
DOCUMENTATION

Contents
1. Description ... 2

1.1 Purpose.. 2

1.2 Methodology ... 2

1.3 Prerequisites .. 2

1.4 Dataset .. 3

1.5 Tested platforms and known issues .. 3

2. Installation and Directory Structure ... 3

2.1 Installation .. 3

2.2 Directory Structure .. 3

3. Generating RMSD values ... 4

3.1 Via Swiss PDB Viewer ... 5

4. Conservation and fasta files ... 10

4.1 Conservation .. 10

4.2 Fasta .. 10

5. Using MODICT .. 11

5.1 The Basics .. 11

5.2 Using conversation scores in MODICT ... 14

5.3 Help Command and Possible Parameters ... 15

6. Using the iterator .. 16

6.1 Using the iterator from command line:... 16

6.2 Understanding the Iterator .. 22

6.3 Why random number approach? .. 23

7. Using the ROC plot. .. 24

7.1 The purpose of ROC plot .. 24

8. Contact .. 31

1. Description

1.1 Purpose

The aim of MODICT is to compare in silico generated three-dimensional

(3D) models of wildtype and mutated proteins and give a score as well

as a graphical output based on how deleterious that specific mutation

is. Several different mutations can be compared to other mutations.

Generated results include both semi-quantitative (MODICT score) and

qualitative graphical output to see the distribution of amino acids with

different properties.

We believe that this is a good opportunity for the users to look at their

proteins from different perspectives. Observed differences in

mutations can guide searching for alternative mutations having the

same effect or directing in vitro/in vivo studies.

1.2 Methodology

The main idea of MODICT is to superimpose a wildtype and a mutated

model of the same protein and generate a score from the RMSD (Root

Mean Square Deviation) values. The score generation process is

explained in detail in the algorithm section of the MODICT paper.

1.3 Prerequisites

 You will need to have your own wildtype and mutated 3D protein

models. You can easily submit your raw protein sequence in fasta

format to automated servers like I-TASSER, PHYRE2, MODELLER,

ETC.

 You will also need to be able to open these models in a .pdb

editor like SWISSPDB, CHIMERA, PYMOL OR YASARA and generate

RMSD values. A script for RMSD generation for SWISSPDB is

included in the MODICT package.

 You need to have a perl interpreter with IPC::System::Simple and

GetOpt::Long modules installed.

 MODICT itself is a very small program for which you need only less

than a Mb of space on your drive.

1.4 Dataset

The test dataset includes proteins from distant families like tubb2b, btd,

pah, ren, acadm, tmem, smpd1 as shown in table S1 in the MODICT

paper. Several mutations from each protein have been tested with

MODICT both with and without the use of conservation scores.

1.5 Tested platforms and known issues

MODICT had been tested on MacOS X 10.9.4, Windows 7 and Linux

(Ubuntu). The only drawback is that in versions of Perl newer than

5.16 the smartmatch ability has been classified as experimental. This

will lead to warnings during the running of MODICT which however do

not interrupt the execution of the program itself.

2. Installation and Directory Structure

2.1 Installation

 Unzip the contents of MODICT.RAR into any drive.

 Microsoft Windows users need to install a perl interpreter (e.g.

strawberry perl http://strawberryperl.com)

 Both Linux and Microsoft Windows users have to install the

IPC::System::Simple module, preferably from CPAN

(http://search.cpan.org/~pjf/IPC-System-Simple-

1.25/lib/IPC/System/Simple.pm). The IPC::System::Simple

module is crucial for ITERATOR but not for MODICT itself.

 Additionally users will have to install the Getopt::Long

(http://search.cpan.org/~jv/Getopt-Long-2.42/lib/Getopt/Long.pm)

module for both MODICT and iterator.

2.2 Directory Structure

The MODICT folder consists of 4 sub-directories:

http://search.cpan.org/~jv/Getopt-Long-2.42/lib/Getopt/Long.pm

 “./PROGRAM” : contains core scripts and templates for running

MODICT

“./ROC” : contains script and demo files for the generation of ROC plot

data

“./SAMPLE” : contains the files for the three examples described in

the paper (BTD, PAH and Renin). These examples can be used to get

familiar with the program.

“./DOCUMENTATION” : contains the documentation and the printed

version of the MODICT paper.

Upon inspection you will see the following directories under PROGRAM:

 ./Core: contains the main scripts.

 ./Essentials: contains the automatically generated customized

answers to questions asked by MODICT together with a template file for

d3.js. Be careful not to modify this template file.

 ./Input : contains the conservation, .fasta and .rmsd files for your

protein. It’s from this folder that MODICT takes its input. All these files

that you provide must be text files with “.txt” extension.

 ./Output: This folder will contain the final MODICT results. If ITERATOR

was used, it will also contain the graphical output generated by d3.js

using the template file located in ./Essentials.

3. Generating RMSD values
RMSD values are core to the algorithm of MODICT. RSMD stands for ‘Root

Mean Square Deviation’ and is a measure of the distance between

two selected groups in a 3D space. In SWISS-PDB it is named as RMS

under the “Fit” menu. Imagine 2 groups A and B in 3D space, each

with n submolecular particles having coordinates (xi,yi,zi). Then the

RMS is roughly equal to:

Beware that this definition of RMS is dependent on the fit of the models

or more generally the distance between the groups. Therefore

rotations and translations to minimize the sum are NOT computed.

Instead models are superimposed with the choice of your program

BEFORE the RMS calculation.

You can generate these values by selecting corresponding amino acids

in a mutated protein and its wildtype counterpart AFTER

superimposing them. For instance you can select Gly10 of mutated

and then Gly10 of wildtype and then calculate RMS. Now you should

repeat this for every residue of your protein, one by one. This is where

the script comes in handy to automate this whole process.

You can calculate RMS with a variety of programs like SWISS-PDB,

YASARA, PYMOL, CHIMERA, etc. The only thing you have to make sure is

to first superimpose and then calculate the RMS values. Below is an

explanation of the script which automates this step when using SWISS-

PDB.

3.1 Via Swiss PDB Viewer

In the following section I will demonstrate how to generate a file in the

format that MODICT accepts using SWISS-PDB VIEWER. The individual

steps for generating similar files with different programs might vary

slightly but they will all share the same 2 primary steps:

 - superimposition of 2 models (wildtype vs. mutated, mutation 1 vs.

mutation 2, etc.).

- extracting residue by residue RMSD values.

First you will have to download and install the latest distribution of swiss

pdb viewer from http://spdbv.vital-it.ch/ according to the instructions

provided on the website.

3.1.1. Model superimposition

 Open … .exe

 navigate to the to “MODICT/SAMPLE/BTD/i-tasser/control”

folder

 Drag and drop the “wildtype.pdb” located in this folder into the

program. As an alternative for ‘drag and drop’ you can also

upload the file using the ‘open PDB file’ from the program’s

FILE menu. Click OK to ignore warning messages.

 Drag and drop the second .pdb file, “mutated.pdb” located in

the same folder and again ignore warning messages.

http://spdbv.vital-it.ch/

“Mutated.pdb” is actually the refined wildtype model, which

means the wildtype pdb model was submitted to MODREFINER

(http://zhanglab.ccmb.med.umich.edu/ModRefiner/) to obtain

an enhanced model. You could have renamed the wildtype pdb

as mutated and generated RMSD values of 0, but later on you

will see that this is not very helpful on later stages. Each time

you generate RMSD values, rename the first layer to

“wildtype.pdb” and the other layer to “mutated.pdb”.

 From the program’s FIT menu, choose MAGIC FIT. A window

pops up where you can choose which superimposition model

you want to apply.

 -Carbon Alpha only

 -Backbone Atom only

 -Sidechain Atom only

 -All atoms

The above super imposition methods differ in the number of subgroups

they take into account in implementing the RMSD formula. The ‘Carbon

alpha’ method takes only into account the alpha carbon when

calculating RMSD, whereas as you go down the list, the number of

atoms to average before calculating RMSD increases. Overall this does

not make a big difference. However when you are comparing MODICT

scores from two or three RMSD files you generated, you need to stick

to one choice to make sure your error margins do not vary much.

So the important point here is to stay consistent for all tested

models of your protein. For example, suppose you have:

 1 wildtype model

 1 refined wildtype model (from ModRefiner)

 1 refined test mutation

 1 refined known deleterious/benign mutation

You will normally form 3 pairs which are wildtype/wildtype-refined,

wildtype/test-refined, wildtype/deleterious-refined. In all of these

pairs you should choose the same superimposition method

because you do not want the small changes in RMSD calculation

method to be understood as an impact of mutation.

http://zhanglab.ccmb.med.umich.edu/ModRefiner/

Instead of wildtype-refined you can also use a known benign

mutation. However Model refinements have very small overall RMSD

differences when compared to the original model whereas a benign

mutation would have a larger change due to modeling algorithm.

This will make it harder for your mutation to be classified as

deleterious. I would like to further explain this with an example.

Imagine you have generated a negative control score by super

imposing wildtype/wildtype-refined and your score came out to be

0.3. And then imagine you also generated a score from

wildtype/known-deleterious-refined mutation and it is 2. This is a

condition identical to line 81-89 in ROC plot script located in

“./MODICT/ROC/”. The threshold for a mutation to be classified as

deleterious in this case is ~1.38. Now imagine that instead of using

a wildtype-refined model, you used a benign model. Let’s assume

that the new score is 0.5. In this case, supposing your positive

score stays the same, the new threshold would be ~1.45. As you

can see although there is around 66 percent increase in negative

control score, it is minimally reflected on the threshold which is

around 5 percent increase. However, if your test score would

happen to fall between 1.38 and 1.45, in the first case it would be

classified as deleterious whereas in the second as benign.

Supposing your test score can fall anywhere between 0.3 and 2,

changing your choice for negative control between wildtype-refined

and benign would cause around 4 percent of your test scores to

shift classification. This error margin (the 4 percent) is one that you

cannot avoid if you want to use a known benign model.

 Below the fit options there are two dialog boxes to define the two

layers for the superimposition. The first box is to define the

reference model, which is in this case the wildtype model and it

will stay as that the rest of the trio. (A trio is a group of

wildtype/wildtype-refined + wildtype/test-refined + wildtype/known-

utation-refined OR wildtype/known-benign + wildtype/test +

wildtype/known-mutation(benign or deleterious))

 Click “OK” and your models will be superimposed. If your models

are far from each other you will see them overlap in the screen

after clicking “OK”. If the models are already close it might be

hard to see if superimposition is done. It should normally be done

after you click “OK”.

3.1.2 calculating and extracting RMSD values

 Go to “./MODICT/PROGRAM/Core/”. Drag the script, named

“RMSD.txt” to SWISS PDB VIEWER and a new window opens which

shows this script that will generate residue by residue RMSD

values. Drag might not work properly in MacOS so your second

option is to go to File -> Run Script…

 Click on “please do” on the first line of the script. The program will

then start writing output to “./SwissPDB-

Viewer/SPDBV_4.10_PC/usrstuff/output.txt”. Congratulations, you

now have your RMSD values for the wildtype/mutated model. Copy

the output.txt file to “./MODICT/PROGRAM/Input/”. This file will be

used as for MODICT.

***Warning: If you are using Mac, you might have a typo like

“beginnin$j” instead of ‘beginning’ near the end of output.txt. It does

not make a change in your results.***

3.1.3 RMSD output description

It is important to understand the standard output that MODICT

understands:

Some sentence with “RMSD” in it.

……

Values

……

Some other sentence with “RMSD” in it.

Comments or anything with any number

of lines.

Some sentence with “groupcount” in it.

1 Groupcount Value.

Some other sentence with “groupcount” in it.

1 Groupcount Value.

Comments or anything with any number of lines.

Some sentence with “overall” in it.

1 Overall RMSD Value.

Comments or anything with any number of lines.

The bold regions above are “blocks” that MODICT reads and extracts data

from. The order of these blocks is NOT important. Open “./SwissPDB-

Viewer/SPDBV_4.10_PC/usrstuff/output.txt” and it will be clearer what

the format looks like.

If you open any model on SWISS PDB VIEWER and go to “Wind -> Control

Panel” to visualize the residues, you will see that they are numbered

starting from 1 till X (543 in the BTD example). Since most

programming languages start counting from 0, they would end up with

1 less than the maximum amino acid count. This is why in the script

“RMSD.txt” at line 26 we subtract 1 from “$minresiduecount”.

One remark here is that if you carefully look at the models, some of them

have end groups like “OXT” (oxygen) or HT (hydrogen). Compare

“wildtype.pdb” in “MODICT/SAMPLE/BTD/i-tasser/control/” with

“mutated.pdb”. You will see that the mutated has an OXT group. This

is the reason why two groupcount values exist in the standard input

format for MODICT. MODICT takes the smallest of these values as amino

acid count. Sometimes it is possible that both models have these

“OXT” groups, this causes MODICT to overestimate the amino acid

count by 1, which is an insignificant change.

You probably saw the “RMSD_original.txt” in

“MODICT/PROGRAM/Core/”. This is the original version of the script I

worked with. Compare “RMSD.txt” and “RMSD_original.txt”. The

biggest difference is in line 26 in “RMSD_original.txt” which

corresponds to line 45 in “RMSD.txt”. “RMSD.txt” automatically

calculates the upper limit for the number of amino acids whereas in

“RMSD_original.txt” you will have to enter this manually. To exemplify

from BTD, line 26 in “RMSD_original.txt” has to change. Look at both

“wildtype.pdb” and “mutated.pdb”. They both have 543 residues. But

as mentioned earlier, the program takes them as an array and the

numbering in script should start from 0. Therefore you have to replace

the “902” in line 26 of “RMSD_original.txt” by 1084 ((543-1)*2). The

rule of thumb is:

 (Common maximum number of amino acids between two

layers - 1) x 2

It is up to you which script to use. They both do the same thing. I

wrote “RMSD.txt” to evade confusion in people. However there might

be bugs in this one. If you find one please send an email at:

itanyalc@vub.ac.be

4. Conservation and fasta files
Other then the RMSD values, you will need conservation .txt and

sequence .fasta files. The fasta file is needed to generate a graphical

output and the conservation file is needed for generating MODICT

scores. MODICT can also generate scores without conservation

information but conservation allows attaining different weight scores to

aminoacid pairs. If you want to generate a MODICT score based on the

physical properties only than you can omit the conservation data.

4.1 Conservation

A conservation .txt file is generated by aligning protein sequences from

different organisms. Use Uniprot to select “reviewed” protein

sequences from different organisms and align them. Using jalview,

import the values corresponding to your sequence of interest (there

might be gaps) in a simple .txt file. Under “./MODICT/SAMPLE/BTD/”

you will see a conservation .txt file for the BTD protein. The format is

simple: 1 value per line per amino acid. It is very important NOT to

have extra blank lines at the end of this .txt file, since it might cause

check problems with MODICT. MODICT performs a check everytime you

provide an input file, if this check is not successful you will not get a

result.

4.2 Fasta

The .fasta file is the standard file format you get from genome browsers

(eg. UCSC, Ensembl, NCBI) or Uniprot to represent a DNA/protein

sequence. The fasta file used for MODICT is the aminoacid sequence

of a protein. Just copy and paste everything in its entirety to a .txt file.

Header lines are not a problem, they are discarded by MODICT. If your

fasta file has an extension other than “.txt”, you should change it to

“.txt”.

mailto:itanyalc@vub.ac.be

5. Using MODICT

5.1 The Basics

You can run MODICT with parameters that will go into arguments,

however we will first look into direct use without arguments.

 First open a terminal window and go to

“./MODICT/PROGRAM/Core/”.

 Invoke the master script by writing: “perl MODICT_v1.0.pl”.

 In the next steps, you’ll be asked some questions which you

should answer with either ‘yes’ or ‘no’.

1. The first question is if you want to turn on the eventlistener.

Eventlistener stores your answers to the questions asked,

so that they can be recalled and used again when you run

the program a second time. So write ‘yes’. Any answer that

starts other than small or capital Y is taken as no.

2. To the second question about turning on the automizer,

answer ‘no’ now because you need to run MODICT at least

once for automiser to work. Once turned on, automiser

takes the answers stored in eventlistener and provides

them without the user having to type them again.

3. Next the program will ask you the name of the file with

RMSD values. For this example this file is called to

“BTD_trial_control.txt” which is located in the “input”

directory. Alternatively you can use your own file generated

earlier. Rename the “output.txt” to “BTD_trial_control.txt”.

4. The next questions all deal with the domains present in

your protein. For BTD we know from Uniprot that residues

57-363, 402-403 and 489-489 are the domain regions.

Below is a recent screenshot of Uniprot showing the

aforementioned information (there might be small

differences due to the updates).

 One small remark here is that at the time the paper was

written the user could submit same start and end

coordinates such as 489-489. However I find it misleading

(MODICT works in residue pairs, see algorithm step 1) so

they cannot be the same. The closest you can enter is 489-

490. Try to end up with a screen similar to below:

You cannot enter values smaller or greater than the maximum/minimum

residue count. You also cannot enter same start and end positions as

well as negative numbers.

The overall RMSD value and a standard deviation are now being

calculated and printed on the screen. Since entering identical start

and ends were legitimate in previous versions of MODICT (like 489-

489), your final answer might slightly differ from the value reported in

the paper at table S1.

1. Another question is then asked which handles about the

distribution you want to use in the further analysis. There are

three options listed, however for now only the Gaussian

distribution is embedded, so the answer should be ‘1’. We

assume Gaussian distribution (in any case the effect of

distribution choice in trios is very very small). The main aim of the

distributions is to estimate a threshold RMSD value.

2. Choose the default number of amino acid pairing: 2. (This feature

might not be fully functional yet). The default value is 2. It defines

the number of consecutive amino acids to average as in step 1 of

MODICT algorithm.

Finally one can specify his/her own conservation and weight

scores. For now answer ‘no’ to both questions.

The result is written the last 6 lines. The final result for this test is

0.094 which is close to the 0.092 value that was reported in table

S1 from the paper. As I stated earlier the values differ because of

a change in the script, which is not to accept equal start and end,

which causes a slight shift in the Z score. The Z score is not

important for the user, it is used to set threshold RMSD values for

significance. The line after the checkpoint is the most important.

The same result is also in the last line of STDOUT but unrounded.

The reason for this is that the last line in STDOUT is used by the

IPC::System and iterator to capture results.

Now, if you were to navigate to “MODICT/PROGRAM/Essentials/”, you

would see a file with the name “essentials_MODICT.txt”. If you open it

you will see that all of your answers to the questions are stored in this

file. This is the effect of turning the eventlistener ‘on’ at the start of the

program. This will also allow the user to work now with arguments

(see next paragraph).

Generate RMSD files as shown previously (under point …) for mutations

H447R and R209C and rename the output with RMSD values to

“H447R.txt” and “R209C.txt” respectively. Copy/paste them in the

“./MODICT/PROGRAM/Input”. To run MODICT with arguments: write in

the terminal:

perl modict_v1.0.pl --eventlistener off --automiser on --input H447R.txt

This is telling the program to turn off the eventlistener and turn on the

automiser. H447R.txt is used as input file. Now you should

immediately get the result, without having to answer any questions.

- For H447R.txt the final result should be a value around 0.632. For

R209C it will be around 0.273.

5.2 Using conversation scores in MODICT

Now let’s try to see the effect of conservation values on the MODICT

score. If you haven’t done this yet, go to “./SAMPLE/BTD/” and

copy/paste “conservation.txt” and “fasta.txt” in your

“./PROGRAM/Input” directory. To run MODICT, write in the terminal:

perl modict_v1.0.pl --eventlistener off --automiser on --input

BTD_trial_control.txt --conservation conservation.txt

The final MODICT score should be a value around 0.102. Try using

conservation scores also for H447R and R209C. The final values

should be around 0.613 and 0.278 respectively. The first step of the

algorithm generates rectangles with width equal to aminoacid number

and height equal to RMSD values. With the help of conservation scores

certain rectangles receive higher weight or vice versa for their

“height”(which is the RMSD value). Without the conservation, all

rectangles receive the single conservation of 1. Conservation scores

are only significant if there are differences between different

rectangles, meaning that the absolute value of a conservation score is

very little important. Test this by opening the “conservation.txt” file in

excel and multiplying every residue by 1000. If you use this file for

score calculation you will see that the rounded score is still the same

0.278.

There are two other examples described in the paper for which you can

also find examples files in the SAMPLES folder, TUBB2B and Renin.

The final MODICT scores that you should obtain can be found in table

S1 of the MODICT paper.

5.3 Help Command and Possible Parameters

 If you ever need to get a full list of parameters or the version, write in

the terminal:

perl modict_v1.0.pl --need help

perl modict_v1.0.pl --need version

As a rule of thumb if you ever need to pass down a parameter you can

use one of the following:

perl modict_v1.0.pl --parameter X

perl modict_v1.0.pl -parameter X

perl modict_v1.0.pl -parameter -X

perl modict_v1.0.pl --parameter –X

perl modict_v1.0.pl --parameter -------X

perl modict_v1.0.pl --parameter=X

perl modict_v1.0.pl -parameter=----X

All of the above are equivalent.

6. Using the iterator

6.1 Using the iterator from command line:

You have seen how to generate a MODICT score for a whole model as

shown previously. It is also very important to know which residues in a

given model are contributing to this score. It is even more interesting

to know which combination of weight scores per residue generates

the highest difference for a given set of models compared to another

set of models. Iterator is designed to come up with an answer to

questions like these. Previously you have generated 3 models: BTD

control, R209C and H447R. Let’s first find the regions that differ the

most between a wildtype BTD protein and one with a mutated residue

R209C.

First, keep in mind that iterator is a separate script that initiates multiple

instances of MODICT. So in principle you can use a newer version of

iterator with an old version of MODICT (or vice versa) if updates are not

released synchronously. Right-click on

“./PROGRAM/Core/iterator_v1.0.pl” and navigate to line 34. You will

see a variable with the name “which_MODICT”. Make sure that the

value of this variable is set to the correct file name of the MODICT you

intend to use.

 Open a terminal window and write: perl iterator_v1.0.pl

 Press enter to skip otherwise enter a path.

 You will be asked to point to a file with conservation scores. You

have one in the input folder. Type: conservation.txt

 You will be asked to point to the .fasta file. Type: fasta.txt

 Here is the important part. ITERATOR will ask you to define

stringency parameters. Stringency parameters tell MODICT how

hard to look for better alternatives. This is done in two steps:

o In the first step a reference group of models is specified

and then a test group of models for score maximization is

specified. MODICT will run around 2000 times within the

reference and test groups and will construct a standard

deviation and a mean value. If it encounters a combination

that is X standard deviations away from the reference

mean, the first phase stops. This X is the first stringency

parameter. So if you write 2, it will look for a combination

that yields 2 standard deviations of difference from the

reference mean. The procedure starts after at least 2000

repetitions of the program. Assuming RMSD scores follow

Gaussian distribution, a one-tailed 2 standard deviations

(SD) to the right is already 97.5th percentile of all possible

weight score combinations. So it is a good value to start

however for models that exhibit close MODICT scores to

each other 2SD might be cumbersome to achieve. No

matter what value you enter as threshold, the program will

slowly lower the threshold limit until it is achieved.

o The second step builds its logic on this hypothesis:

“If a given combination of weight scores yields a higher

difference between the test group and the reference group

than the threshold X, than there must be a reason for it!”

The second step tries to refine it further by using a random

number approach (not exactly in sense of randomness like in

the first step, extreme values tends towards their extremities

with a small chance of moving the other direction as well) with

competing weight scores. There are 2 separate instances of

weight score files: “iterate_MODICT.txt” and

“iterate_MODICT_trial.txt”. If one is better than the other, the

program keeps it aside and continues changing or “mutating”

the other one for Y repetitions. Once the other one is better,

the cycle resets and switches. This creates a “less slanted”

gradient to a “highly improbable to obtain by randomness”

weight score combination. It is really reminiscent of natural

selection, that’s why I named it “-iterate_evolve” in the

parameter list.

Just like the first step, the second step has a user set threshold too.

For instance if you were to write 100, that means the program will look

better alternatives until there is 100 standard deviations difference

between the test group mean (or the test score if there is only one

model) and the reference group mean. Of course we do not know how

much we can maximize this difference so that’s why I have introduced

a loop limit. If you set the loop limit to 1500 for example, the program

will iterate 1500 times to look for a better alternative between

“iterate_MODICT.txt” and “iterate_MODICT_trial.txt”. If it cannot, than

it will automatically terminate and give you the results.

 There is one more thing, the refine mode. Since both first and

second steps use a random number approach, results converge

on certain regions of a given protein. For instance high weight

scores will be given always between residues X and Y of a

protein at each different run with a slight change in bordering

residues. If you enter a refine limit like 5, it means the entire set

of program flow will cycle 5 times and generate 5 different pairs

of “iterate_MODICT.txt” and “iterate_MODICT_trial.txt”. The

residues that show a variation of more than 25% will be brought

down to 0 or 1. The consistent regions will persist and their mean

will be taken. Often the result of this is islets of residue pairs next

to each other with high scores with low variability.

So there are 3 stringency parameters: 1st, 2nd and then the loop limit.

These parameters will be asked from you if you run iterator without

parameters. With parameters, you should write something like one of

these:

perl iterator_v1.0.pl --conservation conservation.txt --fasta fasta.txt --

stringency 2/100/1500 --refine on

perl iterator_v1.0.pl --conservation conservation.txt --fasta fasta.txt --

stringency 2/100/1500 --refine off

perl iterator_v1.0.pl --conservation conservation.txt --fasta fasta.txt --

stringency 2/100/1500 --refine 3

In the examples shown above the first stringency parameter is 2

standard deviations, the second is 100 and the loop limit is 1500. In

the first example the refine mod is on and by default the whole

program will initiate 11 times (the minimum amount of runs for the

possibility of a residue to receive all possible different weight scores,

0-10). In the second one the refine mod is off (it will display

“parameter is not clear or refine mod off”) and the third one the refine

limit is 3.

Stringency parameters can also be specified as h (high), m (medium), l

(low), vh (very high), vvh (very very high)… To have an idea what

these tables refer to please see line 129 of iterator.pl. For example vvl

refers to 0.5 SD difference for the first phase, 2.5 SD difference for the

second phase and 100 loop limit. A “-m/m/m” is a good start to have

an idea of your protein.

 For the BTD case, enter a stringency parameter of 1.75 for the

first phase. For the second phase enter 100 or whatever number

you think is sufficiently large. The reason why this number does

not make a difference too much is because if the loop limit is

reached, say after 1500 iterations still no better alternatives were

found, the program will automatically terminate. For the loop limit

enter 1500.

 Next, the program will ask for the refine mod. You can either set

the refine parameter to off, on or any number greater than 2. For

this instance, set refine parameter to be 3.

 Now comes the important part. The program will ask you to

define the reference group. Enter first your control sample:

BTD_trial_control.txt

Then it will ask you if there is another reference sample. Enter

“yes”, and enter:

R209C.txt

The reason why you enter R209C.txt as reference is that a mean and

standard deviation can’t be defined with only 1 model. The algorithm

will fix the standard deviation after the first phase and maximizes

difference also in means of ratio of test/reference so the fact that

R209C.txt is specified as reference does not hinder the algorithms

ability. But as a matter of fact there must be at least 2 models in the

reference group.

Once you enter R209C.txt as reference the program will ask you if there

are more reference models. Answer “no” and then specify the test file:

R209C.txt

 Again the program will ask you if there are other test files.

Answer ‘no’ and then the program will start iterating. The whole

procedure will take well over 2 hours.

 At the end you will have 2 files in the “./Output” folder, an

“iterator_results.txt” with the score combination and the

“Graphical_Output.html” to visualize the results. Other weight

score combinations used during the iteration process is placed in

“./Essentials/Dump” folder.

The example you see on MODICT paper figure 6 is generated without

using the refine mod. Compare once you have the results for R209C.

The region you see with consecutive blocks of high scores between

residues 138-150 should reappear because there is a significant

change in this region that creates a high MODICT score difference

between reference and test models.

Run the whole procedure a second time, rename the

“Graphical_Output.html” and compare 2 independent runs, the region

138-150 mentioned previously will come back every time due to the

significance of difference in these regions. I have included such a

sample run in the “./Output/Documentation” folder. There is the first

run and the second run. Compare these with your results.

Lastly, run the iterator with the same configuration without the refine

mod and compare with MODICT paper figure 6. This will clarify further

what the mode does. To run, use the following parameters this time:

Mouse over aminoacids are highlighted and aminoacid names are displayed

Bars are colored according to conservation scores
Regions you enter as domain

are highlighted in magenta

Turn on/off aminoacid names

show only domain regions

Greater the weight score the greater the

change in that region compared to

reference group

Select to display only

aminoacids with certain

chemical properties Display all aminoacids

perl iterator_v1.0.pl --conservation conservation.txt --fasta fasta.txt --

stringency 1.8/100/1500 --refine off

Specify the reference and test models as mentioned previously and

compare the results. You will realize that this, with all the background

resembles more of the results in figure 6D, top layer. The rule of

thumb is: the higher the amount of repetitions, the less background

there will be. However, using a high amount of repetitions might be

very time consuming. If you want to have an idea of differences in

your reference and test models, run iterator with refine mod off. If you

want to have clear cut boundaries of where the most significant

changes occur than you can turn refine mod on with the number of

repetitions you specify. Do not forget to rename or move the result

files in “./Output/” to another folder otherwise they will be overwritten.

One important thing is that the “Graphical_Output.html” generated by

iterator can only be opened if it is located in “./Output” folder. This is

because the relative path of the script “d3.js” is also located in this

folder. However if you want to be able to open these “.html” files from

any location than right-click on the file and edit the line as shown

below:

Change this at line 11:

<script type="text/javascript" src="d3/d3.v3.js"></script>

As:

<script src="http://d3js.org/d3.v3.min.js" charset="utf-8"></script>

If you want all future generated files to be opened regardless of their

location than open “./Essentials/Template.html” and make the above

changes at line 6. Don’t forget that in order for the above changes to

work you need an internet connection.

Here is the line you have to change

6.2 Understanding the Iterator

Previous example showed how to generate iterator results for 2 models

(negative control and positive control) only. It is important how to

proceed for larger models. To better illustrate, lines 226 of iterator.pl

should be discussed:

until (($mean_test >= ($mean+$threshold))&&($iterations>2000)&&((grep

{$reference_values[$_] > $mean_test} 0..$#reference_values) == 0)) {

….

This “until” loop makes sure of 3 things:

1. The mean of the test samples are bigger than the mean of the reference plus the

threshold you set (1
st
 stringency parameter)

2. The number of iterations must be bigger than 2000 to make sure that the mean is

not changing too much.

3. All the individual scores in reference group should be smaller than the individual

test scores in the test group.

Therefore it is important that you do not put different competing models

in both reference and test groups. To better illustrate, imagine there

are 3 models, wildtype, A and B. Let’s say with uniform weight scores

of 1, A is much larger than B. If you were to place A, B and wildtype in

reference group and than A and B in the test group, since for most

generated random weight score combinations A will be bigger than B,

the condition in until loop will never be met. Therefore it is better to

compare A and B individually like in the previous example.

If you have another mutation C, you can put wildtype and C in the

reference group and than A and B in the test, this is totally ok unless

you know that C is much larger than both A and B.

Another example is given from PAH in the article at figures 9 and 10

where PAHY414C is compared to less severe mutations that lead to

preservation of 50 percent or more of enzyme activity. This

comparison was made by placing in the reference group the

PAHE390G, PAHv245A, PAHD415N, PAHR408Q and PAHY414C in the test

group (PAHP211T was filtered due to being 2D away from the mean of

other mutations listed in MODICT article table 1.). The 1st stringency

parameter was set to 0.5SD, the 2nd stringency parameter was set to

50SD and the loop limit was set to 1500. The refine limit was also set

to 3. If you run iterator with these parameters you will realize that the

1st phase of the algorithm will reduce the SD threshold all the way

down to 0SD because PAHv245A will most of the time have higher

scores than PAHY414C. Although the 1st phase fails the 2nd phase will

take over and in each run it will bring the score of PAHY414C 3SD

above the mean of the reference group. You might even come across

results that yield higher score in PAHY414C compared to PAHv245A . I

have included 2 separate runs with the same configuration, please

compare them. Click on the aromatic residues only for instance, each

time you will see that the middle islet of C,Y 203-204, I,F 209-210

and K,Y 215-216 will come back. You will also have peaks near the C-

terminal region.

Iterator is designed to give you an idea of where the most distortion with

respect to wildtype and the known model takes place in your mutated

protein. As you increase the refine limit, the reproducibility may

increase up to the level of aminoacid pairs, however this is not what

iterator algorithm has initially designed for. To achieve such accuracy,

the refine limit has to be set relatively high (6 or above). A typical run

of iterator with refine limit 3 such as in the PAH example takes around

2.5 hours.

6.3 Why random number approach?

I want to speak a bit about the approach used in iterator. Suppose a

case where we have 50 reference models and 50 test models to

compare. Imagine that we do not use a random number approach but

some sort of linear computation algorithm where a residue is given all

possible scores 1 by 1 and local maxima is computed. There are 2

problems related with this approach:

1. The computation time: As the protein length grows the number of

points to compute for a single model becomes Protein Length x 11

(Number of aminoacids times the number of all possible attainable

weight scores).

2. Linear computation requires a starting point. For instance you can

start from an initial .txt file of all zeros or ones. Then work your way

up from there. The main problem is that the weight score

combinations can act as a network of connected entities within

reference and test groups. For instance, giving a score of 7 to

residue number X can lead to a local maximum. However attaining

score 9 to residues Y and Z further upstream may lead to a higher

score provided that X is 1. Even than a higher score might be

attained if residue P further upstream is given score 9 given that Z is

set to 1. There is no way a linear maximum algorithm would find the

configuration <1,9,1,9> for X, Y, Z, P if it encounters <9, N, N, N> in

the first place. A random number approach that uses a reversible

cycle of competition between 2 files foregoes this problem of related

numbers.

7. Using the ROC plot.

7.1 The purpose of ROC plot

Suppose that you produce your negative control, test and known

mutation scores from MODICT. Let’s call these values SC, ST and SK

respectively. There are 3 possibilities for your known mutation, it is

either benign, partially deleterious or deleterious. IF,

Your known mutation is deleterious:

Calculate an imaginary benign (SI) such that:

The equation above is equivalent to ROC.pl line 102. Now we define 3

thresholds T1,T2 and T3:

Now, if your test score ST:

ST >T1 than your test score is classified as deleterious. Else if

ST <T1 and ST>T2 than your test score is partially deleterious. Else if

ST <T2 than your test score is classified as benign. At values of kappa <

66, T3 is always larger than T2, which divides partially deleterious

mutations into 2 classes: partially deleterious or possibly benign OR

partially deleterious only. The ROC plot script allows you to calculate

the value of kappa by simulating through trio pairs of known test

scores. The larger the simulation dataset, the closer kappa moves to

a value to yield highest accuracy. The above equations are written

assuming your known mutation is deleterious. IF your known

mutation would be partially deleterious than you would need to

only change the method you compute the imaginary benign as:

IF your known mutation would be benign than you would simply

assume:

This script is responsible for generating the ROC plot as seen in the

MODICT paper figure 7. The ROC plot script accepts a list of tab-

separated trios. These trios are composed of a negative control

(wildtype in table S1), the score of a known sample (given in table S1)

and the test score. Your negative control can be RMSD between

wildtype–refined (second layer in SWISSPDB) and wildtype (reference).

This means that you also have to generate your test and known

sample scores by superimposing them on wildtype (again, this layer

should be selected as reference in SWISSPDB). Alternatively you can

have your negative control score as a benign model superimposed on

wildtype. Than you would need another known mutation to be used as

a known sample. I just want to clarify the rationale of generating trios

here, you either need:

*** 1 wildtype, 1 wildtype refined, 1 test (refined preferred), 1 known

model (refined preferred)

THEN you superimpose wildtype-refined on wildtype and generate

RMSD

Next you superimpose test on wildtype and genere RMSD and so on…

OR

*** 1 wildtype, 1 benign, 1 test, 1 known model.

THEN you superimpose benign on wildtype and generate RMSD and

Next you superimpose known mutation on wildtype and generate

another RMSD and so on…

I have explained the affects of choosing a benign model to generate a

negative control instead of a refined wildtype in section 3.1. Up in the

second proposal, you do not need refined models because you do not

use a refined wildtype in the first place (the idea is that if an error is

integrated into the negative control coming from the refinement, than

a similar error should be incorporated into all other test and known

samples to avoid misinterpretation).

Model refinements are possible through refinement algorithms. You can

do this yourself if you know how to do energy minimization or

alternatively you can use the MOD REFINER

(http://zhanglab.ccmb.med.umich.edu/ModRefiner/) or other similar

programs.

Now, I have stated that you need tab separated trios per line in a text

file as input. It should look like something like below:

value value value deleterious benign X Y Z

value vaue value benign partial D G T

Above screenshots of the same input file

The first value is the negative score, the “wildtype” value. The second

value is your KNOWN sample. This sample can be either a known

deleterious, benign or partially deleterious mutation. The last value is

your test score. This test mutation can also be partially deleterious,

benign or deleterious. This outcome is already known for both for the

test mutation and the known sample. They are indicated in column 5

and 4 respectively. You write the outcome of your test mutation in

column 4 and the known sample to 5 as shown in the MODICT paper

table S1. The entries other than the first 5 are not important (3 value

and 2 benign/partial/deleterious as shown above), it is for you. They

are not taken by the script. In fact table S1 as a whole is an input file

for the roc script “roc_v1.0.pl” and it is located in “./MODICT/ROC/”.

You might have a header in your input file, which will be asked to be

skipped once you run the script. The most important part of the script

is its rationale which is stated between lines 71-157:

For your positive control (known sample) there are 3 possibilities:

deleterious, partially deleterious and benign.

For your test sample there are also 3 possibilities like above. In total

there can be 9 different pairs. (deleterious-benign, partially

deleterious-deleterious…etc).

You will see a sample input file “myinput.txt” and the script “roc_v1.0.pl”

in “./ROC”. Run the script from command line:

perl ROC_v1.0.pl

You will be asked to give the name of your input file, enter “myinput.txt”.

You will be asked whether to skip header. The sample input has 1

headerline, say ‘yes’ and then enter ‘1’. You will have your results with

the name “./ROC/output_ROC.txt”. You can also run the script like

this:

perl roc_v1.0.pl –C:/../../MODICT

After the last “..” you don’t enter any forward-slash. The last “..” is the

parent folder of the ROC. The extra parameter –population changes

the way the standard deviation is calculated. If the population

parameter is used, than 1 is not subtracted from the denominator of

sum of squares. You can run it like this:

perl roc_v1.0.pl –C:/../../MODICT –population

OR

perl roc_v1.0.pl –population

Once you have your output, examine it carefully. You have 6 columns

as shown above. The first column stores the stringency parameter. It

is a good thing of the stringency parameter to be high. However as

the stringency parameter goes high the accuracy of the program

drops, but the remaining accuracy can be explained more by the

results of the algorithm. Inversely, if stringency goes too low, the

accuracy will be very high but the rise in accuracy can progressively

be less explained by the measurements of the algorithm. YOUR AIM

is to find from the list the highest accuracy WHILE still keeping

stringency as high as possible AND staying below a good threshold p-

value (I prefer p-value to be NO GREATER than 0.05). In columns 3,

4, 5 and 6 you will find accuracy, sensitivity, specificity and true-partial

rates respectively. True partial rates are just like sensitivity and

specificity, they are the ratio of true-partials and true-partials plus

false-partials.

To understand how the stringency parameter works I advise you to take

a look at lines 56-171 in “ROC_v1.0.pl”.

A typical visualization of ROC plot is displayed in MODICT paper figure 7.

Once you found the highest accuracy point (without losing too much

stringency and gaining p-value), the associated stringency value is

your . For instance the current output file of MODICT indicates a

stringency value of 55, which is your Based on this value, calculate

your thresholds and proceed as described earlier in this section.

I will soon release a module to automatically fit a curve for the given

input data and calculate optimal value and pre-compute thresholds

based on your data.

8. Tools
“batch.pl”

In this section I will demonstrate two tools that are in the “./Core” folder.

One of them is the “batch.pl”. You provide this script a list of file

names in a txt file such as:

File1.txt

File2.txt

…

This “list.txt” file has to be located in “./Input” folder. The text files listed

in the “list.txt” also has to be located in the “./Input” folder. When you

run the script it will generate an output in the “./Output” folder with the

name of each text file and its corresponding MODICT score. However to

be able run this script your “essentials_MODICT.txt” needs to be

preconfigured. This means you need to run MODICT once before with

one of the files in the “list.txt”. You run “batch.pl” like this:

perl batch.pl –list list.txt

Your output should look like below:

“fasta_maker.pl”

This script is to generate multiple copies of a fasta file with selected

amino acids mutated to another one. You will need 2 things, a fasta

file, and a list file that has mutations listed in the “p.XNNNY” (amino

acid X mutated to Y at position NNN) format. The list file is as always

a text file, and there can be only 1 mutation per line. Both “list.txt” and

the fasta files have to located in “./Input” folder. Below is a screenshot:

With this script you are also able to control how many amino acids you

want to be printed per line. It also generates a batch file for polyphen2

with the accession code you provide. The outputs should look like

below:

***There are no options in “fasta_maker.pl”. It follows general Q&A

mode***

9. Contact
 I will update this manual and the scripts in time as I receive feed back

and have new ideas to incorporate. If there is anything unclear about

this document or any of the scripts mentioned please contact:

itanyalc@vub.ac.be

