
HVM2: Interaction Combinator Evaluator - Extended Abstract

Victor Taelin
taelin@higherorderco.com

Higher Order Company
Rio de Janeiro, Brazil

Francisco Javier Grecco
Carman

fgreccocarman@gmail.com

Nicolas Abril
nicolas@higherorderco.com

Higher Order Company
Curitiba, Brazil

Enrico Zandomeni Borba
enricozb@higherorderco.com

Higher Order Company
Amsterdam, Netherlands

Abstract
We present a preview of HVM2, an efficient and massively parallel
GPU and CPU evaluator for a system of extended Interaction Com-
binators. When compiling non-sequential programs from a high-
level programming language to HVM2 and executing them on the
C and CUDA runtimes, we achieved a large parallel speedup as a
function of cores available. We give an overview of HVM2′s the-
oretical foundations, implementation, early benchmarks, current
limitations, and future work.

CCS Concepts
• Computing methodologies → Massively parallel algorithms • Theory
of computation → Parallel computing models; Lambda calculus.

Keywords
Interaction Combinators, Parallel Computation, Lambda Calculus

1 Introduction
Interaction Nets (INs) [3] and Interaction Combinators (ICs) [4]
were introduced by Lafont as a minimal and concurrent model of
computation. Lafont proved that ICs were not only Turing Com-
plete, but also that the “complexity class and degree of parallelism”
is preserved when encoding a TM in an Interaction Combinator
system [4]. The locality and strong confluence properties of ICs
make it a promising target for massively parallel computation.
However, it remained to be seen if this system could be imple-
mented efficiently in practice.

In this paper, we answer this question positively. By storing In-
teraction Combinator nodes in a memory-efficient format, we’re
able to implement its core operations (annihilation, commutation,
and erasure) as lightweight C procedures and CUDA kernels. Fur-
thermore, by representing wires as atomic variables, we’re able to
perform interactions in a lock-free fashion and with minimal syn-
chronization. We also extend this system with global definitions
for fast function applications and with native numbers for fast nu-
meric operations.

2 Syntax
HVM2′s syntax consists of an Interaction Calculus system which
textually represents an Interaction Combinator system [2]. This
textual system is capable of representing any arbitrary Interaction
Net, and it is therefore possible to represent “vicious circles” [4].
We only consider HVM2 programs which do not contain any vi-
cious circles.

HVM2 extends Lafont’s ICs and has seven different types of
agents or nodes. HVM2 also has variables to represent wires which
connect ports across nodes, and top-level definitions. Lastly, trees
are either variables or nodes. The entry-point of an HVM2 program
is the definition @main.

The syntax as a BNF grammar is:
 <Def> ::= "@" <alphanumeric> "=" <Net>

 <Net> ::= <Tree> ("&" <Tree> "~" <Tree>)*

 <Tree> ::=
 | <alphanumeric> -- (VAR)iable
 | "*" -- (ERA)ser
 | "@" <alphanumeric> -- (REF)erence
 | <Numeric> -- (NUM)eric
 | "(" <Tree> <Tree> ")" -- (CON)structor
 | "{" <Tree> <Tree> "}" -- (DUP)licator
 | "$(" <Tree> <Tree> ")" -- (OPE)rator
 | "?(" <Tree> <Tree> ")" -- (SWI)tch

 <Numeric> ::=
 | <u32, i32, f32>
 | "[" <op> (<u32, i32, f32>)? "]"

Nets represent packages [4], which are a collection of active pairs
and one free port. Active pairs are also called redexes, since in
HVM2 all active pairs can be reduced. For example,

t1 & v1 ~ w1 & .. & vn ~ wn

represents the Net depicted in Figure 1, where t1, v1, w1, vn, and
wn are trees and 𝜔 is the wiring specified by pairs of VAR nodes.

Figure 1: A sample Net¹

¹This is a modified image of a configuration with multiple free ports [7].

3 Extensions to Interaction Combinators
The CON, DUP, and ERA nodes correspond accordingly to Lafont’s
constructor, duplicator, and eraser symbols [4], but behave like Maz-
za’s Symmetric Interaction Combinators [6].

REF nodes are an extension to Lafont’s ICs, and they represent
a reference to an immutable net that is expanded when it is one of
the two nodes in a redex. While not essential for the expressivity
of the system, REF nodes are essential for performance. REFs en-
able fast global functions and a degree of laziness in a strict setup
(critical to making GPU implementations viable).

Lastly, the NUM, OPE, and SWI nodes are also extensions, and they
enable efficient mathematical operations and conditional branch-
ing. This is in contrast to less-efficient constructs such as Church
or Scott numerals.

mailto:taelin@higherorderco.com
mailto:fgreccocarman@gmail.com
mailto:nicolas@higherorderco.com
mailto:enricozb@higherorderco.com

4 Interactions
Interactions are the term-rewriting rules that govern the reduction
of an HVM2 program. They are as follows:

A, B, C, D ≔ <Tree>

(), {} ≔ CON | DUP | OPA | SWI ²
∙, ⚬ ≔ ERA | REF | NUM ³
N, M ≔ NUM (Numbers or Operations)

#n, #m ≔ NUM where n, m ∈ ℚ
* ≔ ERA

x, y, z, w ≔ VAR

²() and {} refer to different binary nodes.
³∙, ⚬ refer to potentially different nilary nodes.

(link⁴)
B contains x

x ~ A
B[x ← A] (call)

A is not a VAR node
@foo ~ A

expand(@foo) ~ A

(void) ∙ ~ ⚬ (erase) ∙ ~ (A B)
∙ ~ A
∙ ~ B

(commute) (A B) ~ {C D}{x y} ~ A
{z w} ~ B
(x z) ~ C
(y w) ~ D

(annihilate) (A B) ~ (C D)A ~ C
B ~ D

(operate 1) N ~ $(M A)
op(N, M) ~ A (switch 1) #0 ~ ?(A B)A ~ (B *)

(operate 2)
A is not a NUM node

N ~ $(A B)
A ~ $(N B)

(switch 2) #n+1 ~ ?(A B)A ~ (* (#n B))

⁴This is not technically an interaction in an IC sense, as variables are not
present in the graphical representation.

Note that rules are symmetric: if a rule applies to a redex A ~ B then
it also applies to B ~ A. Additionally, the type of the two nodes in
an active pair uniquely determine which interaction rule to apply.

5 Implementation
5.1 Memory Layout
HVM2 is based on a 32-bit architecture. We represent wires con-
nected to some main port with a 32-bit value. The lower 3 bits iden-
tify the type of node (VAR, REF, ERA, etc.) whose main port the wire
is connected to. This is a port’s tag. The upper 29 bits hold a port’s
value. The interpretation of the value is dependent on the tag. The
value is either an address (for binary CON, DUP, OPE, and SWI nodes),
a virtual function address (for REF nodes), a 29-bit number⁵ (for

⁵Number nodes are 24-bit numerals with a 5-bit tag. This tag is either a type
(U24, I24, F24), or an operator (ADD, SUB, etc) for partially-applied operations.

NUM nodes), a variable name (for VAR nodes), or 0 (for ERA nodes).
Binary nodes are represented in memory as a pair of two ports.
Notice that ports store the type of node they are connecting to. Nodes
do not store their own type.

 Port = [29-bit Value][3-bit Tag]
 Node = [32-bit Port][32-bit Port]

5.2 Multi-Threading
Like in Lafont’s ICs, the interaction rules are local [3] and there-
fore can be reduced in parallel. HVM2 maintains a global collection
of redexes that is mutated in parallel. However, because HVM2
has variables, distant parts of a net can be connected. When two

threads each attempt to reduce neighboring redexes, there could
be contention. For example, consider a subset of a Net,

.. & (a b) ~ (d c) & .. & (c d) ~ (f e) & ..

represented graphically by Figure 2.

a
b

c

d

e
f

Figure 2: A pair of redexes.

After reduction, a must be wired to e “through” d. However, both
threads will want to affect what d is pointing to. We resolve this
potential source of contention through linking.

5.3 Linking
Since every variable occurs exactly twice, the link interaction with
a variable x will also occur at most twice, but possibly at very dif-
ferent times. When the first link interaction occurs, a substitution
must be “deferred” until the second link interaction.

This is accomplished by a global, atomic substitution map, which
tracks these deferred substitutions. When a variable is linked to
a node, or to another variable, it is inserted into the substitution
map. When that same variable is linked again, it will already have
an entry in the substitution map, and then the proper redex will
be constructed, and returned to the global redex collection.

The substitution map can be represented efficiently with a flat
buffer, where the index is the variable name, and the value is the
node that has been substituted. This can be done atomically⁶, via a
simple lock-free linker. In pseudocode, this roughly looks like:

⁶This critically depends on platforms providing 64-bit atomic operations.

def link(subst: [Port; NUM_VARS], A: Port, B: Port):
 while True:
 if type(A) != VAR: swap(A, B)
 if type(A) != VAR: push_redex(A, B)
 got: Port = subst.set_atomic(A.var, B)
 if got is None: break
 subst.set_atomic(A.var, None)
 A = got

6 Benchmarks
With an appropriate encoding of a subset⁷ [1,5] of 𝜆-calculus terms
to HVM2 interaction combinators, we can write high-level pro-

⁷Not all 𝜆-calculus terms reduce correctly in our system, as we do not in-
clude brackets or croissant nodes. The subset that do reduce soundly is still
Turing Complete.

grams to compare their execution speed and measure speed gains
with respect to the number of threads.

Program HVM2 C⁸ HVM2 CUDA⁹

sort_bitonic(𝑛 = 219) 9.38s 0.27s

sort_radix(𝑛 = 219) 2.95s 0.82s

sum_tree(𝑑 = 14, 𝑏 = 220) 128.83s 6.97s

Table 1: Benchmarks for Sorting Algorithms

⁸Executed on an AMD Ryzen 9 7900X 12-Core Processor
⁹Executed on an NVIDIA RTX 4090.

With the C runtime utilizing 24 threads and the CUDA runtime uti-
lizing 32,768 threads, we see clear gains with respect to the num-
ber of available threads. Due to the 32-bit architecture, the node
address space is limited to 4GB. A future 64-bit implementation
could be possible on platforms supporting 128-bit atomics.

References
[1] Andrea Asperti and Stefano Guerrini. 1998. The optimal implementa-

tion of functional programming languages.

[2] Maribel Fernández and Ian Mackie. 1999. Principles and Practice of De-
clarative Programming. Springer Berlin Heidelberg. https://doi.org/10.
1007/10704567

[3] Yves Lafont. 1990. Interaction Nets. POPL '90 (1990). https://doi.org/10.
1145/96709.96718

[4] Yves Lafont. 1997. Interaction Combinators. Information and Compu-
tation 137, 1 (August 1997), 69–101. https://doi.org/10.1006/inco.1997.
2643

[5] John Lamping. 1990. An algorithm for optimal lambda calculus reduc-
tion. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’90 (POPL ’90), 1990. ACM
Press. https://doi.org/10.1145/96709.96711

[6] Damiano Mazza. 2007. A denotational semantics for the symmetric
interaction combinators. Mathematical Structures in Computer Science
17, (2007), 527–562. https://doi.org/10.1017/S0960129507006135

[7] Anton Salikhmetov. 2016. Token-passing Optimal Reduction with Em-
bedded Read-back. Electronic Proceedings in Theoretical Computer Sci-
ence 225, (September 2016), 45–54. https://doi.org/10.4204/eptcs.225.7

https://doi.org/10.1007/10704567
https://doi.org/10.1007/10704567
https://doi.org/10.1145/96709.96718
https://doi.org/10.1145/96709.96718
https://doi.org/10.1006/inco.1997.2643
https://doi.org/10.1006/inco.1997.2643
https://doi.org/10.1145/96709.96711
https://doi.org/10.1017/S0960129507006135
https://doi.org/10.4204/eptcs.225.7

	Abstract
	CCS Concepts
	Keywords
	Introduction
	Syntax
	Extensions to Interaction Combinators
	Interactions
	Implementation
	Memory Layout
	Multi-Threading
	Linking

	Benchmarks
	References

