the console
output, and disabled all console output by default
« Fixed crash for zero-sized images

Changesin v0.9.0:

+ Reduced memory consumption by about 38%

« Added support for progress monitor callback functions

« Enabled fully concurrent execution when using multiple devices
Clamp LDR input and output colors to 1

- Fixed issue where some memory allocation errors were not reported

Changesin v0.8.2:

« Fixed wrong HDR output when the input contains infinities/NaNs

« Fixed wrong output when multiple filters were executed concurrently on
separate devices with AVX-512 support. Currently the filter executions are
serialized as a temporary workaround, and a full fix will be included in a
future release.

« Added OIDN_STATIC_LIB CMake option for building as a static library (re-
quires CMake 3.13.0 or later)

« Fixed CMake error when adding the library with add_subdirectory() to a
project

Changesinv0.8.1:

« Fixed wrong path to TBB in the generated CMake configs
Fixed wrong rpath in the binaries

« Fixed compile error on some macOS systems

« Fixed minor compile issues with Visual Studio

« Lowered the CPU requirement to SSE4.1

« Minor example update

Changesin v0.8.0:

« Initial beta release

Chapter 2

Compilation

The latest Intel Open Image Denoise sources are always available at the Intel
Open Image Denoise GitHub repository. The default master branch should al-
ways point to the latest tested bugfix release.

2.1 Prerequisites

You can clone the latest Intel Open Image Denoise sources using Git with the Git
Large File Storage (LFS) extension installed:

git clone --recursive https://github.com/OpenImageDenoise/oidn.git

Please note that installing the Git LFS extension is required to correctly clone
the repository. Cloning without Git LFS will seemingly succeed but actually
some of the files will be invalid and thus compilation will fail.

Intel Open Image Denoise currently supports 64-bit Linux, Windows, and
macOS operating systems. In addition, before you can build Intel Open Image
Denoise you need the following prerequisites:

« CMake 3.1 or later

« A C++11 compiler (we recommend using Clang, but also support GCC,
Microsoft Visual Studio 2015 or later, and Intel® C++ Compiler 17.0 or later)

« Intel® SPMD Program Compiler (ISPC), version 1.14.1 or later. Please ob-
tain a release of ISPC from the ISPC downloads page. The build system
looks for ISPC in the PATH and in the directory right “next to” the checked-

out Intel Open Image Denoise sources.! Alternatively set the CMake vari- ! For example, if Intel Open Image De-
able ISPC_EXECUTABLE to the location of the ISPC compiler. noise is in ~/Projects/oidn, ISPC will also
be searched in ~/Projects/ispc-v1.14.

« Python 2.7 or later 1-1linux

« Intel® Threading Building Blocks (TBB) 2017 or later

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel

Type the following to install the dependencies using apt-get:

http://github.com/OpenImageDenoise/oidn
http://github.com/OpenImageDenoise/oidn
https://git-lfs.github.com/
https://git-lfs.github.com/
http://www.cmake.org
https://software.intel.com/en-us/c-compilers
http://ispc.github.io
https://ispc.github.io/downloads.html
https://www.threadingbuildingblocks.org/

Compilation

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev

Under macOS these dependencies can be installed using MacPorts:
sudo port install cmake tbb

Under Windows please directly use the appropriate installers or packages for
CMake, Python, and TBB.

2.2 Compiling on Linux/macOS

Assuming the above prerequisites are all fulfilled, building Intel Open Image De-
noise through CMake is easy:

« Create a build directory, and go into it

mkdir oidn/build
cd oidn/build

(We do recommend having separate build directories for different configu-
rations such as release, debug, etc.).

+ The compiler CMake will use by default will be whatever the CC and CXX
environment variables point to. Should you want to specify a different
compiler, run cmake manually while specifying the desired compiler. The
default compiler on most Linux machines is gcc, but it can be pointed to
clang instead by executing the following:

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

CMake will now use Clang instead of GCC. If you are OK with using the
default compiler on your system, then simply skip this step. Note that the
compiler variables cannot be changed after the first cmake or ccmake run.

+ Open the CMake configuration dialog
ccmake ..

« Make sure to properly set the build mode and enable the components you
need, etc.; then type ’c’onfigure and ’g’enerate. When back on the com-
mand prompt, build it using

make

You should now have 1ibOpenImageDenoise.so on Linux or 1ibOpenIm-
ageDenoise.dylib on macOS, and a set of example applications as well.

2.3 Entitlements on macOS

macOS requires notarization of applications as a security mechanism, and enti-
tlements must be declared during the notarization process.

Intel Open Image Denoise uses just-in-time compilaton through oneDNN and
requires the following entitlements:

« com.apple.security.cs.allow-jit
« com.apple.security.cs.allow-unsigned-executable-memory
o com.apple.security.cs.disable-executable-page-protection

http://www.macports.org/
https://cmake.org/download/
https://www.python.org/downloads/
https://github.com/01org/tbb/releases
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://github.com/oneapi-src/oneDNN
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-unsigned-executable-memory
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_disable-executable-page-protection

Compilation

10

2.4 Compiling on Windows

On Windows using the CMake GUI (cmake-gui . exe) is the most convenient way
to configure Intel Open Image Denoise and to create the Visual Studio solution
files:

« Browse to the Intel Open Image Denoise sources and specify a build direc-
tory (if it does not exist yet CMake will create it).

« Click “Configure” and select as generator the Visual Studio version you
have (Intel Open Image Denoise needs Visual Studio 14 2015 or newer),
for Win64 (32-bit builds are not supported), e.g., “Visual Studio 15 2017
Win64”.

« If the configuration fails because some dependencies could not be found
then follow the instructions given in the error message, e.g., set the variable
TBB_ROOT to the folder where TBB was installed.

« Optionally change the default build options, and then click “Generate” to
create the solution and project files in the build directory.

« Open the generated OpenImageDenoise.sln in Visual Studio, select the
build configuration and compile the project.

Alternatively, Intel Open Image Denoise can also be built without any GUI,
entirely on the console. In the Visual Studio command prompt type:

cd path\to\oidn
mkdir build

cd build
cmake -G "Visual Studio 15 2017 Win64" [-D VARIABLE=value]
cmake --build . --config Release

Use -D to set variables for CMake, e.g., the path to TBB with “-D TBB_
ROOT=\path\to\tbb”.

2.5 CMake Configuration

The default CMake configuration in the configuration dialog should be appropri-
ate for most usages. The following list describes the options that can be config-
ured in CMake:

+ CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Release mode (Release) (default), and Release mode with enabled assertions
and debug symbols (RelWithDebInfo).

« OIDN_STATIC_LIB: Build Intel Open Image Denoise as a static library (OFF
by default). When using the statically compiled Intel Open Image Denoise
library, you either have to use the generated CMake configuration files
(recommended), or you have to manually define OIDN_STATIC_LIB before
including the library headers in your application.

« OIDN_STATIC_RUNTIME: Use the static version of the C/C++ runtime li-
brary (available only on Windows, OFF by default).

+ OIDN_NEURAL_RUNTIME: Specifies which neural network runtime library
to use: DNNL (oneDNN, default) or BNNS (available only on macOS).

Compilation

Ll

OIDN_API_NAMESPACE: Specifies a namespace to put all Intel Open Image
Denoise API symbols inside. By default no namespace is used and plain C
symbols are exported.

OIDN_FILTER_RT: Include the trained weights of the RT filter in the build
(ON by default). Turning this OFF significantly decreases the size of the
library binary, while the filter remains functional if the weights are set by
the user at runtime.

OIDN_FILTER_RTLIGHTMAP: Include the trained weights of the RTLightmap
filter in the build (ON by default).

OIDN_APPS: Enable building example and test applications (ON by default).

OIDN_APPS_OPENIMAGEIO: Enable OpenlmagelO support in the example
and test applications to be able to load/save OpenEXR, PNG, and other
image file formats (OFF by default).

TBB_ROOT: The path to the TBB installation (autodetected by default).

OPENIMAGEIO_ROOT: The path to the OpenlmagelO installation (autode-
tected by default).

http://openimageio.org/

12

Chapter 3
Open Image Denoise API

Open Image Denoise provides a C99 API (also compatible with C++) and a C++11
wrapper API as well. For simplicity, this document mostly refers to the C99
version of the APL

The APl is designed in an object-oriented manner, e.g. it contains device ob-
jects (OIDNDevice type), buffer objects (OIDNBuffer type), and filter objects
(OIDNFilter type). All objects are reference-counted, and handles can be re-
leased by calling the appropriate release function (e.g. oidnReleaseDevice) or
retained by incrementing the reference count (e.g. oidnRetainDevice).

An important aspect of objects is that setting their parameters do not have
an immediate effect (with a few exceptions). Instead, objects with updated pa-
rameters are in an unusable state until the parameters get explicitly committed
to a given object. The commit semantic allows for batching up multiple small
changes, and specifies exactly when changes to objects will occur.

All API calls are thread-safe, but operations that use the same device will be
serialized, so the amount of API calls from different threads should be minimized.

3.1 Examples

To have a quick overview of the C99 and C++11 APIs, see the following simple
example code snippets.

3.1 Basic denoising (C99 API)

#include <OpenImageDenoise/oidn.h>

// Create an Intel Open Image Denoise device
OIDNDevice device = oidnNewDevice(OIDN_DEVICE_TYPE_DEFAULT);
oidnCommitDevice(device);

// Create a filter for denoising a beauty (color) image using optional auxiliary images too
OIDNFilter filter = oidnNewFilter(device, "RT"); // generic ray tracing filter
oidnSetSharedFilterImage(filter, "color", colorPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // beauty
oidnSetSharedFilterImage(filter, "albedo", albedoPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // auxiliary
oidnSetSharedFilterImage(filter, "normal", normalPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // auxiliary
oidnSetSharedFilterImage(filter, "output", outputPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // denoised beauty
oidnSetFilterib(filter, "hdr", true); // beauty image is HDR
oidnCommitFilter(filter);

Open Image Denoise API 13

// Filter the image
oidnExecuteFilter(filter);

// Check for errors

const char* errorMessage;

if (oidnGetDeviceError(device, &errorMessage) != OIDN_ERROR_NONE)
printf("Error: %s\n", errorMessage);

// Cleanup
oidnReleaseFilter(filter);
oidnReleaseDevice(device);

3.1.2 Basic denoising (C++11 API)

#include <OpenImageDenoise/oidn.hpp>

// Create an Intel Open Image Denoise device
oidn: :DeviceRef device = oidn::newDevice();
device.commit();

// Create a filter for denoising a beauty (color) image using optional auxiliary images too
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorPtr, oidn::Format::Float3, width, height); // beauty
filter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("normal"”, normalPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("output", outputPtr, oidn::Format::Float3, width, height); // denoised beauty
filter.set("hdr", true); // beauty image is HDR

filter.commit();

// Filter the image
filter.execute();

// Check for errors

const char* errorMessage;

if (device.getError(errorMessage) != oidn::Error::None)
std::cout << "Error: " << errorMessage << std::endl;

3.1.3 Denoising with prefiltering (C++11 API)

// Create a filter for denoising a beauty (color) image using prefiltered auxiliary images too
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorPtr, oidn::Format::Float3, width, height); // beauty
filter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("normal"”, normalPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("output", outputPtr, oidn::Format::Float3, width, height); // denoised beauty
filter.set("hdr", true); // beauty image is HDR

filter.set("cleanAux", true); // auxiliary images will be prefiltered

filter.commit();

// Create a separate filter for denoising an auxiliary albedo image (in-place)
oidn::FilterRef albedoFilter = device.newFilter("RT"); // same filter type as for beauty
albedoFilter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height);
albedoFilter.setImage("output", albedoPtr, oidn::Format::Float3, width, height);
albedoFilter.commit();

Open Image Denoise API 14

// Create a separate filter for denoising an auxiliary normal image (in-place)
oidn::FilterRef normalFilter = device.newFilter("RT"); // same filter type as for beauty
normalFilter.setImage("normal”, normalPtr, oidn::Format::Float3, width, height);
normalFilter.setImage("output”, normalPtr, oidn::Format::Float3, width, height);
normalFilter.commit();

// Prefilter the auxiliary images
albedoFilter.execute();
normalFilter.execute();

// Filter the beauty image
filter.execute();

3.2 Device

Intel Open Image Denoise supports a device concept, which allows different com-
ponents of the application to use the Open Image Denoise API without interfer-
ing with each other. An application first needs to create a device with

OIDNDevice oidnNewDevice(OIDNDeviceType type);

where the type enumeration maps to a specific device implementation,
which can be one of the following:

Name Description
- - Table 3.1 - Supported device types, i.e.,
OIDN_DEVICE_TYPE_DEFAULT select the approximately fastest device valid constants of type OIDNDevice-
OIDN_DEVICE_TYPE_CPU CPU device (requires SSE4.1 support or Type.
Apple Silicon)

Once a device is created, you can call

void oidnSetDevicelb(OIDNDevice device, const char* name, bool value);
void oidnSetDevice1i(OIDNDevice device, const char* name, int value);
bool oidnGetDevicelb(OIDNDevice device, const char* name);
int oidnGetDevice1i(OIDNDevice device, const char* name);

to set and get parameter values on the device. Note that some parameters
are constants, thus trying to set them is an error. See the tables below for the
parameters supported by devices.

Table 3.2 - Parameters supported by all devices.

Type Name Default Description

const int version combined version number (major.minor.patch) with two decimal digits
per component

const int versionMajor major version number

const int versionMinor minor version number

const int versionPatch patch version number

int verbose 0 verbosity level of the console output between 0-4; when set to 0, no

output is printed, when set to a higher level more output is printed

Note that the CPU device heavily relies on setting the thread affinities to
achieve optimal performance, so it is highly recommended to leave this option

Open Image Denoise API 15

Table 3.3 - Additional parameters supported only by CPU devices.

Type Name Default Description

int numThreads 0 maximum number of threads which the library should use; 0 will set it
automatically to get the best performance

bool setAffinity true enables thread affinitization (pinning software threads to hardware threads) if it
is necessary for achieving optimal performance

enabled. However, this may interfere with the application if that also sets the
thread affinities, potentially causing performance degradation. In such cases, the
recommended solution is to either disable setting the affinities in the application
or in Intel Open Image Denoise, or to always set/reset the affinities before/after
each parallel region in the application (e.g., if using TBB, with tbb: : task_arena
and tbb: :task_scheduler_observer).

Once parameters are set on the created device, the device must be committed
with

void oidnCommitDevice(OIDNDevice device);

This device can then be used to construct further objects, such as buffers and
filters. Note that a device can be committed only once during its lifetime. Before
the application exits, it should release all devices by invoking

void oidnReleaseDevice(OIDNDevice device);

Note that Intel Open Image Denoise uses reference counting for all object
types, so this function decreases the reference count of the device, and if the
count reaches 0 the device will automatically get deleted. It is also possible to
increase the reference count by calling

void oidnRetainDevice(OIDNDevice device);

An application typically creates only a single device. If required differently,
it should only use a small number of devices at any given time.

3.21 ErrorHandling

Each user thread has its own error code per device. If an error occurs when
calling an API function, this error code is set to the occurred error if it stores no
previous error. The currently stored error can be queried by the application via

OIDNError oidnGetDeviceError(OIDNDevice device, const char** outMessage);

where outMessage can be a pointer to a C string which will be set to a more
descriptive error message, or it can be NULL. This function also clears the error
code, which assures that the returned error code is always the first error occurred
since the last invocation of oidnGetDeviceError on the current thread. Note
that the optionally returned error message string is valid only until the next in-
vocation of the function.

Alternatively, the application can also register a callback function of type

typedef void (*OIDNErrorFunction)(void* userPtr, OIDNError code, const char* message);
via

void oidnSetDeviceErrorFunction(OIDNDevice device, OIDNErrorFunction func, void* userPtr);

Open Image Denoise API

to get notified when errors occur. Only a single callback function can be
registered per device, and further invocations overwrite the previously set call-
back function, which do not require also calling the oidnCommi tDevice function.
Passing NULL as function pointer disables the registered callback function. When
the registered callback function is invoked, it gets passed the user-defined pay-
load (userPtr argument as specified at registration time), the error code (code
argument) of the occurred error, as well as a string (message argument) that fur-
ther describes the error. The error code is always set even if an error callback
function is registered. It is recommended to always set a error callback function,
to detect all errors.

When the device construction fails, oidnNewDevice returns NULL as device.
To detect the error code of a such failed device construction, pass NULL as device
to the oidnGetDeviceError function. For all other invocations of oidnGetDe-
viceError, a proper device handle must be specified.

The following errors are currently used by Intel Open Image Denoise:

Table 3.4 - Possible error codes, i.e., valid constants of type OIDNError.

Name Description

OIDN_ERROR_NONE no error occurred

OIDN_ERROR_UNKNOWN an unknown error occurred
OIDN_ERROR_INVALID_ARGUMENT an invalid argument was specified
OIDN_ERROR_INVALID_OPERATION the operation is not allowed
OIDN_ERROR_OUT_OF_MEMORY not enough memory to execute the operation
OIDN_ERROR_UNSUPPORTED_HARDWARE the hardware (e.g., CPU) is not supported
OIDN_ERROR_CANCELLED the operation was cancelled by the user

3.3 Buffer

Large data like images can be passed to Intel Open Image Denoise either via
pointers to memory allocated and managed by the user (this is the recommended,
often easier and more efficient approach, if supported by the device) or by cre-
ating buffer objects (supported by all devices). To create a new data buffer with
memory allocated and owned by the device, holding byteSize number of bytes,
use

OIDNBuffer oidnNewBuffer (OIDNDevice device, size_t byteSize);

The created buffer is bound to the specified device (device argument). The
specified number of bytes are allocated at buffer construction time and deallo-
cated when the buffer is destroyed.

It is also possible to create a “shared” data buffer with memory allocated and
managed by the user with

OIDNBuffer oidnNewSharedBuffer(OIDNDevice device, void* ptr, size_t byteSize);

where ptr points to the user-managed memory and byteSize is its size in
bytes. At buffer construction time no buffer data is allocated, but the buffer data
provided by the user is used. The buffer data must remain valid for as long as
the buffer may be used, and the user is responsible to free the buffer data when
no longer required.

Similar to device objects, buffer objects are also reference-counted and can
be retained and released by calling the following functions:

Open Image Denoise API

17

void oidnRetainBuffer (OIDNBuffer buffer);
void oidnReleaseBuffer (OIDNBuffer buffer);

The size of the buffer in bytes can be queried using
size_t oidnGetBufferSize(OIDNBuffer buffer);

Accessing the data stored in a buffer object is possible by mapping it into the
address space of the application using

void* oidnMapBuffer (OIDNBuffer buffer, OIDNAccess access, size_t

where access is the desired access mode of the mapped memory, byte-
Offset is the offset to the beginning of the mapped memory region in bytes,
and byteSize is the number of bytes to map. The function returns a pointer to
the mapped buffer data. If the specified byteSize is 0, the maximum available
amount of memory will be mapped. The access argument must be one of the
access modes in the following table:

Name Description
OIDN_ACCESS_READ read-only access
OIDN_ACCESS_WRITE write-only access
OIDN_ACCESS_READ_WRITE read and write access

OIDN_ACCESS_WRITE_DISCARD write-only access but the previous
contents will be discarded

After accessing the mapped data in the buffer, the memory region must be
unmapped with

void oidnUnmapBuffer (OIDNBuffer buffer, void* mappedPtr);

where mappedPtr must be a pointer returned by a call to oidnMapBuf fer for
the specified buffer. Any change to the mapped data is guaranteed to take effect
only after unmapping the memory region.

It is also possible to get a pointer directly to the buffer data but this might be
valid only on the device the buffer was created on:

void* oidnGetBufferData(OIDNBuffer buffer);

3.31 DataFormat

Buffers store opaque data and thus have no information about the type and for-
mat of the data. Other objects, e.g. filters, typically require specifying the format
of the data stored in buffers or shared via pointers. This can be done using the
OIDNFormat enumeration type:

Name Description

OIDN_FORMAT_UNDEFINED undefined format

OIDN_FORMAT_FLOAT 32-bit floating-point scalar
OIDN_FORMAT_FLOAT[234] 32-bit floating-point [234]-element vector
OIDN_FORMAT_HALF 16-bit floating-point scalar

OIDN_FORMAT_HALF[234] 16-bit floating-point [234]-element vector

byteOffset, size_t byteSize)

Table 3.5 - Access modes for memory
regions mapped with oidnMapBuffer,
i.e., valid constants of type OIDNAccess.

Table 3.6 - Supported data formats, i.e.,
valid constants of type OIDNFormat.

Open Image Denoise API

3.4 Filter

Filters are the main objects in Intel Open Image Denoise that are responsible
for the actual denoising. The library ships with a collection of filters which are
optimized for different types of images and use cases. To create a filter object,
call

OIDNFilter oidnNewFilter (OIDNDevice device, const char* type);

where type is the name of the filter type to create. The supported filter types
are documented later in this section. Once created, filter objects can be retained
and released with

void oidnRetainFilter (OIDNFilter filter);
void oidnReleaseFilter(OIDNFilter filter);

After creating a filter, it needs to be set up by specifying the input and output
images, and potentially setting other parameter values as well.
To bind images to the filter, you can use one of the following functions:

void oidnSetFilterImage(OIDNFilter filter, const char* name,
OIDNBuffer buffer, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

void oidnSetSharedFilterImage(OIDNFilter filter, const char* name,
void* ptr, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

It is possible to specify either a data buffer object (buffer argument) with
the oidnSetFilterImage function, or directly a pointer to shared user-managed
data (ptr argument) with the oidnSetSharedFilterImage function.

In both cases, you must also specify the name of the image parameter to set
(name argument, e.g. "color", "output"), the pixel format (format argument),
the width and height of the image in number of pixels (width and height argu-
ments), the starting offset of the image data (byteOffset argument), the pixel
stride (bytePixelStride argument) and the row stride (byteRowStride argu-
ment), in number of bytes.

The row stride must be an integer multiple of the pixel stride. If the pixels
and/or rows are stored contiguously (tightly packed without any gaps), you can
set bytePixelStride and/or byteRowStride to 0 to let the library compute the
actual strides automatically, as a convenience.

Images support only the OIDN_FORMAT_FLOAT3 and OIDN_FORMAT_HALF3
pixel formats. Custom image layouts with extra channels (e.g. alpha channel) or
other data are supported as well by specifying a non-zero pixel stride. This way,
expensive image layout conversion and copying can be avoided but the extra
data will be ignored by the filter.

To unbind a previously set image from the filter, call

void oidnRemoveFilterImage(OIDNFilter filter, const char* name);

Some special data used by filters are opaque/untyped (e.g. trained model
weights blobs), which can be specified with the oidnSetSharedFilterData
function:

Open Image Denoise API

19

void oidnSetSharedFilterData(OIDNFilter filter, const char* name,
void* ptr, size_t byteSize);

Modifying the contents of an opaque data parameter after binding it to a filter
is allowed but the filter needs to be notified that the data has been updated by
calling

void oidnUpdateFilterData(OIDNFilter filter, const char* name);
Unbinding opaque data from the filter can be performed with
void oidnRemoveFilterData(OIDNFilter filter, const char* name);

Filters may have parameters other than buffers as well, which you can set
and get using the following functions:

void oidnSetFilter1b(OIDNFilter filter, const char* name, bool
void oidnSetFilter1i(OIDNFilter filter, const char* name, int
void oidnSetFilter1f(OIDNFilter filter, const char* name, float
bool oidnGetFilter1b(OIDNFilter filter, const char* name);

int oidnGetFilter1i(OIDNFilter filter, const char* name);
float oidnGetFilter1f(OIDNFilter filter, const char®* name);

Filters support a progress monitor callback mechanism that can be used to
report progress of filter operations and to cancel them as well. Calling oidnSet-
FilterProgressMonitorFunction registers a progress monitor callback func-
tion (func argument) with payload (userPtr argument) for the specified filter
(filter argument):

value);
value);
value);

typedef bool (*OIDNProgressMonitorFunction)(void* userPtr, double n);

void oidnSetFilterProgressMonitorFunction(OIDNFilter filter,

OIDNProgressMonitorFunction

void* userPtr);

Only a single callback function can be registered per filter, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function. Once registered, Intel Open
Image Denoise will invoke the callback function multiple times during filter op-
erations, by passing the payload as set at registration time (userPtr argument),
and a double in the range [0, 1] which estimates the progress of the operation (n
argument). When returning true from the callback function, Intel Open Image
Denoise will continue the filter operation normally. When returning false, the
library will cancel the filter operation with the OIDN_ERROR_CANCELLED error
code.

After setting all necessary parameters for the filter, the changes must be com-
mmitted by calling

void oidnCommitFilter (OIDNFilter filter);

The parameters can be updated after committing the filter, but it must be re-
committed for any new changes to take effect. Committing major changes to the
filter (e.g. setting new image parameters, changing the image resolution) can be
expensive, and thus should not be done frequently (e.g. per frame).

Finally, an image can be filtered by executing the filter with

void oidnExecuteFilter (OIDNFilter filter);

which will read the input image data from the specified buffers and produce
the denoised output image.

In the following we describe the different filters that are currently imple-
mented in Intel Open Image Denoise.

func,

OpenImage Denoise API

20

341 RT

The RT (ray tracing) filter is a generic ray tracing denoising filter which is suitable
for denoising images rendered with Monte Carlo ray tracing methods like uni-
directional and bidirectional path tracing. It supports depth of field and motion
blur as well, but it is not temporally stable. The filter is based on a convolutional
neural network (CNN), and it aims to provide a good balance between denoising
performance and quality. The filter comes with a set of pre-trained CNN models
that work well with a wide range of ray tracing based renderers and noise levels.

For denoising beauty images, it accepts either a low dynamic range (LDR) or
high dynamic range (HDR) image (color) as the main input image. In addition to
this, it also accepts auxiliary feature images, albedo and normal, which are op-
tional inputs that usually improve the denoising quality significantly, preserving
more details.

It is possible to denoise auxiliary images as well, in which case only the re-
spective auxiliary image has to be specified as input, instead of the beauty image.
This can be done as a prefiltering step to further improve the quality of the de-
noised beauty image.

The RT filter has certain limitations regarding the supported input images.
Most notably, it cannot denoise images that were not rendered with ray trac-
ing. Another important limitation is related to anti-aliasing filters. Most render-
ers use a high-quality pixel reconstruction filter instead of a trivial box filter to
minimize aliasing artifacts (e.g. Gaussian, Blackman-Harris). The RT filter does
support such pixel filters but only if implemented with importance sampling.
Weighted pixel sampling (sometimes called splatting) introduces correlation be-

Figure 3.1 - Example noisy beauty image
rendered using unidirectional path trac-
ing (4 samples per pixel). Scene by Ever-
motion.

Figure 3.2 - Example output beauty im-
age denoised using prefiltered auxiliary
feature images (albedo and normal) too.

Open Image Denoise API

21

tween neighboring pixels, which causes the denoising to fail (the noise will not
be filtered), thus it is not supported.

The filter can be created by passing "RT" to the oidnNewFilter function as
the filter type. The filter supports the parameters listed in the table below. All
specified images must have the same dimensions. The output image can be one
of the input images (i.e. in-place denoising is supported). See section Examples
for simple code snippets that demonstrate the usage of the filter.

Table 3.7 - Parameters supported by the RT filter.

Type

Name

Default

Description

Image

Image

Image

Image
bool
bool

float

bool

Data

int

const int

const int

color

albedo

normal

output
hdr
srgb

inputScale

cleanAux

weights

maxMemoryMB

alignment

overlap

optional

optional

optional

false

false

NaN

false

optional

3000

input beauty image (3 channels, LDR values in [0, 1] or HDR values in [0,
+00), values being interpreted such that, after scaling with the inputScale
parameter, a value of 1 corresponds to a luminance level of 100 cd/m?)

input auxiliary image containing the albedo per pixel (3 channels, values
in [0, 1])

input auxiliary image containing the shading normal per pixel (3 channels,
world-space or view-space vectors with arbitrary length, values in [-1, 1])

output image (3 channels); can be one of the input images
whether the main input image is HDR

whether the main input image is encoded with the sRGB (or 2.2 gamma)
curve (LDR only) or is linear; the output will be encoded with the same
curve

scales values in the main input image before filtering, without scaling the
output too, which can be used to map color or auxiliary feature values to
the expected range, e.g. for mapping HDR values to physical units (which
affects the quality of the output but not the range of the output values); if
set to NaN, the scale is computed implicitly for HDR images or set to 1
otherwise

whether the auxiliary feature (albedo, normal) images are noise-free;
recommended for highest quality but should not be enabled for noisy
auxiliary images to avoid residual noise

trained model weights blob

approximate maximum scratch memory to use in megabytes (actual
memory usage may be higher); limiting memory usage may cause slower
denoising due to internally splitting the image into overlapping tiles

when manually denoising in tiles, the tile size and offsets should be
multiples of this amount of pixels to avoid artifacts; when denoising HDR
images inputScale must be set by the user to avoid seam artifacts

when manually denoising in tiles, the tiles should overlap by this amount
of pixels

Using auxiliary feature images like albedo and normal helps preserving fine
details and textures in the image thus can significantly improve denoising qual-
ity. These images should typically contain feature values for the first hit (i.e. the
surface which is directly visible) per pixel. This works well for most surfaces but
does not provide any benefits for reflections and objects visible through trans-
parent surfaces (compared to just using the color as input). However, this issue
can be usually fixed by storing feature values for a subsequent hit (i.e. the reflec-
tion and/or refraction) instead of the first hit. For example, it usually works well
to follow perfect specular (delta) paths and store features for the first diffuse or
glossy surface hit instead (e.g. for perfect specular dielectrics and mirrors). This

OpenImage Denoise API

22

can greatly improve the quality of reflections and transmission. We will describe
this approach in more detail in the following subsections.

The auxiliary feature images should be as noise-free as possible. It is not a
strict requirement but too much noise in the feature images may cause residual
noise in the output. Ideally, these should be completely noise-free. If this is the
case, this should be hinted to the filter using the cleanAux parameter to ensure
the highest possible image quality. But this parameter should be used with care:
if enabled, any noise present in the auxiliary images will end up in the denoised
image as well, as residual noise. Thus, cleanAux should be enabled only if the
auxiliary images are guaranteed to be noise-free.

Usually it is difficult to provide clean feature images, and some residual noise
might be present in the output even with cleanAux being disabled. To eliminate
this noise and to even improve the sharpness of texture details, the auxiliary im-
ages should be first denoised in a prefiltering step, as mentioned earlier. Then,
these denoised auxiliary images could be used for denoising the beauty image.
Since these are now noise-free, the cleanAux parameter should be enabled. See
section Denoising with prefiltering (C++11 API) for a simple code example. Pre-
filtering makes denoising much more expensive but if there are multiple color
AOVs to denoise, the prefiltered auxiliary images can be reused for denoising
multiple AOVs, amortizing the cost of the prefiltering step.

Thus, for final frame denoising, where the best possible image quality is re-
quired, it is recommended to prefilter the auxiliary features if they are noisy and
enable the cleanAux parameter. Denoising with noisy auxiliary features should
be reserved for previews and interactive rendering.

All auxiliary images should use the same pixel reconstruction filter as the
beauty image. Using a properly anti-aliased beauty image but aliased albedo or
normal images will likely introduce artifacts around edges.

3411 Albedo

The albedo image is the feature image that usually provides the biggest quality
improvement. It should contain the approximate color of the surfaces indepen-
dent of illumination and viewing angle.

For simple matte surfaces this means using the diffuse color/texture as the
albedo. For other, more complex surfaces it is not always obvious what is the best
way to compute the albedo, but the denoising filter is flexibile to a certain extent
and works well with differently computed albedos. Thus it is not necessary to
compute the strict, exact albedo values but must be always between 0 and 1.

For metallic surfaces the albedo should be either the reflectivity at normal
incidence (e.g. from the artist friendly metallic Fresnel model) or the average

Figure 3.3 - Example albedo image ob-
tained using the first hit. Note that the
albedos of all transparent surfaces are 1.

OpenImage Denoise API

23

reflectivity; or if these are constant (not textured) or unknown, the albedo can
be simply 1 as well.

The albedo for dielectric surfaces (e.g. glass) should be either 1 or, if the sur-
face is perfect specular (i.e. has a delta BSDF), the Fresnel blend of the reflected
and transmitted albedos. The latter usually works better but only if it does not
introduce too much noise or the albedo is prefiltered. If noise is an issue, we
recommend to split the path into a reflected and a transmitted path at the first
hit, and perhaps fall back to an albedo of 1 for subsequent dielectric hits. The
reflected albedo in itself can be used for mirror-like surfaces as well.

The albedo for layered surfaces can be computed as the weighted sum of the
albedos of the individual layers. Non-absorbing clear coat layers can be simply
ignored (or the albedo of the perfect specular reflection can be used as well) but
absorption should be taken into account.

3.4.12 Normal

The normal image should contain the shading normals of the surfaces either in
world-space or view-space. It is recommended to include normal maps to pre-
serve as much detail as possible.

Just like any other input image, the normal image should be anti-aliased (i.e.
by accumulating the normalized normals per pixel). The final accumulated nor-
mals do not have to be normalized but must be in the [-1, 1] range (i.e. normals
mapped to [0, 1] are not acceptable and must be remapped to [-1, 1]).

Similar to the albedo, the normal can be stored for either the first or a subse-
quent hit (if the first hit has a perfect specular/delta BSDF).

Figure 3.4 - Example albedo image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the albedos of
perfect specular (delta) transparent sur-
faces are computed as the Fresnel blend
of the reflected and transmitted albedos.

Figure 3.5 - Example normal image ob-
tained using the first hit (the values are
actually in [-1, 1] but were mapped to
[0, 1] for illustration purposes).

OpenImage Denoise API

24

3413 Weights

Instead of using the built-in trained models for filtering, it is also possible to
specify user-trained models at runtime. This can be achieved by passing the
model weights blob corresponding to the specified set of features and other filter
parameters, produced by the included training tool. See Section Training for
details.

3.4.2 RTLightmap

The RTLightmap filter is a variant of the RT filter optimized for denoising HDR
and normalized directional (e.g. spherical harmonics) lightmaps. It does not sup-
port LDR images.

The filter can be created by passing "RTLightmap" to the oidnNewFilter
function as the filter type. The filter supports the following parameters:

Figure 3.6 - Example normal image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the normals
of perfect specular (delta) transparent
surfaces are computed as the Fresnel
blend of the reflected and transmitted
normals.

Open Image Denoise API

25

Table 3.8 - Parameters supported by the RTLightmap filter.

Type

Name

Default

Description

Image

Image

bool

float

Data

int

const int

const int

color

output

directional

inputScale

weights

maxMemoryMB

alignment

overlap

false

NaN

optional

3000

input beauty image (3 channels, HDR values in [0, +00), interpreted such
that, after scaling with the inputScale parameter, a value of 1
corresponds to aluminance level of 100 cd/m?; directional values in [-1, 1])

output image (3 channels); can be one of the input images

whether the input contains normalized coefficients (in [-1, 1]) of a
directional lightmap (e.g. normalized L1 or higher spherical harmonics
band with the L0 band divided out); if the range of the coefficients is
different from [-1, 1], the inputScale parameter can be used to adjust the
range without changing the stored values

scales input color values before filtering, without scaling the output too,
which can be used to map color values to the expected range, e.g. for
mapping HDR values to physical units (which affects the quality of the
output but not the range of the output values); if set to NaN, the scale is
computed implicitly for HDR images or set to 1 otherwise

trained model weights blob

approximate maximum scratch memory to use in megabytes (actual
memory usage may be higher); limiting memory usage may cause slower
denoising due to internally splitting the image into overlapping tiles

when manually denoising in tiles, the tile size and offsets should be
multiples of this amount of pixels to avoid artifacts; when denoising HDR
images inputScale must be set by the user to avoid seam artifacts

when manually denoising in tiles, the tiles should overlap by this amount
of pixels

26

Chapter4

Examples

Intel Open Image Denoise ships with a couple of simple example applications.

41 oidnDenoise

oidnDenoise is a minimal working example demonstrating how to use Intel
Open Image Denoise, which can be found at apps/oidnDenoise.cpp. It uses
the C++11 convenience wrappers of the C99 APIL.

This example is a simple command-line application that denoises the pro-
vided image, which can optionally have auxiliary feature images as well (e.g. albedo
and normal). By default the images must be stored in the Portable FloatMap
(PFM) format, and the color values must be encoded in little-endian format. To
enable other image formats (e.g. OpenEXR, PNG) as well, the project has to be
rebuilt with OpenlmagelO support enabled.

Running oidnDenoise without any arguments or the -h argument will bring
up a list of command-line options.

4.2 oidnBenchmark

oidnBenchmark is a basic command-line benchmarking application for measur-
ing denoising speed, which can be found at apps/oidnBenchmark.cpp.

Running oidnBenchmark with the - h argument will bring up a list of command-
line options.

http://www.pauldebevec.com/Research/HDR/PFM/

Chapter 5

Training

The Intel Open Image Denoise source distribution includes a Python-based neu-
ral network training toolkit (located in the training directory), which can be
used to train the denoising filter models with image datasets provided by the
user. This is an advanced feature of the library which usage requires some back-
ground knowledge of machine learning and basic familiarity with deep learning
frameworks and toolkits (e.g. PyTorch or TensorFlow, TensorBoard).

The training toolkit consists of the following command-line scripts:

Sl

preprocess.py: Preprocesses training and validation datasets.
train.py: Trains a model using preprocessed datasets.

infer.py: Performs inference on a dataset using the specified training
result.

export.py: Exports a training result to the runtime model weights format.

find_lr.py: Tool for finding the optimal minimum and maximum learn-
ing rates.

visualize.py: Invokes TensorBoard for visualizing statistics of a training
result.

split_exr.py: Splits a multi-channel EXR image into multiple feature
images.

convert_image.py: Converts a feature image to a different image format.

compare_image.py: Compares two feature images using the specified
quality metrics.

Prerequisites

Before you can run the training toolkit you need the following prerequisites:

Linux (other operating systems are currently not supported)
Python 3.7 or later

PyTorch 1.8 or later

NumPy 1.19 or later

OpenImagelO 2.1 or later

TensorBoard 2.4 or later (optional)

https://pytorch.org/
https://numpy.org/
http://openimageio.org/
https://www.tensorflow.org/tensorboard

Training

28

5.2 Devices

Most scripts in the training toolkit support selecting what kind of device (e.g. CPU,
GPU) to use for the computations (--device or -d option). If multiple devices
of the same kind are available (e.g. multiple GPUs), the user can specify which
one of these to use (--device_id or -k option). Additionally, some scripts, like
train.py, support data-parallel execution on multiple devices for faster perfor-
mance (--num_devices or -n option).

5.3 Datasets

A dataset should consist of a collection of noisy and corresponding noise-free
reference images. It is possible to have more than one noisy version of the same
image in the dataset, e.g. rendered at different samples per pixel and/or using
different seeds.

The training toolkit expects to have all datasets (e.g. training, validation) in
the same parent directory (e.g. data). Each dataset is stored in its own subdirec-
tory (e.g. train, valid), which can have an arbitrary name.

The images must be stored in OpenEXR format (. exr files), and the filenames
must have a specific format but the files can be stored in an arbitrary directory
structure inside the dataset directory. The only restriction is that all versions of
an image (noisy images and the reference image) must be located in the same
subdirectory. Each feature of an image (e.g. color, albedo) must be stored in a
separate image file, i.e. multi-channel EXR image files are not supported. If you
have multi-channel EXRs, you can split them into separate images per feature
using the included split_exr.py tool.

An image filename must consist of a base name, a suffix with the number of
samples per pixel or whether it is the reference image (e.g. _0128spp, _ref), the
feature type extension (e.g. . hdr, .alb), and the image format extension (. exr).
The exact filename format as a regular expression is the following:

.+_([0-9]+(spp)?|ref|reference|gt|target)\.(hdr|1ldr|sh1[xyz]|alb|nrm)\.exr

The number of samples per pixel should be padded with leading zeros to have
a fixed number of digits. If the reference image is not explicitly named as such
(i.e. has the number of samples instead), the image with the most samples per
pixel will be considered the reference.

The following image features are supported:

Feature Description Channels File extension

hdr color (HDR) 3 .hdr.exr

ldr color (LDR) 3 .ldr.exr

sh1 color (normalized L1 3 x 3images .shix.exr, .shly.exr,
spherical harmonics) .sh1z.exr

alb albedo 3 .alb.exr

nrm normal 3 .nrm.exr

The following directory tree demonstrates an example root dataset directory
(data) containing one dataset (rt_train) with HDR color and albedo feature
images:

data
‘-~ rt_train
|-- scenel

Table 5.1 - Image features supported by
the training toolkit.

https://www.openexr.com/

Training

|-- view1_0001.alb.exr
|-- view1_0001.hdr.exr
|-- view1_0004.alb.exr
|-- view1_0004.hdr.exr
|-- view1_8192.alb.exr
|-- view1_8192.hdr.exr
|-- view2_0001.alb.exr
view2_0001.hdr.exr
|-- view2_8192.alb.exr
‘-- view2_8192.hdr.exr
-- scene2_000008spp.alb.exr
scene2_000008spp.hdr.exr
scene2_000064spp.alb.exr
scene2_000064spp.hdr.exr
-- scene2_reference.alb.exr
-- scene2_reference.hdr.exr

54 Preprocessing (preprocess.py)

Training and validation datasets can be used only after preprocessing them using
the preprocess.py script. This will convert the specified training (--train_
data or -t option) and validation datasets (--valid_data or -v option) located
in the root dataset directory (--data_dir or -D option) to a format that can be
loaded more efficiently during training. All preprocessed datasets will be stored
in a root preprocessed dataset directory (--preproc_dir or -P option).

The preprocessing script requires the set of image features to include in the
preprocessed dataset as command-line arguments. Only these specified features
will be available for training but it is not required to use all of them at the same
time. Thus, a single preprocessed dataset can be reused for training multiple
models with different combinations of the preprocessed features.

By default, all input features are assumed to be noisy, including the auxiliary
features (e.g. albedo, normal), each having versions at different samples per pixel.
However, it is also possible to train with noise-free auxiliary features, in which
case the reference auxiliary features are used instead of the various noisy ones
(--clean_aux option).

Preprocessing also depends on the filter that will be trained (e.g. determines
which HDR/LDR transfer function has to be used), which should be also specified
(--filter or -f option). The alternative is to manually specify the transfer
function (--transfer or -x option) and other filter-specific parameters, which
could be useful for training custom filters.

For example, to preprocess the training and validation datasets (rt_train
and rt_valid) with HDR color, albedo, and normal image features, for training
the RT filter, the following command can be used:

./preprocess.py hdr alb nrm --filter RT --train_data rt_train --valid_data rt_valid

It is possible to preprocess the same dataset multiple times, with possibly
different combinations of features and options. The training script will use the
most suitable and most recent preprocessed version depending on the training
parameters.

For more details about using the preprocessing script, including other op-
tions, please have a look at the help message:

./preprocess.py -h

Training

30

55 Training (train.py)

The filters require separate trained models for each supported combination of in-
put features. Thus, depending on which combinations of features the user wants
to support for a particular filter, one or more models have to be trained.

After preprocessing the datasets, it is possible to start training a model us-
ing the train.py script. Similar to the preprocessing script, the input features
must be specified (could be a subset of the preprocessed features), and the dataset
names, directory paths, and the filter can be also passed.

The tool will produce a training result, the name of which can be either speci-
fied (--result or -r option) or automatically generated (by default). Each result
is stored in its own subdirectory, and these are located in a common parent direc-
tory (--results_dir or -R option). If a training result already exists, the tool
will resume training that result from the latest checkpoint.

The default training hyperparameters should work reasonably well in gen-
eral, but some adjustments might be necessary for certain datasets to attain opti-
mal performance, most importantly: the number of epochs (- -num_epochs or -e
option), the global mini-batch size (- -batch_size or -b option), and the learning
rate. The training tool uses a one-cycle learning rate schedule with cosine anneal-
ing, which can be configured by setting the base learning rate (--learning_rate
or --1r option), the maximum learning rate (--max_learning_rate or --max_
1r option), and the percentage of the cycle spent increasing the learning rate
(--learning_rate_warmup or --1r_warmup option).

Example usage:

./train.py hdr alb --filter RT --train_data rt_train --valid_data rt_valid --result rt_hdr_alb

For finding the optimal learning rate range, we recommend using the in-
cluded find_1r.py script, which trains one epoch using an increasing learning
rate and logs the resulting losses in a comma-separated values (CSV) file. Plot-
ting the loss curve can show when the model starts to learn (the base learning
rate) and when it starts to diverge (the maximum learning rate).

The model is evaluated with the validation dataset at regular intervals (--
num_valid_epochs option), and checkpoints are also regularly created (- -num_
save_epochs option) to save training progress. Also, some statistics are logged
(e.g. training and validation losses, learning rate) per epoch, which can be later
visualized with TensorBoard by running the visualize.py script, e.g.:

./visualize.py --result rt_hdr_alb

Training is performed with mixed precision (FP16 and FP32) by default, if it
supported by the hardware, which makes training faster and use less memory.
However, in some rare cases this might cause some convergence issues. The
training precision can be manually set to FP32 if necessary (--precision or -p
option).

5.6 Inference (infer.py)

A training result can be tested by performing inference on an image dataset (- -
input_data or -1 option) using the infer.py script. The dataset does not have
to be preprocessed. In addition to the result to use, it is possible to specify which
checkpoint to load as well (-e or --num_epochs option). By default the latest
checkpoint is loaded.

The tool saves the output images in a separate directory (--output_dir or
-0 option) in the requested formats (--format or -F option). It also evaluates a
set of image quality metrics (--metric or -M option), e.g. PSNR, SSIM, for images

Training

31

that have reference images available. All metrics are computed in tonemapped
non-linear sRGB space. Thus, HDR images are first tonemapped (with Naughty
Dog’s Filmic Tonemapper from John Hable’s Uncharted 2: HDR Lighting presen-
tation) and converted to sSRGB before evaluating the metrics.

Example usage:

./infer.py --result rt_hdr_alb --input_data rt_test --format exr

The inference tool supports prefiltering of auxiliary features as well, which
can be performed by specifying the list of training results for each feature to
prefilter (--aux_results or -a option). This is primarily useful for evaluating
the quality of models trained with clean auxiliary features.

5.7 Exporting Results (export.py)

The training result produced by the train.py script cannot be immediately used

by the main library. It has to be first exported to the runtime model weights

format, a Tensor Archive (TZA) file. Running the export.py script for a training

result (and optionally a checkpoint epoch) will create a binary .tza file in the

directory of the result, which can be either used at runtime through the API or it

can be included in the library build by replacing one of the built-in weights files.
Example usage:

./export.py --result rt_hdr_alb

5.8 Image Conversion and Comparison

In addition to the already mentioned split_exr.py script, the toolkit contains
a few other image utilities as well.

convert_image.py converts a feature image to a different image format
(and/or a different feature, e.g. HDR color to LDR), performing tonemapping and
other transforms as well if needed. For HDR images the exposure can be adjusted
by passing a linear exposure scale (--exposure or -E option). Example usage:

png --metric ssim

./convert_image.py view1_0004.hdr.exr viewl1_0004.png --exposure 2.5

The compare_image. py script compares two feature images (preferably hav-
ing the dataset filename format to correctly detect the feature) using the specified
image quality metrics, similar to the infer.py tool. Example usage:

./compare_image.py view1_0004.hdr.exr view1_8192.hdr.exr --exposure 2.5 --metric mse ssim

Training

32

© 2018-2021 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
"Other names and brands may be claimed as the property of others.

Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.

	Overview
	Support and Contact
	Version History

	Compilation
	Prerequisites
	Compiling on Linux/macOS
	Entitlements on macOS
	Compiling on Windows
	CMake Configuration

	Open Image Denoise API
	Examples
	Basic denoising (C99 API)
	Basic denoising (C++11 API)
	Denoising with prefiltering (C++11 API)

	Device
	Error Handling

	Buffer
	Data Format

	Filter
	RT
	RTLightmap

	Examples
	oidnDenoise
	oidnBenchmark

	Training
	Prerequisites
	Devices
	Datasets
	Preprocessing (preprocess.py)
	Training (train.py)
	Inference (infer.py)
	Exporting Results (export.py)
	Image Conversion and Comparison

