
Fractal Gravity Reference v. 1.1.1

Jens Verner Villumsen May 16, 2018

This paper has the necessary routines and parameters to call FractalGravity with default

parameters. This is for use with both periodic and isolated boundary conditions.

For now, only isolated boundary conditions are implemented.

It is organized in what I consider a logical order. Later versions will include description of

parameters you can change.

FractalGravity is memory intensive due to the author’s inexperience when he started this

project. The memory requirements will be reduced in later versions.

 All routines and variables are in namespace FractalSpace.

All communication with FractalGravity is done through a single pointer to an object of the

Fractal_Memory class.

If you are not familiar with FractalGravity, use the default parameters and ignore the section

about Optional Simulation Parameters.

I have included an example program that calculates the potential and accelerations for a

spherical power law density profile.

Program Flow

The first two calls are setup calls to

FractalGravityFirstTime

fractal_memory_setup

They are called only once before calling the solver.

Before each call to the solver you call

setNumberParticles

fractal_create

add_particles

FractalCube

balance_by_particles

The call to the solver is

DoFractalGravity

To get your data back you call

get_field

To end the step you must call

fractal_delete

After the last call to the solver you call

fractal_memory_content_delete

fractal_memory_delete

The only thing you need to remember is the pointer to the Fractal_Memory object.

Description of Routines

FractalGravityFirstTime

FractalSpace::Fractal_Memory* FractalSpace::FractalGravityFirstTime(

 bool Periodic,

 MPI_Comm& TalkToMe,

 int GridLength,

 int FractalNodes0,

 int FractalNodes1,

 int FractalNodes2,

 string BaseDirectory,

 string RunIdentifier);

This call creates the Fractal_Memory object. It must be called before any other FractalGravity calls.

This routine is called only once.

 Return value "Fractal_Memory* PFM" is a pointer to the Fractal_Memory class object.

 It is the only pointer you need to remember.

 Bool Periodic periodic=true/isolated=false boundary conditions

 MPI_Comm& TalkToMe, Communicator for the nodes you give FractalGravity.

 int GridLength, Length of the cubical Fourier grid.

Preferably a power of two. Even better, a power of 4. Must be a product

of powers of small primes GridLength=2^a*3^b*5^c.

You should use the largest possible value of GRIDLENGTH subject to

memory constraints because FFTW is faster than HYPRE. A larger value

also helps the load balancing.

 int FractalNodes0, x-length of the pseudo Cartesian grid of nodes.

 int FractalNodes1, y-length of the pseudo Cartesian grid of nodes.

 int FractalNodes2, z-length of the pseudo Cartesian grid of nodes

FractalNodes0 x FractalNodes1 x FractalNodes2 must equal the number of nodes in TalkToMe.

FractalNodes0, FractalNodes1, FractalNodes2 can be any integers greater than one. For efficiency, they

should be close. 8x4x4 is better than 8x8x2. FractalNodes0 >= FractalNodes1 >= FractalNodes2 improves

efficiency in many situations.

string BaseDirectory, Absolute path of base for output directories.

 Example /p/lscratche/jensv/galaxy/

string RunIdentifier Label for this run

Example NerdsRule

If N is the number of nodes, then node "n" will write to directory "BaseDirectory/N/RunIdentifier_%_n"

where % is a capital letter.

Directory "Basedirectory”N”/" must exist before calling this routine.

This will generate directory /p/lscratche/jensv/galaxy/256/NerdsRule_C_17 for node# 17 if we have

already run two simulations with 256 nodes. The next simulation will write on NerdsRule_D_17.

fractal_memory_setup

void FractalSpace::Fractal_Memory_setup(FractalSpace::Fractal_Memory* PFM)

"PFM" is a pointer to the Fractal_Memory class object you created in FractalGravityFirstTime.

This routine is called only once after FractalGravityFirstTime but before any other FractalGravity calls. It

sets up everything the simulation needs. *PFM has a large number of parameters that are member

variables of *PFM. For now you can use the default variables. If you want to change any member

variable this must be done before calling this routine.

setNumberParticles

Before you create fractal you must tell *PFM how many particles you are going to give it. Sorry, legacy

issues.

FractalSpace::PFM->setNumberParticles(int NumberParticles)

"PFM" is a pointer to the Fractal_Memory class object you created in

FractalGravityFirstTime.

int NumberParticles Number of particles in this particular step.

fractal_create

void FractalSpace::fractal_create(FractalSpace::Fractal_Memory* PFM);

"PFM" is a pointer to the Fractal_Memory class object you created in FractalGravityFirstTime. It creates

an object of the Fractal class that is used internally to hold particle information. It must be called before

each call to DoFractalGravity.

add_particles

void FractalSpace::add_particles(FractalSpace::Fractal_Memory* PFM,int first,int total,

 vector <double>& posx,vector <double>& posy,

 vector <double>& posz,vector <double>& masses);

Add the particle positions and masses of particles in your units. You must add particles from "0" to

"PFM->NumberParticles-1". You can do this in multiple stages.

 PFM Pointer to the Fractal_Memory class object you created in

 FractalGravityFirstTime.

 first First particle you add to *PFM.

 total Number of particles you add to PFM

 posx x-coordinates in your units

 posy y-coordinates in your units

 posz z-coordinates in your units

 masses masses of particles in your units

FractalCube

FractalSpace::FractalCube(FractalSpace::Fractal_Memory* PFM,double SHRINK,

 vector <double>& xmin, vector <double>& xmax,

 vector <double>& xmini, vector <double>& xmaxy)

PFM Pointer to the Fractal_Memory class object you created in FractalGravityFirstTime.

SHRINK If SHRINK <= 0.0, Fractal uses the supplied cube.

 If SHRINK >= 1.0, Fractal uses the smallest cube holding all particles.

Else, the routine will find a compromise between the two cubes.

 For now use either 0.0 or 1.0 for SHRINK. Long story.

xmin Lower left corner(xa,ya,za) of supplied computational cube

xmax Upper right corner(xb,yb,zb) of supplied computational cube. yb,zb are not used

xmini Lower left corner(xia,yia,zia) of calculated computational cube

xmaxy Upper right corner(xyb,yyb,zyb) of calculated computational cube. yyb,zyb are not used

Routine find the smallest cube that holds all particles. The cube can be anywhere in space. If the

calculated size of the cube is larger than the supplied cube, the supplied cube will be used. Particles

outside the cube are ignored by FractalGravity. It helps to make the cube as small as possible even if a

few of the particles are left outside. It makes load balancing easier and Hypre faster.

This routine could use some serious work.

balance_by_particles

void FractalSpace::balance_by_particles(FractalSpace::Fractal_Memory* PFM,bool withparts)

Each node is assigned a box in space. The set of nodes fills the computational cube. The routine tries to

equalize the volumes of nodes or the number of particles on the nodes

PFM Pointer to the Fractal_Memory class object you created in FractalGravityFirstTime.

withparts If false, equal volume on all nodes.

 If true, equal number of particles. Recommended.

This routine could use some serious work.

DoFractalGravity

void FractalSpace::DoFractalGravity(FractalSpace::Fractal_Memory* PFM);

"PFM" is a pointer to the Fractal_Memory class object you created in FractalGravityFirstTime. Do the

actual calculation of the gravitational potentials and accelerations.

get_field

void FractalSpace::get_field(FractalSpace::Fractal_Memory* PFM,int first,int total,double G_Cavendish,

 vector <double>& xmini,vector <double>& xmaxy,

 vector <double>& pot,vector <double>& accx,

 vector <double>& accy,vector <double>& accz);

Return the gravitational potentials and accelerations in your units. You can make this call multiple times.

 PFM Pointer to the Fractal_Memory class object you created in

 FractalGravityFirstTime.

 first First particle you want data for.

 total Number of particles you want data for.

 G_Cavendish Your gravitational constant.

 xmini Lower left corner(xia,yia,zia) of computational cube

 xmaxy Upper right corner(xyb,yyb,zyb) of computational cube. yyb,zyb are not used.

 pot Gravitational potential.

 accx x-acceleration

 accy y-acceleration

 accz z-acceleration

fractal_delete

void FractalSpace::fractal_delete(FractalSpace::Fractal_Memory* PFM);

"PFM" is a pointer to the Fractal_Memory class object you created in FractalGravityFirstTime. Deletes

the fractal object and all particle data.

fractal_memory_content_delete

void FractalSpace::fractal_memory_content_delete(FractalSpace::Fractal_Memory* PFM);

"PFM" is a pointer to the Fractal_Memory class object you created in FractalGravityFirstTime. Deletes

the contents of the Fractal_Memory object.

fractal_memory_delete

void FractalSpace::fractal_memory_delete(FractalSpace::Fractal_Memory* PFM);

"PFM" is a pointer to the Fractal_Memory class object you created in FractalGravityFirstTime. Deletes

the Fractal_Memory object and sets the PFM pointer to 0.

Optional Simulation Parameters

FractalGravity has many parameters, most of which you should not worry about. You can change

parameters between calls to DoFractalGravity. All parameter changes must be done before the

fractal_create call.

FractalSpace::PFM->setLevelMax(int LevelMax); Default: int LevelMax=8;

The number of levels in the Tree of Points. If you want to limit the resolution, set LevelMax to a lower

number. It is inexpensive in time and memory to go beyond level=2.

FractalSpace::PFM->setMinimumNumber(int MinimumNumber); Default: int MinimumNumber=8;

A Point defines a volume on a node. If this volume has at least MinimumNumber of particles, the

volume is split into 8 subvolumes. Increasing MinimumNumber will lower the volume calculated at high

resolution. Decreasing MinimumNumber will increase the volume calculated at high resolution and may

cause a runaway.

void FractalSpace::PFM->setBalance(int Balance); Default: int Balance=1;

If Balance==0, all nodes have the same volume, approximately.

If Balance==1, all nodes have the same number of particles, approximately.

void FractalSpace::PFM->setPadding(int Padding); Default: int Padding=-1;

If Padding==0, no padding of HighPoints. Speeds up the code and lowers memory requirements.

Increased noise and possibly rapid change in spatial resolution.

If Padding=-1, HighPoints are padded so that resolution cannot change by more than a factor 2 across a

boundary. Economical.

If Padding==1, HighPoints are fully padded. Resolution cannot change by more than a factor 2 across a

boundary. Low noise but expensive in time and memory.

FractalSpace::PFM->setHypreIterations(int MaxHypreIterations); Default: int MaxHypreIterations=20;

Maximum number of iterations for Hypre PCG solver. The solver will output its best estimate of the

solution.

FractalSpace::PFM->setHypreTolerance(double HypreTolerance); Default: HypreTolerance=1.0e-7;

Set the relative convergence tolerance.

Header Files:

libs.hh The C and C++ libraries I use. Should be cleaned up.

classes.hh My classes

headers.hh My headers. Should be cleaned up.

fractal_interface_public.hh Interface headers

Example program for isolated boundary conditions

fractal_galaxy_spheral.cc in the FractalStruct directory in the repot is an example program for using

FractalGravity. It calculates the potential and accelerations for all particles in a spherical galaxy with a

power law density profile.

Input parameter Description Example value

int GridLength Length of the Fourier grid, 288

int FractaNodes0 MPI nodes in x-direction, 8

int FractaNodes1 MPI nodes in y-direction, 8

int FractaNodes2 MPI nodes in z-direction, 4

string BaseDirectory Basis of output directories, /p/lschratchh/jensv/galaxy/
string RunIdentifier Run identifier, BillIsReallyDead

int NumberParticles # of particles on each node, 40000

double G Gravitational constant, 6.674e-11

double slope Slope of density profile -1.5

double RMAX Radius of object 2.0e8

double x0 Center-x of object 1.23e7

double y0 Center-y of object -4.56e7

double z0 Center-z of object 7.89e7

double mm Total mass over all nodes 1.989e30

double BOXLENGTH Length of computational box 5.0e8

double SHRINK Shrink factor 1.0

int RANDOMSEED Seed for random numbers 314159

int withparts 0:equal volume,1: equal # parts 1

An example run on quartz may look like this.

srun -ppdebug -N8 -n256 fractal_galaxy_spheral.exe 288 8 8 4 /p/lschratchh/jensv/galaxy/

BillIsReallyDead 40000 6.674e-11 -1.5 2.0e8 1.23e7 -4.56e7 7.89e7 1.989e30 5.0e8 1.0 314159 1

On node 17 the code will write to files in the directory

/p/lschratchh/jensv/galaxy/256/BillIsReallyDead_A_17

The code will run three times to verify that it keeps getting the same result.

