Shroud: A Tool for Creating Fortran

Interfaces for C++ Libraries
FortranCon 2020

Lee Taylor
Computing Directorate

July 2-4,2020

LLNL-PRES-811975 B Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore i
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC National Laboratory




Overview

= Motivation
= Fortran interoperability with C

= Shroud

— Layers of wrappers

— Examples

— Arrays

— Memory Management

— Other C++ features

verb

1.wrap or dress (a body) in a shroud for burial.
2.cover or envelop so as to conceal from view.

Lawrence Livermore National Laboratory
LLNL-PRES-811975

https://pixabay.com/vectors/mummy-pharaoh-egypt-egyptian-151304/

NYSE

National Nuclear Security Administration

2



Code development at Lawrence Livermore

= LLNL is a U.S. Department of Energy Research Laboratory
— Founded 1952
— Leader in High Performance Computing

= Fortran has a long history at Livermore
— Worked on original Fortran compiler with John Backus 1

= C++ is now the predominant language at LLNL
= C++ libraries are being used by Fortran codes

= Started CS toolkit in C++in 2015, Axom

— Share functionality among codes: datastore, meshing, logging, ...
— Requirements included a Fortran API

[1] https://computing.linl.gov/projects/co-design/lokke_345372.pdf

Shroud arose out of the Computer Science Toolkit

Lawrence Livermore National Laboratory N A'S;i% 3

LLNL-PRES-811975 National Nuclear Security Administration



Fortran Standard and C Interoperability
From DIY to standardized

LRLTRAN at LLNL (1967) Cwas 1972

— Dynamic memory using integer pointers, a.k.a. Cray pointers
— polnter (iparray, array(*))

Fortran 90
— ALLOCATABLE, POINTER - includes meta information (T/K/R)

Fortran 2003 — Interoperability with C

— VALUE attribute — call-by-reference/call-by-value
— BIND (C) —name mangling

— iso_c_binding module — type matching

2012 TS 29113 — Further interoperability with C
— ISO_Fortran_binding.h, C APl to access ALLOCATABLE, POINTER

Fortran 2018 —includes TS 29113

. ; N
@ Lawrence Livermore National Laboratory N ‘S:g;l 4
National Nuclear Security Administration

LLNL-PRES-811975



You have to code with the compiler you have
not the compiler you want

= Fortran 2003 is widely available
— gfortran 4.3, March 2008; pgi

TS 29113 is available in most recent compilers

— gfortran 9.1, May 2019
* Also added Asynchronous I/O from 2003

Red-Hat Enterprise 7 provides gcc 4.8
— Later versions must be installed explicitly

Not a Fortran specific issue
— Axom recently decided to use C++11 as the minimum standard
— Python 2 still in use

= Using TS 29113 in Shroud would simplify some wrappers

Shroud uses Fortran 2003 as the minimum standard level.

Lawrence Livermore National Laboratory N A'S;iw’% 5

LLNL-PRES-811975 National Nuclear Security Administration



Shroud Generates Source to Use C++ Libraries

= Target audience
— C++ developer who needs to create a Fortran API
* Fortran? Isn’t that the language in all uppercase?
— Fortran develop who want to use a cool new C++ library
« BIND(C) isn’t working!
— Any developer who want to avoid writing lots of boilerplate

= Advantages
— Simplify the creation of wrappers function
— Uses Fortran standard features
— Preserves the object-oriented style of C++ classes
— Create a Fortran idiomatic APl from the C++ API

= Many C++ features are supported
— typedefs, classes, structs, functions, namespaces, templates
— function overloading, default arguments

Lawrence Livermore National Laboratory NUVYSE s

LLNL-PRES-811975 Natfonal Nuciear Security Administration



What Shroud is Not

It is not C++ calls Fortran
— But, will create a C API for C++ library

Does not parse header files
— But it does parse declarations in YAML files
— Only wrap the functions you need

100% coverage of C++ features
— Template abuse, expression templates
— Wrappers for Google’s gtest?

Scale
— Wrappers for Qt?

Complete
— Inheritance

Lawrence Livermore National Laboratory
LLNL-PRES-811975

NYSE

National Nuclear Security Administration

7



Shroud Workflow

J

_ — — — Library
- source
», -
7
’
/ |
/
C
o / - wrapper
w VAML , Shrou
Developer Fortran

\ 4

C++
compiler

wrapper

Lawrence Livermore National Laboratory
LLNL-PRES-811975

\ 4

Fortran
compiler

o
User

v

Module
Files

NYSE s

National Nuclear Security Administration



YAML Input

= Yet Another Markup Language
— Dictionaries, lists — superset of JSON
— Uses whitespace/indentation for scope

= User adds function declarations from header files
— Cut-and-paste from header files

= Options and format string to control generated code
— Wrapper names
— File names and suffix

YAML is a human-readable format.

Lawrence Livermore National Laboratory N A'S‘iﬁg 9

LLNL-PRES-811975 National Nuclear Security Administration



Sample YAML File
Written by the developer from the library header file

library: pointers
cxX_header: pointers.hpp
language: c++
options:
debug: True
format:
C_prefix: POINT_
declarations:
- decl: void intargs_in(const int *arg)
- decl: void intargs_inout(int *arg)

After prologue, much is cut-and-paste.

Lawrence Livermore National Laboratory N A‘S&% 10

LLNL-PRES-811975 Natfonal Nuciear Security Administration



Attributes Define Semantics of Arguments
and function results

= intent = dimension
— in, out, inout — Literal shape of input argument

— Wrapper may require copy-in

and/or copy-out * rank

— Assumed-shape argument

= hidden
— Not part of Fortran API
— Typically intent(out)

" owner

— Defines who is responsible to
release memory

= implied — library, caller
— Not part of Fortran API

— Value of argument is implied
from other arguments

= deref
— How pointer will be returned

_ Typically intent(in) — pointer, allocatable, raw

Lawrence Livermore National Laboratory NUYSE

LLNL-PRES-811975 Natfonal Nuciear Security Administration



Shroud Creates Wrappers at Several Levels
Uses the minimum number of levels possible

= Fortran
— Module subprogram Fortran
= Interface { }
— Always created, zero cost Interface
— Equivalent to C++ prototype {}
= C Wrapper C wrapper

— Compiled with C++ {}

— CAPlviaextern “C”

Library

— “bufferify” functions

* Includes metadata arguments

User’s Library

Lawrence Livermore National Laboratory
LLNL-PRES-811975

NYSE »

National Nuclear Security Administration



Interface Block Only Wrapper

Subroutine with scalar arguments

language: ¢ Fortran

declarations:

- decl: void Worker(int argl, int *arg2)

Interface

interface
subroutine worker(argl, arg2) &
bind(C, name="Worker") C wrapper

use iso_c_binding, only : C_INT
implicit none
integer(C_INT), value, intent(IN) :: argl
integer(C_INT), intent(INOUT) :: arg2
end subroutine worker
end interface

Fortran 2003 interoperability with C:

name mangling, call-by-value, type matching.

Lawrence Livermore National Laboratory N A‘ &5’5 13

LLNL-PRES-811975 Natfonal Nuciear Security Administration




Wrapper for C++ Function
Needed to control name mangling for bind (C)

}bind(c, name=“LIB_worker")

C Wrapper

extern "C" void LIB_worker(int argl, int *arg2)
{ Worker(argl, arg2); }

= C++ compiler mangles names to provide context
— Fortran compilers mangle names for module functions

= Provides a C API for C users
— Compiled with C++ compiler and extern “C”
— Shroud refers to this as the “C wrapper”

= Necessary when “function” is a macro or
function pointer

Lawrence Livermore National Laboratory
LLNL-PRES-811975

Fortran

Interface

NYSE

National Nuclear Security Administration



Fortran Wrapper
When an interface block is not sufficient

- decl: void setName(const char *name)

Fortran

C wrapper

Fortran

subroutine set _name(name)
use iso _c_binding, only : C_NULL_CHAR
character(len=*), intent(IN) :: name
call c_set name(trim(name)//C _NULL CHAR)
end subroutine set_name

Interface

subroutine c_get _name(name) &

bind(C, name="LIB_get name") Library

character(kind=C_CHAR), intent(OUT) :: name(*)
end subroutine c_get name

const char * defaultsto intent(in).

Fortran wrapper does the work to NULL terminate the string.

Lawrence Livermore National Laboratory N A‘ &5’5 15

LLNL-PRES-811975 Natfonal Nuciear Security Administration




C Bufferify Wrapper

Pass metadata in additional arguments

- decl: void getName(std::string &name +intent(out))
 fortn

Fortran

subroutine get name(name) @
character(len=*), intent(OUT) :: name ‘\
call c get name bufferify(name, &
len(name, kind=C_INT))
end subroutine get_name
Cirapper | Curapper

C Wrapper

void LIB_get name_bufferify(char * name,| int Nname]) {

std: :string SH_name;

ShroudStrCopy(name, Nname, SH name.data(), SH name.size());}

Current compilers pass the length as a hidden argument.
Shroud passes the length explicitly.

. o ’Ql
Lawrence Livermore National Laboratory N A‘ 39& 16
LLNL-PRES-811975 National Nuclear Security Administration




Arrays are Fundamental to Fortran
Converting Pointer to Array (and references)

Must tell Shroud the shape of the array using an attribute
— rank, intent(in) assumed-shape argument
— dimension

Dimension is a list of C++ expressions
— (10,20), (nitems), (ReturnSize())

SHROUD array derived type saves metadata
— Eventually use TS 29113 CFI cdesc_t

Multidimensional arrays
— Row major to column major

Fortran is a Domain Specific Language for Arrays.

Lawrence Livermore National Laboratory N A' c‘i‘% 17

LLNL-PRES-811975 National Nuclear Security Administration



Converting Pointer to Array
C++ pointer converted to Fortran POINTER array

- decl: int *getArray(int *narray +intent(out)+hidden)
+dimension(narray)

= Attributes
— Hidden arguments are not in the Fortran API
— Dimension is shape of returned pointer

Fortran example C++ example

integer(C_INT), pointer :: values int nvalues;

integer(C_INT) narray int *value = getArray(&nvalues);
values => get_array() for (int i=0; i<nvalues; i++)
narray = size(values) values[i] = 9;

values(:) = ©

Fortran usage is what a Fortran programmer would expect.

Lawrence Livermore National Laboratory N A‘S‘iﬁé 18

LLNL-PRES-811975 Natfonal Nuciear Security Administration



Converting Pointer to Array
Fortran wrapper part, convert to Fortran POINTER

- decl: int *getArray(int *narray +intent(out)+hidden)

+dimension(narray)
function get_array() result(SHT_rv) = SHROUD array
use iso c binding, only : C INT, C_PTR, c_f_pointer .
|type(SHROUD_ar'r‘ay) :: DSHC rv holds metadata for
integer(C_INT) <% narray array
integer(C_INT), pointer :: SHT rv(:)
type(C _PTR) :: SHT ptr = o f pointer
SHT ptr = c get array bufferify(DSHC rv, narray) - —
call c_f _pointer(SHT ptr, SHT rv, DSHC rv¥%shape(1:1)) converts to Fortran
end function get_array pointer

Convert to Fortran array with c_f_pointer.

Lawrence Livermore National Laboratory N A‘ c(fé 19

LLNL-PRES-811975 Natfonal Nuciear Security Administration



Converting Pointer to Array
C wrapper part, fill in metadata

- decl: int *getArray(int *narray +intent(out)+hidden)

+dimension(narray)

int * LIB_get_array_bufferify
(LIB_SHROUD_ array *DSHC_rv, int * narray) {
int * SHC rv = getArray(narray);
DSHC _rv->cxx.addr = SHC rv;
DSHC_rv->cxx.idtor = 0; } capsule
DSHC_rv->addr.base = SHC rv;
DSHC_rv->type = SH TYPE_INT;
DSHC rv->elem_len = sizeof(int);

DSHC_rv->rank = 1;

DSHC _rv->shape[@] = *narray; | +dimension(narray)

DSHC_rv->size = DSHC_rv->shape[©@]; :}.
return SHC rv;

= Capsule used with
memory management

= Shape from dimension

attribute
— Function return value

SHROUD array is a subset of CFl_cdesc_t from TS 29113

Lawrence Livermore National Laboratory
LLNL-PRES-811975

NYSE

National Nuclear Security Administration

20



Memory management

= By default Shroud assumes owner(library) attribute
— owner(caller) to assume ownership

= Shadow class/proxy pattern
— Contains a pointer to memory returned by library
— And an index used to release the memory

All problems in computer science can be solved by
another level of indirection.
--- David Wheeler

Cannot use deallocate statement on C++ memory.

Lawrence Livermore National Laboratory N A'Sc(ﬁg 21

LLNL-PRES-811975 National Nuclear Security Administration



Capsule contains pointer to C++ memory
and information to release the memory

C Wrapper
struct s_LIB_SHROUD_capsule_data { Passed Between Fortran and C Wrapper
void *addr; /* address of C++ memory */
int idtor; /* index of destructor */ If +owner(library), idtor will be 0 (no-op)
}s

type SHROUD capsule

private

type (SHROUD capsule data) :: mem
contains

final :: SHROUD_capsule_final

procedure :: delete => SHROUD capsule delete
end type SHROUD capsule

= Shadow Class
— C capsule in a Fortran derived type with type-bound procedures

Inspired by PyCapsule from Python C API

Lawrence Livermore National Laboratory N A‘S‘iﬁé 22

LLNL-PRES-811975 Natfonal Nuciear Security Administration



Ownership of C++ Array in Fortran
set with owner attribute

- decl: int *getArray(int *narray +intent(out)+hidden)
+dimension(narray)| +owner(caller)

integer(C_INT), pointer :: data(:)
type(SHROUD capsule) capsule

data => get_pointer(capsule)

! use data

call data%delete()

= |diomatic use of array
— User does not see type (C_PTR)
— +deref(raw) will return type (C_PTR)

= Capsule may also be released by FINAL clause
— Similar to destructor

Allows C++ pointer to be released in Fortran

Lawrence Livermore National Laboratory
LLNL-PRES-811975

NOSE, »

National Nuclear Security Administration



C++ Class Creates a Fortran Shadow Class
using type-bound procedures

=

- decl: class Animal type animal
declarations: type(SHROUD_animal_capsule) :: cxxmem
- decl: Animal() contains
- decl: void speak() procedure :: speak => animal_speak
end type animal

Fortran example

use library mod #include <library.cpp>
type (animal) dog Animal dog;

dog = animal () dog.speak () ;

call dog%speak ()

= SHROUD animal capsule sameas SHROUD capsule
— Renamed for type safety

= Struct uses abind (C) derived type

Fortran 2003 object-oriented features.

Lawrence Livermore National Laboratory INWY S.‘;é’g 24

LLNL-PRES-811975 Natfonal Nuciear Security Administration



C Wrapper Class Method

C++ this passed as explicit argument

subroutine animal speak(obj)
class(animal) :: obj ‘\

call c_animal_speak(obj%cxxmem)
end subroutine animal_speak @

subroutine c_animal speak(self) &
bind(C, name="LIB Animal_ speak")
import :: SHROUD_animal_ capsule
type(SHROUD animal capsule), intent(IN) :: self ‘\
end subroutine c_animal_ speak

C Wrapper
void LIB Animal speak(LIB_Animal * self) {

Animal *SH this = static_cast<Animal *>(self->addr);
SH this->speak();
}

Fortran passes capsule to C wrapper.
C Wapper uses C++ vtable.

. o 'Ql
Lawrence Livermore National Laboratory N A‘ .‘jgé 25
LLNL-PRES-811975 National Nuclear Security Administration




Overloaded Functions and Default Arguments
Use generic interfaces

YAML

- decl: void SetValue(const std::string& name)
format:
function suffix: _from_name
- decl: void SetValue(int indx)
format:
function_suffix: _from_index

- decl: void SetFlag(int flag = 0)
default_arg suffix:
- _zero

- _user Fortran example

= Functions can have user defined suffix | €21} set-vaiue_fron pane(“name®)

call set_value(“name”)
— Otherwise use a sequence number call set_value(1)

. . call set flag zero()
= Can use generic or specific name B e

call set flag(1l)

Generic interface is used to emulate C++ features

Lawrence Livermore National Laboratory N A'Sc(ﬁg 26

LLNL-PRES-811975 National Nuclear Security Administration




Templates Must Be Instantiated to be Wrapped

Function and Class Templates

cxx_template:
- instantiation: <int, long>
- instantiation: <float, double>

cxx_template:
- instantiation:
- instantiation:

<int>
<double>

- decl: template<T,U> void FunctionTU(T argl, U arg2)

- decl: template<typename T> class vector

= Generic interface created for
functions

= Derived type created for each class

Lawrence Livermore National Laboratory
LLNL-PRES-811975

Fortran example

call function_tu(l _C INT, 2 C LONG)
call function_tu(1.2_C FLOAT, 2.2 C _DOUBLE)

type(vector_double) vl

vl = vector_double()

NYSE

National Nuclear Security Administration

27



Splicer provides customization
Allow manual edits to be preserved

subroutine set name(name)

use iso _c_binding, only : C_NULL_CHAR
character(len=*), intent(IN) :: name

! splicer begin function.set_name

call c_set name(trim(name)//C NULL_ CHAR)
! splicer end function.set_name

end subroutine set_ name

= Delineated by splicer comments

= Define replacement text in YAML file or additional input file
— Can be generated

= Splicers for additional functions and interfaces

Allows total customization

Lawrence Livermore National Laboratory N A‘S‘(ﬁé 28

LLNL-PRES-811975 Natfonal Nuciear Security Administration



Shroud Gives Fortran Access to C++ Libraries

= Creates Fortran idiomatic API

= Creates a portable source
— Fortran 2003

= Creates user readable source

= Easier to maintain interface
— Changing YAML can change Interface, Fortran wrapper, C wrapper

= Nothing existed at the time
— SWIG 4 fork at https://github.com/swig-fortran/swig

Lawrence Livermore National Laboratory N A"Sii?; 29

LLNL-PRES-811975 National Nucioar Security Administratiol



Fortran and Python Have Similarities
when creating wrappers

= The YAML input file can also be used to generate Python
— Attribute provide similar guidance for Python wrapper

= Python wrapper is “free” (or low cost)

= Python wrapping is a very crowded field
— NumPy support for rank/dimension attributes
— PyCapsule used as base class for NumPy for memory management
— Option to use list for arrays (array module)
— Creates extension type for classes
— Readable source

Two wrappers for one

Lawrence Livermore National Laboratory N A' {15’5 30

LLNL-PRES-811975 National Nuclear Security Administration



Availability

. “T SPEND A LOT OF TIME ON THE TRSK.

= BSD-3-clause license T SHOULD LRITE A PROGRAM AUTOMATING IT!"
THEORY:
= software.lInl.gov WRTING-,
CODE
: WOt 7\ AurriAton e
= github.com/LLNL/shroud WORK ON- . \TAKES OVeR
THME

= pypi lInl-shroud

TME

source: xkcd: Automation (from http://xkcd.com/1319)

Lawrence Livermore National Laboratory NUVYSE

LLNL-PRES-811975 Natfonal Nuciear Security Administration



B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Livermore National Security, LLC, and shall not be
used for advertising or product endorsement purposes.




