
Scripting imlook4d
Scripting imlook4d ... 1

Introduction .. 1
Basics – the mechanism for scripting .. 1
Simple way – create a script .. 2
Basics – access the data ... 2
Basics – make your first calculation .. 3
Basics – meaning of variables .. 3
Understanding your first script .. 3
Example script skeletons .. 4
List of Script commands .. 5

Introduction
Imlook4d is tightly integrated with the Matlab workspace. This allows export from imlook4d to the
workspace, and import back from the workspace. Thus, following an export the image matrix and
other variables may be manipulated from the Matlab command window, thus unleashing the full
potential of Matlab. The data can then be imported back again to imlook4d.

This very principle of calculating in the Matlab workspace, is exactly what is done when running a
Matlab script file from the command line. Imlook4d facilitates the use of scripts, by integrating
scripts. Inside the main folder where imlook4d was installed, there is a folder named SCRIPTS.
Imlook4d scans the subfolders of the SCRIPTS folder for files with the extention “.m”.

Basics – the mechanism for scripting
When imlook4d starts, the SCRIPTS folder and one subfolder down is analyzed for .m files. The
SCRIPTS menu is populated by the subfolder names. Each of these subfolder names becomes a
menu item in the SCRIPTS menu. Within each of these menu items (the subfolder names), new
submenu items are created with names from the script names.
Naming convention: Since Matlab script names are not allowed to include spaces, but it is nice for
readibility to have spaces in the menues, the convention to use “_” in the script name when a space
is intended should be used. imlook4d will replace “_” with “ “ in the menu items.
Clicking the SCRIPTS menu exports the variables imlook4d_current_handle,
imlook4d_current_handles to Matlab workspace. The first variable is a handle to the active
imlook4d window (also called an imlook4d instance). The second variable is a structure containing
all data within this instance.
Following the click on the SCRIPTS menu it unfolds, and a submenu item is selected. When a
submenu item is selected the script file with the same name is executed (compare comment about
spaces above).

Simple way – create a script

The simplest way is to use the menu in imlook4d (see figure below) to make a script from a
template. There are two different templates, which gives you two slightly different types of scripts :

• “New Script Duplicate Window”, which makes a script from template that automatically
creates a duplicate imlook4d window which you work in (good if you want to modify the
image, but also keep the existing unmodified window)

• “New Script Same Window”, which makes a script from template that works in the same
imlook4d window (good for calculating statistics, modifying a ROI in existing window, etc)

Modify the script and save it with the dialog which points you to the USER_SCRIPTS
folder. You are allowed to have one subfolder. File names can only use characters a-Z, A-Z
and “_”. Spaces and other strange characters are not allowed, but use “_” instead of a space
(you will see why later on).

Note: If you create a new script, it will not be recognized from the already open imlook4d windows.
You may make a quick copy of your window with “/SCRIPTS/Change/Duplicate”, to be able to see
the newly created script in the menu.

Basics – access the data
The aim now is to get a feel for how scripting works. First open an image file (as described in a
previous tutorial). Select the SCRIPTS menu, and let go.
Select the main Matlab window and look in the variable list. You will now see two variables
exported to the Matlab workspace:
 imlook4d_current_handle (handle to the current imlook4d instance)
 imlook4d_current_handles (handles structure to GUI and data)

These two variables will be used by the scripts language that will be introduced below.

Now, edit the my_script.m file you created earlier. Write the following, and save:
StartScript;

Select SCRIPTS/MY_SCRIPTS from the imlook4d window, and you will see a duplicate of the
imlook4d window open. You will also see many more variables in the Matlab workspace:

handleToOriginal, imlook4d_Cdata, imlook4d_ROI, imlook4d_ROINames,
imlook4d_ROI_number, imlook4d_current_handle, imlook4d_current_handles,
imlook4d_duration, imlook4d_frame, imlook4d_slice, imlook4d_time,
imlook4d_variables_before_script

These variables gives direct access to most things you need to do to manipulate image volumes, and
region-of-interests (ROIs). The duplicate imlook4d menu is where your manipulated data will be
written back.

Basics – make your first calculation
Lets now make a script that multiplies all pixels by 2. Edit the script, and type:
StartScript
imlook4d_Cdata=2*imlook4d_Cdata;
WindowTitle('My_Script did this !');
EndScript

You should now get a duplicate imlook4d window, but with the color scale showing twice the
maximum value. Also the imlook4d window title is changed to “My_Script did this!”.

Basics – meaning of variables
The table below shows what variables are Exported when creating a script. This is exactly the same
as selecting the imlook4d menu “/Workspace/Export untouched”. The table also shows what
variables are imported back with the imlook4d menu “/Workspace/Import”. All these variables are
referring to the new imlook4d window that was opened.

Variable Export Import Explanation
imlook4d_current_handle x Handle to current imlook4d
imlook4d_current_handles x x Struct defining everything in

current imlook4d
imlook4d_time x x Frame time
imlook4d_duration x x Frame duration
imlook4d_Cdata x x 4D pixel data
imlook4d_ROINames x x ROI names
imlook4d_ROI x x ROI pixels in 3D matrix
imlook4d_slice x Current slice
imlook4d_frame x Current frame
imlook4d_ROI_number x Current selected ROI
imlook4d_store Mechanism for storing values in

session. See descriptions

Other variables are more for administrative tasks, such as cleaning up after a script is finished. The
cleaning up is performed as part of the EndScript command.

Understanding your first script
When you did your first script, you noted that a new imlook4d window opened, and that a number
of variables were written. I will now explain what happened, and the meaning of the variables. The

best way to understand this is to rewrite the script a bit, so that “my_script.m” looks like this:
StartScript
imlook4d_Cdata=2*imlook4d_Cdata;
WindowTitle('My_Script did this !');
%EndScript
Import % This imports data,but doesn't remove variables from workspace

We now have two imlook4d windows. The window and all the data is called an instance. Each
imlook4d window has a handle (like a variabel pointing to it)

HandleToOriginal points to the original imlook4d window

imlook4d_current_handle points to the new imlook4d window

We also have a structure imlook4d_current_handles containing all data from the imlook4d window.
This you normally don't need to touch, but it gives you access to the GUI, and to the data. The data
which is shown in the workspace should be used instead of accessing it through the structure, since
these variables takes precedence to the structure when importing.
There is also a variable imlook4d_variables_before_script that keeps track of which variables existed
before the script was initiated, so that the EndScript command knows what variables should be
cleaned at the end of the script.

Example script skeletons
The following examples show a few cases you can start scripting from.

Example 1. Create one new imlook4d window, and operate on (basically the same as the script
template from the menu “New Script Duplicate Window”)
% Start script
 StartScript;

 % process with your own code
 % add new data to variables
 % possibly modify

 % Finish script
 EndScript

Example 2. Create multiple new imlook4d windows from the orginal, and modify the data in each
 % Start script
 StartScript;

 % Create first imlook4d
 imlook4d_Cdata=2*imlook4d_Cdata; %Calculate
 WindowTitle('(2xdata) ','prepend') %Add “(2xdata) “ to original title
 Import

 % Create second imlook4d
 DuplicateOriginal;
 imlook4d_Cdata=3*imlook4d_Cdata;
 WindowTitle('(3xdata) ','prepend') %Add “(3xdata) “ to original title
 Import

 % Create last imlook4d
 DuplicateOriginal;
 imlook4d_Cdata=4*imlook4d_Cdata;

 WindowTitle('(4xdata) ','prepend') %Add “(4xdata) “ to original title
 Import %This is not necessary – EndScript does an import as well

 % Finish script
 EndScript %Clean up

Example 3. A typical script (doing the same as the first script), with more options for
modifications, would looks as follows. For instance, you can turn on/off parts of what is normally
done in StartScript and EndScript:
% StartScript
 % Store variables (so we can clear all variables created in this script)
 StoreVariables;

 % Make a duplicate to work on
 Duplicate % Make a copy of imlook4d instance in handle newHandle
 MakeCurrent % Rename newHandle to imlook4d_current_handle
 Export % Export variables from current imlook4d instance

% Your code goes here
 WindowTitle('SUV','prepend')

 % process with your own code
 % add new data to variables
 % possibly modify
 …

% EndScript
 % Import data (variables, and imlook4d_current_handles)
 Import

 % Clean up variables created in this script
 ClearVariables

A script created from the menu “New Script Same Window”, is the same as above with Duplicate
and MakeCurrent commented out.

List of Script commands
The following simple scripting commands are available

StartScript Starts a script with this command exports the variables in the table below,
and creates a new imlook4d window to work in. The
imlook4d_current_handle and imlook4d_current_handles are set to point to
the this new window. Hotelling filtering is applied to the
imlook4d_Cdata image matrix. Interpolations, thresholding and window
levels are not modifying the exported variables.

handleToOriginal is set to imlook4d_current_handle , so that initiating
imlook4d-window can be referenced later in a script.

(Startscript uses the below commands internally:
StoreVariables, Duplicate, MakeCurrent, Export)

EndScript Imports the modified variables, and modified imlook4d_current_handles

into the window defined in StartScript. The window title is appended
with the string in the variable historyDescriptor. It also cleans up the
variables created in the script (from StartScript onwards).

(EndScript uses the below commands: Title, Import,
ClearVariables)

WindowTitle WindowTitle(str)

sets the title of the current window to the string str.

WindowTitle(str,'prepend')
sets the string str before the title of the current window.

WindowTitle(str,'append')
sets the string str after the title of the current window.

DuplicateOriginal This duplicates the imlook4d window that started the script. It also

exports the variables (just as the Export command would). This is useful
if multiple windows will be created.

TACT Generates time-activity data from the ROIs. These are stored in the

workspace variables:
tact.activity (columns with mean activity in each ROI)
tact.n (number of pixels in each ROI)
tact.stdev (columns with standard deviation within each ROI)

LoadROI LoadROI(str)

Loads a ROI from file path str

MakeROI MakeROI(str)

Creates a ROI with the name str.
a=MakeROI(str)
Creates a ROI with the name str, and returns the ROI-number for the
created ROI.

SelectROI SelectROI(number) or SelectROI(name)

Selects ROI with ROI-number or ROI-name.

ExportROIs Export ROIs to workspace variable imlook4d_ROI_data.

Examples showing how to use this data:
imlook4d_ROI_data.midtime(1) % Gets midtime of
frame 1
imlook4d_ROI_data.duration(1) % Get duration of
frame 1
imlook4d_ROI_data.Npixels(1) % Get number of
pixels in ROI 1
imlook4d_ROI_data.mean(3,1) % Mean activity in
frame 3, ROI 1
imlook4d_ROI_data.mean(:,1) % Mean activity in
each frame of dyn scan, ROI 1
imlook4d_ROI_data.stdev(3,1) % St. dev. of
pixels in frame 3, ROI 1
imlook4d_ROI_data.pixels{1}(:,5) % All pixel values
in frame 5, ROI 1
imlook4d_ROI_data.max(3,1) % Max pixel value
in frame 3, ROI 1
imlook4d_ROI_data.min(3,1) % Min pixel value

in frame 3, ROI 1
imlook4d_ROI_data.volume(1) % Volume of ROI
1
imlook4d_ROI_data.voxelsize % Voxelsizes [x y
z dV] (dV=voxel volume=x*y*z)
imlook4d_ROI_data.centroid{1}.x % Centroid x
position, of ROI 1
imlook4d_ROI_data.dimension{1}.y % Highest width in
y-directin of ROI 1

SelectWindow Pops up a dialog with a text message, to select another (imlook4d)

window.
Click OK when you have activated the imlook4d-window you want to
use. Returns a handle to the selected window.
Useage:
handle=SelectWindow(message)
Example (multi-line message when entered as cells):
handle=SelectWindow({...
'Select template image (from imlook4d/Windows menu)', ...
'(image that we want slices to match' ...
});

StoreValues StoreValues(name, valuesToStore)

Mechanism to storing a cell array of string values during this session.
The value set is identified by name. The stored values are deleted when
calling clear all, or clear imlook4d_store

RetrieveEarlierValues outCellArray = RetriveEarlierValues(name,

defaultValues)
Returns a cell array of strings, that was stored under the identifier name.
If no values are stored, the defaultValues cell array is returned, and also
stored as the one returned next time calling RetrieveEarlierValues.

(Note: all script names start with a capital letter)

Specialized script commands
The following commands are performing smaller functionality, but may also be useful (they
are actually used within the above commands):

Open Open, Open(arg) or handle=Open(arg). Opens an imlook4d

instance, and creates variables (imlook4d_current_handle,
imlook4d_current_handles) in workspace. Same as menu File/Open
followed by clicking the SCRIPTS menu. The input argument arg, could
be a matrix, or a complete file path. The optional output argument is a
handle to the imlook4d instance.

Save Save dialog on current data (what is in imlook4d_current_handles)

Export exports image matrix as viewed on screen. Also exports useful variables

from imlook4d_current_handle
(same as menu “Workspace/export filtered”. Also the handles structure
imlook4d_current_handles is exported.

ExportUntouched exports image matrix (no interactive filters are applied). Also exports
useful variables from imlook4d_current_handle
(same as menu “Workspace/export untouched”). Also the handles
structure imlook4d_current_handles is exported.

Import imports variables (same as menu “Workspace/import”)

into imlook4d_current_handle. Also the handles structure
imlook4d_current_handles is imported. Variables such as
imlook4d_Cdata takes precedence over the same variable in the handles
structure (e.g. imlook4d_current_handles.image.Cdata).

ImportUntouched imports variables (same as menu “Workspace/import”), except that the
matrix imlook4d_Cdata is not imported

Title adds the content you put in variable historyDescriptor to the window
title of imlook4d_current_handle. This is going to be rolled out, and
replaced by the WindowTitle function above.

Duplicate duplicates the current window, and creates newHandle, newHandles.

These have the same function as imlook4d_current_handle, and
imlook4d_current_handles, but for the new window.

MakeCurrent makes the newHandle, newHandles the current handles (renaming them
to imlook4d_current_handle, imlook4d_current_handles).
Following this command, scripts will operate on these. newHandle,
newHandles are deleted.

StoreVariables Remember variables that exist in workspace before script is executed.
The variable names are stored in
imlook4d_variables_before_script. A possible problem may occur
in the following condition:
Script A calls StoreVariables.
Script A calls script B
Script B calls StoreVariables
Script B calls ClearVariables – Here Script A will loose track of stored variables

The remedy for this is to keep track of the stored variables yourself in script A:

temp_list=imlook4d_variables_before_script; % Make temporal list
Call script B
imlook4d_variables_before_script=temp_list; % Restore list

ClearVariables Clear variables that were created in script after that StoreVariables
was called

