
[image: image1.png]Edor | Tabs | Debug | Compatbity | Buid | Diectoies | | [[3

21|

Platform: Show directories for:
sz =] [incuseries =
Directories: X+ 4

\mevo\DiecX SDKSinclude
EAMsveWCSBINCLUDE

E:AMsveWWCIBMPCANCLUDE
Msve\VCIBNATLUNCLUDE

[

Cancel

Developer’s Image Library Manual

By Denton Woods

Abysmal Software

June 2002
Table of Contents

Introduction
1
Library Setup
2
Microsoft Visual C++ Setup
2

Directories
2

Post-Build
3

MSVC++ Bug Workaround
4

Multithreading
4

DJGPP Setup
4
General GCC-Based Setup
4
Basic Procedures
6
Initializing DevIL
6

File Handling
7

Loading Images
7

Saving Images
7
Image Characteristics
8
Image Manipulation
8
Alienifying
8

Blurring
9

Contrast
9

Equalization
10

Gamma Correction
10

Negativity
10

Noise
11

Pixelization
11

Sharpening
12

Resizing Images
13

Sub-Images
13
Mipmaps
13

Animations

DXTC/S3TC Notes
25
Introduction

Developer’s Image Library was previously called OpenIL, but due to trademark issues, OpenIL is now known as DevIL. DevIL is an open source programming library for programmers to incorporate in to their own programs. DevIL loads and saves a large variety of images for use in a software developer’s program. This library is capable of manipulating images in various ways and passing image information to display APIs, such as OpenGL and Direct3D.

The purpose of this manual is to guide users in coding with the Developer’s Image Library. This manual is for users proficient in C and with competent knowledge of the integrated development environment (IDE) or compiler they are using.

Library Reference

Several times throughout this document, the three different sub-libraries of DevIL are referenced as IL, ILU and ILUT. IL refers to the base library for loading, saving and converting images. ILU refers to the middle level library for image manipulation. ILUT refers to the high level library for displaying images. Functions in IL, ILU and ILUT are prefixed by ‘il’, ‘ilu’ and ‘ilut’, respectively.

Library Setup
Microsoft Visual C++ Setup

DevIL setup for Windows is straightforward. Unzip DevIL in an empty directory. If using WinZip, check the “Use folder names” box before unzipping. Use the -d command line option if using pkunzip. Then double-click on the ImageLib.dsw file in the install directory to load the DevIL workspace in Microsoft Visual C++ (MSVC++).

Directories

You will need to change some directory settings in MSVC++ to get DevIL working.

1. Navigate to the Tools menu and select Options.

2. Click on the Directories tab.

3. Under Show directories for, select "Include files".

4. Click the New button (to the left of the red 'X')

5. Type the directory DevIL is installed in, plus "\Include". For example, if you installed DevIL to E:\ImageLib, enter "E:\ImageLib\Include".

[image: image39.png]

Figure 1-1. Include Directory Settings Dialog
6. Under Show directories for, click on "Library files".

7. Click the New button (to the left of the red 'X').

8. Type the directory DevIL is installed in, plus “\Lib". For example, if you installed DevIL to E:\ImageLib, enter "E:\ImageLib\Lib".

9. Click the New button (to the left of the red ‘X’).

10. Type the directory DevIL is installed in, plus "\Lib\Debug". In the previous example, you would enter "E:\ImageLib\Lib\Debug".

11. Choose OK.

[image: image2.png]options 21X

Edor | Tabs | Debug | Compatbity | Buld Diecoies | | [[3

Blatforn: Show directores fo:

sz =1 oo =

Diectoris:
\mevo\Diec SDKAE |
EAMsveWVCIBLIE

E:AMsveWWCIBMFCALIE

[Cancel

Figure 1-2. Library Directory Settings Dialog
MSVC++ Bug Workaround

Microsoft Visual C++ 6.0 has a bug that prevents debugging of a project. The bug appears to occur when you use a #pragma to link a .lib file and link it via another method. The header files il.h, ilu.h and ilut.h automatically link the .lib files in via a #pragma for convenience. To prevent this bug, check for and remove these:

· devil.lib, devil-d.lib, ilu.lib, ilu-d.lib, ilut.lib and ilut-d.lib in your project settings (Project – Settings menu).

· devil.lib, devil-d.lib, ilu.lib, ilu-d.lib, ilut.lib and ilut-d.lib in your project’s workspace. Some people link libraries into their project this way, which really should be discouraged, due to the hardcoded paths.

Multithreading

DevIL takes advantage of the multithreaded standard LIBC DLLs. To use file streams with DevIL, you must change the project settings of your project. If you do not perform these steps, your program will crash whenever you attempt to use a DevIL file stream.

1. Navigate to the Project menu and choose Settings.

2. Click the C/C++ tab.

3. Change the Category drop-down menu to read Code Generation.

4. Change the Use run-time library drop-down menu to Multithreaded DLL if the Settings For menu says Win32 Release. Change the Use run-time library drop-down menu to Debug Multithreaded DLL if the Settings For menu says Win32 Debug.

5. Choose OK.

DJGPP Setup

Setting up DevIL in DJGPP requires the following steps:

1. Unzip DevIL in an empty directory. If using WinZip, check the “Use folder names” box before unzipping. Use the -d command line option if using pkunzip.

2. Create a new subdirectory called ‘il’ in your DJGPP include directory.

3. Copy the files to their respective places:

· To use the precompiled libraries, copy libil.a, libilu.a and libilut.a from ImageLib\lib\djgpp to your DJGPP lib directory. Then copy il.h, ilu.h and ilut.h from your ImageLib\lib\il directory to your DJGPP include\il directory.

· To compile the library yourself, change directories to ImageLib\Makefiles\Djgpp. This folder contains only a makefile for DJGPP. Simply type ‘make’, and the makefile will compile DevIL and copy the files to their respective locations.

To compile with DevIL in DJGPP, add –lil to your command line. To also use ILU and ILUT, use –lil and –lilut, respectively.
General GCC-based (Linux, Cygwin, Max OS X, etc.) Setup

Setting up DevIL in this environment requires the following steps:

1. Unzip DevIL in an empty directory, by typing “gzip –d gzipname” then “tar –xvf tarname”, where ‘gzip’ and ‘tarname’ are DevIL-x.x.x.tar.gz and DevIL-x.x.x.tar.
2. Unzip should automatically use the directory structure present in the DevIL zip file.
3. To use the precompiled libraries, copy libIL.so, libILU.so and libILUT.so to a place specified in your library path, or use the full path to the libraries when compiling.

4. To compile the library yourself:

· Type ‘configure’.
· Type ‘make’.
· Type ‘make install’ to copy the .so files to /usr/lib and the headers to /usr/include/il.
Basic Usage

Initializing DevIL

You must initialize DevIL, or it will most certainly crash. You need to initialize each library (il, ilu, and ilut) separately. You do not need to initialize libraries you are not using, but keep in mind that the higher level libraries are dependent on the lower ones. For example, ilut is dependent on ilu and il, so you have to initialize il and ilu, also.

IL Initialization

Simply call the ilInit function with no parameters:

// Initialize IL

ilInit();

ILU Initialization

Call the iluInit function with no parameters:

// Initialize ILU

iluInit();

ILUT Initialization

ILUT initialization is slightly more complex than IL and ILU initialization. The function you will use is ilutRenderer. You must call ilutRenderer before you use any ILUT functions. This function initializes ILUT support for the API you desire to use by a single parameter:

· ILUT_OPENGL – Initializes ILUT’s OpenGL support.

· ILUT_ALLEGRO
 – Initializes ILUT’s Allegro support.

· ILUT_WIN32 – Initializes ILUT’s Windows GDI and DirectX 8 support.

An example of using ilutRenderer follows:

// Initialize ILUT with OpenGL support.

ilutRenderer(ILUT_OPENGL);

Image Name Handling

Image names are DevIL’s way of keeping track of images it is currently containing. Some other image libraries return structs, but they generally seem more cluttered than DevIL’s image name handling.

ILvoid ilGenImages(ILsizei Num, ILuint *Images);

ILvoid ilBindImage(ILuint Image);

ILvoid ilDeleteImages(ILsizei Num, ILuint *Images);

Listing 2-1. Syntax of the image name functions
Generating Image Names

Use ilGenImages to generate a set of image names. ilGenImages accepts an array of ILuint to receive the generated image names. There are no guarantees about the order of the generated image names or any other predictable behaviour like this. If ilDeleteImages is called on an image name, ilGenImages will return that value afterward, until all deleted image names are used. This conserves memory and is generally quick. The only guarantee is that each member of the Images parameter (up to Num number of them) will have a new, unique value.

Binding Image Names

ilBindImage binds the current image to the image described by the image name in Image. DevIL reserves the number zero for the default base image. If you pass a value for Image that was not generated by ilGenImages, ilBindImage automatically creates an image specified by the image name passed. An image must always be bound before you call any functions that operate on images and their data.

When DevIL creates a new image, the image has the default properties of 1x1x1 with a bit depth of 8. DevIL creates a new image when you call ilBindImage with an image name that has not been generated by ilGenImages or when you call ilGenImages specifically.

Deleting Image Names

ilDeleteImages is the exact opposite of ilGenImages and even accepts the exact same parameters. ilDeleteImages deletes image names to free memory for subsequent operations. You should always call ilDeleteImages on images that are not in use anymore. When you delete an image, DevIL actually deletes all data and anything associate with it, so that ilGenImages can possibly use the image name later.
File Handling

Loading Images

DevIL’s main purpose is to load images. DevIL’s loading is designed to be extremely easy but very powerful. Appendix B lists the image types DevIL is capable of loading.

ILboolean ilLoadImage(const char *FileName);
ILboolean ilLoad(ILenum Type, const char *FileName);
ILboolean ilLoadF(ILenum Type, ILHANDLE File);
ILboolean ilLoadL(ILenum Type, ILvoid *Lump, ILuint Size);

Listing 2-2. Syntax of the loading functions
DevIL contains four loading functions to support different loading styles and loading from several different image sources.

Loading from Files - ilLoadImage

ilLoadImage is the main DevIL loading function. All you do is pass ilLoadImage the filename of the image you wish to load. ilLoadImage takes care of the rest. ilLoadImage allows users to transparently load several different image formats uniformly. DevIL’s most powerful function is ilLoadImage because of this feature.

Before loading the image, ilLoadImage must first determine the image format of the file. ilLoadImage performs the following steps:

1. Compares the filename’s extension to any registered file handlers, allowing the registered file handlers to take precedence over the default DevIL file handlers. If the extension matches a registered file handler, ilLoadImage passes control to the file handler and returns. For more information on registering, refer to the section entitled “Registration”.

2. Compares the filename’s extension to the extensions natively supported by DevIL. If the extension matches a loading function’s extension, ilLoadImage passes control to the file handler and returns.

3. Examines the file for a header and tries to match it with a known type of image header. If a valid image header is found, ilLoadImage passes control to the appropriate file hander and returns.

4. Returns IL_FALSE.

Loading from Files - ilLoad

DevIL’s other file loading function is ilLoad. ilLoad is similar to ilLoadImage in many respects but different in other ways. ilLoad accepts two parameters: the type of image and the filename of the image.

ilLoad’s type parameter is what differentiates it from ilLoadImage. Type can be any of the values listed in table B-2 in appendix B or the value IL_TYPE_UNKNOWN. If Type is a value from table B-1, ilLoad attempts to load the file as the specified type of image format. Only use this if you know what type of images you will be loading and want to bypass DevIL’s checks.

If IL_TYPE_UNKNOWN is specified for Type, ilLoad behaves exactly like ilLoadImage. Refer to the previous section for detailed behaviour of these two functions.

Loading from File Streams - ilLoadF

DevIL’s file stream loading function is ilLoadF. ilLoadF is exactly equivalent to ilLoad, but instead of accepting a const char pointer, ilLoadF accepts an ILHANDLE. DevIL defines ILHANDLE as a void pointer via a typedef. Under normal circumstances, File will be a FILE struct pointer defined in stdio.h.

Refer to the section entitled “Registration” for instructions on how to use your own file handling functions and file handles.

Loading from Memory Lumps - ilLoadL

DevIL’s file handling is abstracted to allow loading images from memory called “lumps”. ilLoadL handles loading from lumps. You must specify a valid type as the first parameter and the lump as the second parameter.

The third parameter that ilLoadL accepts is the total size of the lump. DevIL uses this value to perform bounds checking on the input data. Specify a value of zero for Size if you do not want ilLoadL to perform any bounds checking.

Saving Images

DevIL also has some powerful saving functions to fully complement the loading functions.

ILboolean ilSaveImage(const char *FileName);
ILboolean ilSave(ILenum Type, const char *FileName);
ILboolean ilSaveF(ILenum Type, ILHANDLE File);
ILboolean ilSaveL(ILenum Type, ILvoid *Lump, ILuint Size);

Listing 2-3. Syntax of the saving functions
DevIL’s saving functions are identical to the loading functions, despite the fact that they save images instead of load images. Lists of possible values for Type and supported saving formats are located in Appendix B.

Image Management

Defining Images

ilTexImage is used to give the current bound image new attributes that you specify. Any image data or attributes previously in the current bound image are lost after a call to ilTexImage, so make sure that you call it only after preserving the image data if need be.
ILboolean ilTexImage(
ILuint Width, ILuint Height, ILuint Depth, ILubyte Bpp, ILenum Format, ILenum Type, ILvoid *Data);

Listing 2-4. Syntax of the ilTexImage function
ilTexImage has one of the longer parameter lists of the DevIL functions, so we will briefly go over what is expected for each argument.

· Width:
The width of the image. If this is zero, DevIL creates an image with a width of one.
· Height:
The height of the image. If this is zero, DevIL creates an image with a height of one.
· Depth:
The depth of the image, if it is an image volume. Most applications should specify 0 or 1 for this parameter.
· Bpp:
The bytes per pixel of the image data. Do not confuse this with bits per pixel, which is also commonly used. Common bytes per pixel values are 1, 3 and 4.
· Format:
The format of the image data. Formats accepted are listed here and are self-explanatory:
	IL_COLOUR_INDEX

IL_RGB

IL_RGBA

IL_BGR

IL_BGRA

IL_LUMINANCE

· Type:
The type of image data. Usually, this will be IL_UNSIGNED_BYTE, unless you want to utilize multiple bits per colour channel. Type accepted are listed here:
	IL_BYTE

IL_UNSIGNED_BYTE

IL_SHORT

IL_UNSIGNED_SHORT

IL_INT

IL_UNSIGNED_INT

IL_FLOAT

IL_DOUBLE

· Data:
Mainly for convenience, if you already have image data loaded and ready to put into the newly created image. Specifying NULL for this parameter just results in the image having unpredictable image data. You can specify image data later using ilSetData or ilSetPixels.
Getting Image Data

There are two ways to set image data: one is quick and dirty, while the other is more flexible but slower. These two functions are ilGetData and ilCopyPixels.

ILubyte*
ilGetData(ILvoid);

ILuint
ilCopyPixels(
ILuint XOff, ILuint YOff, ILuint ZOff, ILuint Width, ILuint Height, ILuint Depth, ILenum Format, ILenum Type, ILvoid *Data);

Listing 2-6. Syntax of the functions to get image data
The Quick Method

Use ilGetData to get a direct pointer to the current bound image’s data pointer. Do not ever try to delete this pointer that is returned. To get information about the image data, use ilGetInteger.

ilGetData will return NULL and set an error of IL_ILLEGAL_OPERATION if there is no currently bound image.

The Flexible Method

Use ilCopyPixels to get a portion of the current bound image’s data or to get the current image’s data with in a different format / type. DevIL takes care of all conversions automatically for you to give you the image data in the format or type that you need. The data block can range from a single line to a rectangle, all the way to a cube.

ilCopyPixels has a long parameter list, like ilTexImage, so here is a description of the parameters of ilCopyPixels:

· XOff:
Specifies where to start copying in the x direction.
· YOff:
Specifies where to start copying in the y direction.
· ZOff:
Specifies where to start copying in the z direction. This will be 0 in most cases, unless you are using image volumes.
· Width:
Number of pixels to copy in the x direction.

· Height:
Number of pixels to copy in the y direction.

· Depth:
Number of pixels to copy in the z direction. This will be 1, unless you are using image volumes.

· Format:
The format of the returned data that you desire. Acceptable formats are IL_RGB, IL_RGBA, IL_BGR, IL_BGRA and IL_LUMINANCE.

· Type:
The type of the data block in Data. Acceptable types are IL_UNSIGNED_BYTE, IL_BYTE, IL_UNSIGNED_SHORT, IL_SHORT, IL_UNSIGNED_INT and IL_INT. IL_FLOAT and IL_DOUBLE will be supported shortly. For most purposes, IL_UNSIGNED_BYTE is always acceptable here.

· Data:
A pointer to the data block that you wish to receive the specified image data. If this is NULL, DevIL will set an error of IL_INVALID_PARAM and return IL_FALSE (please refer to the section on error handling in DevIL).
Setting Image Data

There are two ways to set image data: one is quick and dirty, while the other is more flexible but slower. These two functions are ilSetData and ilSetPixels.

ILboolean
ilSetData(ILvoid *Data);

ILvoid
ilSetPixels(
ILuint XOff, ILuint YOff, ILuint ZOff, ILuint Width, ILuint Height, ILuint Depth, ILenum Format, ILenum Type, ILvoid *Data);

Listing 2-5. Syntax of the functions to set image data
The Quick Method

Use ilSetData to set the image data directly. DevIL will copy the data provided in the Data parameter to the image’s data, so you need not worry about DevIL trying to delete your pointer later on. This function is the counterpart to ilGetData.

You must provide image data in the exact same format, type, width, height, depth and bpp as the current bound image, since DevIL does no conversions here; it just does a simple memory copy.

ilSetData will return IL_FALSE and set an error of IL_INVALID_PARAM if Data is NULL.

The Flexible Method

Use ilSetPixels to set a portion of the current bound image’s data or to set the current image’s data with data of a different format / type. Specify the data block, where you want to put it and what kind of data it is, and DevIL takes care of all conversions automatically for you. The data block can range from a single line to a rectangle, all the way to a cube.

ilSetPixels has a long parameter list, like ilCopyPixels, so here is a description of the parameters of ilSetPixels:

· XOff:
Specifies where to place the block of image data in the x direction.
· YOff:
Specifies where to place the block of image data in the y direction.
· ZOff:
Specifies where to place the block of image data in the z direction. This will be 0 in most cases, unless you are using image volumes.
· Width:
The width of the data block in Data.

· Height:
The height of the data block in Data.

· Depth:
The depth of the data block in Data. This will be 1, unless you are using image volumes.

· Format:
The format of the data block in Data. Acceptable formats are IL_RGB, IL_RGBA, IL_BGR, IL_BGRA and IL_LUMINANCE.

· Type:
The type of the data block in Data. For acceptable types, refer to the documentation on ilTexImage. For most purposes, IL_UNSIGNED_BYTE is always acceptable here.

· Data:
A pointer to the actual data block. If this is NULL, DevIL will set an error of IL_INVALID_PARAM and return IL_FALSE (please refer to the section on error handling in DevIL).
If you specify a combination of an offset with a width/height/depth that makes your data block overreach the edge of the currently bound image, DevIL will clip your data so that no crashes will occur and that the resulting image will be correctly produced.

Copying Images

DevIL has three functions to copy images: ilCopyImage, ilOverlayImage and ilBlit.

ILboolean ilCopyImage(ILuint Src);

ILboolean ilOverlayImage(ILuint Src, ILint XCoord, ILint YCoord, ILint ZCoord);

ILboolean ilBlit(ILuint Src, ILint DestX, ILint DestY, ILint DestZ, ILuint SrcX, ILuint SrcY, ILuint SrcZ, ILuint Width, ILuint Height, ILuint Depth);

Listing 2-6. Syntax of the functions to copy images
Direct Copying

Use ilCopyImage to create a copy of an image. ilCopyImage will copy the image specified by the image name in Src to the currently bound image. ilCopyImage can be useful when you want to apply an effect to an image but want to preserve the original. The image bound before calling ilCopyImage will still be bound after ilCopyImage exits.
If you specify an image name in Src that has not been generated by ilGenImages or ilBindImage, ilCopyImage will set the IL_INVALID_PARAM error and return IL_FALSE.
Blitting

ilBlit copies a portion of an image over to another image. This is similar to blitting performed in graphics libraries, such as StretchBlt in the Windows API. You can copy a rectangular block from anywhere in a source image, specified by Src, to any point in the currently bound image. A description of the various ilBlit parameters follows:

· Src:
The source image name.
· DestX:
Specifies where to place the block of image data in the x direction.
· DestY:
Specifies where to place the block of image data in the y direction.
· DestZ:
Specifies where to place the block of image data in the z direction.
· SrcX:
Specifies where to start copying in the x direction of the source image.
· SrcY:
Specifies where to start copying in the y direction of the source image.
· SrcZ:
Specifies where to start copying in the z direction of the source image.
· Width:
How many pixels to copy in the x direction of the source image.
· Height:
How many pixels to copy in the y direction of the source image.
· Depth:
How many pixels to copy in the z direction of the source image.
Overlaying

ilOverlay is essentially the same as ilBlit, but it copies the entire image over, instead of just a portion of the image. ilOverlay is more of a convenience function, since you can obtain the same results by calling ilBlit with SrcX, SrcY and SrcZ set to zero, with the Width, Height and Depth parameters set to the source image’s height, width and depth, respectively. ilOverlay is missing six parameters that ilBlit has:

· Src:
The source image name.
· DestX:
Specifies where to place the block of image data in the x direction.
· DestY:
Specifies where to place the block of image data in the y direction.
· DestZ:
Specifies where to place the block of image data in the z direction.
Error Handling

DevIL contains error-handling routines to alert the users of this library to any internal problems in DevIL. The ilGetError function reports all errors in DevIL. iluErrorString converts error numbers returned from ilGetError to a human-readable format.

ILenum
ilGetError(ILvoid);

const char*
iluErrorString(ILenum Error);

Listing 3-1. Syntax of the error functions
Error Detection

Problems can always occur in any software application, and DevIL is no different. DevIL keeps track of all non-fatal errors that have occurred during its operation. All errors are kept on a stack maintained by ilGetError. Every time ilGetError is called, the last error is returned and pushed off the top of the stack. You should call ilGetError until IL_NO_ERROR is returned. IL_NO_ERROR signifies that there are no more errors on the error stack. Most errors reported are not harmful, and DevIL operation can continue, except for IL_OUT_OF_MEMORY.

All error codes that can be returned by ilGetError are listed in Appendix A.

Error Strings

iluErrorString returns a human readable error string from any error that ilGetError can return. This is useful for when you want to display what kind of error happened to the user.
Image Characteristics

All images have a certain set of characteristics: origin of the image, format of the image, type of the image, and more.
Origin

Image Manipulation

ILU (image library utilities) contains functions to manipulate any type of image in a variety of ways. Some functions filter images, while others perform a wider variety of operations, such as scaling an image. This section will give a comparison of the utility functions against figure 4-1.

[image: image3.png]OpeniD)

Figure 4-1. Original, unmodified image
Alienifying

iluAlienify is a filter I created purely by accident, when I was attempting to write colour matrix code. The effect iluAlienify gives to an image is a green and purple tint. On images with humans in them, iluAlienify generally makes the people look green, hence the fabricated term “alienify”. iluAlienify does not accept any parameters. Figure 4-2 illustrates this effect on the OpenIL logo.

[image: image4.png]OpeniD)

Figure 4-2. “Alienified” image
Blurring

ILU has two blurring functions – iluBlurAverage and iluBlurGaussian. Blurring can be used for a simple motion blur effect or something as sophisticated as concealing the identity of a person in an image. Both of these functions use a convolution filter and multiple iterations to blur an image. Gaussian blurs look more natural than averaging blurs, because the center pixel in the convolution filter “weighs” more. For an in-depth description of convolution filters, see the excellent “Elementary Digital Filtering” article at http://www.gamedev.net/reference/programming/features/edf/.

iluBlurAverage and iluBlurGaussian are functionally equivalent. Both functions accept a single parameter. Call the desired function with the number of iterations of blurring you wish to be performed on the image. Increase the number of iterations to increase the blurriness of an image.

	[image: image5.png]Openl[»

Figure 4-3. Average blurred with 10 iterations applied
	
	[image: image6.png]Openl[»

Figure 4-4. Gaussian blurred with 10 iterations applied

Contrast

The American Heritage Dictionary describes contrast as “The use of opposing elements, such as colors, forms, or lines, in proximity to produce an intensified effect in a work of art.” ILU can apply more colour contrast to your image by brightening the lights and darkening the darks via iluContrast. This effect can make a dull image livelier and “stand out” more.

iluContrast accepts a single parameter describing the desired amount of contrast to modify the image by. A value of 1.0 does not affect the image. Values above 1.0 to 1.7 increase the amount of contrast in the image, with 1.7 increasing the contrast the most. Values from 0.0 to 1.0 decrease the amount of contrast in the image. Values outside of the 0.0 to 1.7 range will give undefined results. -0.5 to 0.0 will actually create a negative of the image and increase the contrast.

	[image: image7.png]Openi[)

Figure 4-5. Contrast of 1.6
	[image: image8.png]OpeniD)

Figure 4-6. Contrast of 0.2
	[image: image9.png]OpeniD)

Figure 4-7. Contrast of -.5

Equalization

Sometimes it may be useful to equalize an image – that is, bring the extreme colour values to a median point. iluEqualize darkens the bright colours and lightens the dark colours, reducing the contrast in an image or “equalizing” it. Figure 4-8 shows the results of applying iluEqualize to the OpenIL image.

[image: image10.png]Openl[)

Figure 4-8. Equalized image
Gamma Correction

iluGammaCorrect applies gamma correction to an image using an exponential curve. The single parameter iluGammaCorrect accepts is the gamma correction factor you wish to use. A gamma correction factor of 1.0 leaves the image unmodified. Values in the range 0.0 - 1.0 darken the image. 0.0 leaves a totally black image. Anything above 1.0 brightens the image, but values too large may saturate the image.

	[image: image11.png]OpeniD)

Figure 4-9. Result of gamma correction of 0.5
	
	[image: image12.png]OpeniD)

Figure 4-10. Result of gamma correction of 1.9

Negativity

iluNegative is a very basic function that inverts every pixel’s colour in an image. For example, pure white becomes pure black, and vice-versa. The resulting colour of a pixel can be determined by this formula: new_colour = ~old_colour (where the tilde is the negation of the set of bits). iluNegative does not accept any parameters and is reversible by calling it again.

[image: image13.png]OpeniD)

Figure 4-11. iluNegative example

Noise

DevIL can add “random” noise to any image to make it appear noisy. The function, iluNoisify, simply uses the standard libc rand function after initializing it with a seed to srand. If your program depends on a different seed to rand, reset it after calling iluNoisify. The seed DevIL uses is the standard time(NULL) call. Of course, the noise added to the image is not totally random, since no such thing exists, but there should be no repeating, except in extremely large images.

iluNoisify accepts a single parameter – the tolerance to use. This parameter is a clamped (float) value that should be in the range 0.0f - 1.0f. Lower values indicate a lower tolerance, while higher values indicate the opposite. The tolerance indicates just how much of a mono intensity that iluNoisify is allowed to apply to each pixel. A “random” mono intensity is applied to each pixel so that you will not end up with totally new colours, just the same colours with a different luminance value. Colours change by both negative and positive values, so some pixels may be darker, some may be lighter, and others will remain the same.

[image: image14.png]OpeniDy

Figure 4-12. Result of iluNoisify with a 0.50 tolerance
Pixelization

iluPixelize creates pixelized images by averaging the colour values of blocks of pixels. The single parameter passed to iluPixelize determines the size of these square blocks. The result is a pixelized image.

Call iluPixelize with values greater than 1 to pixelize the image. The larger the values, the larger the pixel blocks will be. A value of 1 will leave the image unchanged. Values less than 1 generate an error.

[image: image15.png]

Figure 4-13. Pixelization of 10 pixels across
Sharpening

Sharpening sharply defines the outlines in an image. iluSharpen performs this sharpening effect on an image. iluSharpen accepts two parameters: the sharpening factor and the number of iterations to perform the sharpening effect.

The sharpening factor must be in the range of 0.0 - 2.5. A value of 1.0 for the sharpening factor will have no effect on the image. Values in the range 1.0 - 2.5 will sharpen the image, with 2.5 having the most pronounced sharpening effect. Values from 0.0 to 1.0 do a type of reverse sharpening, blurring the image. Values outside of the 0.0 - 2.5 range produce undefined results.

The number of iterations to perform will usually be 1, but to achieve more sharpening, increase the number of iterations. This parameter is similar to the Iterations parameter of the two blurring functions. The time it takes to run this function is directly proportional to the number of iterations desired.

[image: image16.png]Openil)

Figure 4-14. Sharpening of 1.5 with 5 iterations
Resizing Images
Basic Scaling
To resize images, use the iluScale function:
ILboolean iluScale(ILuint Width, ILuint Height, ILuint Depth);

Listing 5.1. Syntax of the iluScale function
The three parameters are relatively explanatory. Any image can be resized to a new width, height and depth, provided that you have enough memory to hold the new image. The new dimensions do not have to be the same as the original in any way. Aspect ratios of the image do not even have to be the same. The currently bound image is replaced entirely by the new scaled image.
If you specify a dimension greater than the original dimension, the image enlarges in that direction. Alternately, if you specify a dimension smaller than the original dimension, the image shrinks in that direction.
	[image: image17.png]OpeniDy

Figure 5.1. Original image
	[image: image18.png]Openl[)

Figure 5.2. Enlarged image
	[image: image19.bmp]
Figure 5.3. Shrunk image

Advanced Scaling

DevIL also allows you to specify which method you want to use to resize images. As you can see in figure 5.2, the enlarged image is very pixelized. In figure 5.3, the shrunk image is also blocky. This is because a nearest filter was applied to the image in figure 5.1 to produce figures 5.2 and 5.3.
DevIL allows you to use different filters to produce better scaling results:

· Nearest filter
- ILU_NEAREST

· Linear filter
- ILU_LINEAR

· Bilinear filter
- ILU_BILINEAR

· Box filter
- ILU_SCALE_BOX

· Triangle filter
- ILU_SCALE_TRIANGLE

· Bell filter
- ILU_SCALE_BELL

· B Spline filter
- ILU_SCALE_BSPLINE

· Lanczos filter
- ILU_SCALE_LANCZOS3

· Mitchell filter
- ILU_SCALE_MITCHELL

Just use the ILU_FILTER define as PName in iluImageParameter with the appropriate filter define as Param.
ILvoid iluImageParameter(ILenum PName, ILenum Param);

Listing 5.1. Syntax of the iluImageParameter function
Filter Comparisons

The first three filters (nearest, linear and bilinear) require an increasing amount of time to resize an image, with nearest being the quickest and bilinear being the slowest of the three. All the filters after bilinear are considered the “advanced” scaling functions and require much more time to complete, but they generally produce much nicer results.
When minimizing an image, bilinear filtering should be sufficient, since it uses a four-pixel averaging scheme to create every destination pixel. Minimized images do not generally have to use higher sampling schemes to achieve a reasonable image.
Enlarging an image, though, depends quite heavily on how good the sampling scheme is. DevIL provides several filtering functions to let you choose which one best fits your needs: speed versus image quality. Below is a comparison of the different types of filters when enlarging an image.
[image: image20.bmp]
Figure 5.4. Original ‘Lena’ image

	[image: image21.png]

Nearest filter

	[image: image22.png]

Linear filter

	[image: image23.png]

Bilinear filter

	[image: image24.png]

Box filter

	[image: image25.png]

Triangle filter

	[image: image26.png]

Bell filter

	[image: image27.png]

B spline filter
	[image: image28.png]

Lanczos filter
	[image: image29.png]

Mitchell filter

Figure 5.5. Filter comparisons
Sub-Images

Mipmaps

Mipmaps in DevIL are successive half-dimensioned power-of-2 images. The dimensions do not have to be powers of 2 if you generate them manually, but DevIL’s mipmap generation facilities assume power-of-2 images.

	[image: image30.png]OpenD)

	[image: image31.png]OpenlD

	[image: image32.bmp]
	[image: image33.bmp]
	[image: image34.bmp]
	[image: image35.bmp]
	[image: image36.bmp]
	[image: image37.bmp]

Figure 4-1. All mipmap levels down to 1x1
Mipmap Creation

You generate mipmaps for any image using iluBuildMipmaps. If the image already has mipmaps, the previous mipmaps are erased, and new mipmaps are generated. Otherwise, iluBuildMipmaps generates mipmaps for the image.

The mipmaps built are always powers of 2. If the original image does not have power-of-2 dimensions, iluBuildMipmaps resizes the original image via iluScale to have power-of-2 dimensions.

Mipmap Access

Access mipmaps through the iluActiveMipmap function:

ILboolean ilActiveMipmap(ILuint MipNum);

Listing 4-1. Syntax of the mipmap access function

iluActiveMipmap sets the current image to the MipNum mipmap level of the current image. If there are no mipmaps present, then iluActiveMipmap returns IL_FALSE, else it returns IL_TRUE. The base image is mipmap level 0, so specify 0 for MipNum to return to the base image. The only other method for setting the current image to the base image is to call ilBindImage again.

Animations

Animations are similar to mipmaps, but instead of being smaller successive images, the images are the same size but have different data. The successive animation chains in DevIL can be used to create animations in your programs. File formats that natively support animations are .gif and .mng. You can also create your own sub-images as animations.

Animation Chain Creation

Animation Chain Access

Access animations through the iluActiveImage function:

ILboolean ilActiveImage(ILuint ImageNum);

Listing 4-2. Syntax of the mipmap access function

iluActiveImage sets the current image to the ImageNum mipmap level of the current image. If there are no mipmaps present, then iluActiveImage returns IL_FALSE, else it returns IL_TRUE. The base image is mipmap level 0, so specify 0 for ImageNum to return to the base image. The only other method for setting the current image to the base image is to call ilBindImage again.

iluActiveImage is functionally equivalent to iluActiveMipmap, except that it deals with animations and not mipmaps.

Layers

DevIL does not have a full layer implementation yet.

Sub-Image Mixing

An image can have both mipmaps and animations at the same time. Every image in an animation chain can have its own set of mipmaps, though it is not necessary by any means. If you “activate” an animation image in the base image’s animation chain, the active image becomes the new “base” image. Therefore, if you call iluActiveMipmap, the new active image will become the new active image,

DXTC/S3TC Notes

DDS Loading/Saving
DevIL supports loading and saving of Microsoft .dds files. DDS files can either be compressed or uncompressed. If they are compressed, DDS files use DirectX Texture Compression (DXTC). DXTC is also known as S3TC, since Microsoft licensed the compression technology from S3.
Keeping DXTC Data
When loading, DevIL uncompresses the DXTC. If you call ilEnable with the IL_KEEP_DXTC_DATA parameter, DevIL will keep an uncompressed copy of the DXTC data along with the image. Functions that deal with DXTC data can use this data without having to recompress the uncompressed data, making these functions operate faster. The only drawback is the use of more memory.
Controlling Saving
DevIL’s DXTC support consists of three different compression formats: DXT1, DXT3 and DXT5. DXT2 and DXT4 use premultiplied alpha, which not even OpenGL supports. DevIL loads DXT2 and DXT4 textures but immediately converts them to formats that do not use premultiplied alpha. To set what format to save DDS files in, use this line:

ilSetInteger(IL_DXTC_FORMAT, Format);

Format can be IL_DXT1, IL_DXT3 or IL_DXT5.
Retrieving DXTC Data
To retrieve a copy of the DXTC data, use ilGetDXTCData. To determine how large Buffer should be, first call ilGetDXTCData with the Buffer parameter as NULL. This function will then return the number of bytes that are required to completely store the DXTC data. Call it a second time to actually retrieve the data.
ILuint ilGetDXTCData(ILvoid *Buffer, ILuint BufferSize, ILenum DXTCFormat)

Listing 5-1. Syntax of the ilGetDXTCData function
If the DXTC data does not exist in the format that you request, DevIL will automatically compress the data. If ilGetDXTCData returns 0, then the data could not be compressed. To see if a certain format of DXTC data already exists for the currently bound image, call ilGetInteger with the IL_DXTC_DATA_FORMAT parameter.

OpenGL/Direct3D DXTC Support
ILUT allows you to directly send the DXTC data to OpenGL or Direct3D. Several modes in ILUT directly control this behavior.
OpenGL S3TC Support

OpenGL can use S3TC (DXTC) textures via extensions. If a computer does not support the S3TC texture extension, DevIL will just send the data normally through glTexImage2D, as always. Please keep in mind that DDS files store their data in a top-down format, so if you enable the OpenGL S3TC support, make certain to set the origins of all images in the upper left:

ilEnable(IL_ORIGIN_SET);

ilSetInteger(IL_ORIGIN_MODE, IL_ORIGIN_UPPER_LEFT);

To enable the OpenGL S3TC support, use the ilutEnable function with the ILUT_GL_USE_S3TC parameter:
ilutEnable(ILUT_GL_USE_S3TC);

Setting this parameter means that ILUT will only use DXTC data from images that are already compressed with DXTC (e.g. DDS files). To force ILUT to compress any image it sends to OpenGL, use ilutEnable again:
ilutEnable(ILUT_GL_GEN_S3TC);

This can adversely affect your performance while loading textures, though, so use it with caution, especially if you are running a performance-critical application.
Direct 3D DXTC Support

ILUT’s Direct 3D (D3D) support works exactly like the OpenGL support, except you use the ILUT_D3D_USE_DXTC and ILUT_D3D_GEN_DXTC defines instead of ILUT_GL_USE_S3TC and ILUT_GL_GEN_S3TC, respectively.
Appendix A: Common DevIL Error Codes

Errors sometimes occur within DevIL. To get the error code of the last error that occurred, call ilGetError with no parameters. To get a human-readable string of an error code, call iluErrorString with the error code. A table of error codes follows:

	Error Code #define
	Hexadecimal Value
	Decimal Value

	IL_NO_ERROR
	0x000
	0

	IL_INVALID_ENUM
	0x501
	1281

	IL_OUT_OF_MEMORY
	0x502
	1282

	IL_FORMAT_NOT_SUPPORTED
	0x503
	1283

	IL_INTERNAL_ERROR
	0x504
	1284

	IL_INVALID_VALUE
	0x505
	1285

	IL_ILLEGAL_OPERATION
	0x506
	1286

	IL_ILLEGAL_FILE_VALUE
	0x507
	1287

	IL_INVALID_FILE_HEADER
	0x508
	1288

	IL_INVALID_PARAM
	0x509
	1289

	IL_COULD_NOT_OPEN_FILE
	0x50A
	1290

	IL_INVALID_EXTENSION
	0x50B
	1291

	IL_FILE_ALREADY_EXISTS
	0x50C
	1292

	IL_OUT_FORMAT_SAME
	0x50D
	1293

	IL_STACK_OVERFLOW
	0x50E
	1294

	IL_STACK_UNDERFLOW
	0x50F
	1295

	IL_INVALID_CONVERSION
	0x510
	1296

	IL_BAD_DIMENSIONS
	0x511
	1297

	IL_FILE_READ_ERROR
	0x512
	1298

	IL_LIB_JPEG_ERROR
	0x5E2
	1506

	IL_LIB_PNG_ERROR
	0x5E3
	1507

	IL_LIB_TIFF_ERROR
	0x5E4
	1508

	IL_LIB_MNG_ERROR
	0x5E5
	1509

	IL_UNKNOWN_ERROR
	0x5FF
	1535

Table A-1. DevIL error codes
Appendix B: Supported File Formats

DevIL supports loading and saving of a large number of image formats. Table B-1 lists the formats DevIL supports.

	Formats Supported by DevIL

	Loading
	Saving

	Type
	Extension(s)
	Type
	Extension(s)

	Windows Bitmap
	.bmp
	Windows Bitmap
	.bmp

	Dr. Halo Cut File
	.cut
	C-style header
	.h

	DirectDraw Surface
	.dds
	DirectDraw Surface
	.dds

	Graphics Interchange Format
	.gif
	Jpeg
	.jpg, .jpe, .jpeg

	Icons
	.ico, .cur
	Palette
	.pal

	Jpeg
	.jpg, .jpe, .jpeg
	ZSoft PCX
	.pcx

	Interlaced Bitmap
	.lbm
	Portable Network Graphics
	.png

	Homeworld File
	.lif
	Pnm
	.pbm, .pgm, .ppm

	Doom Walls / Flats
	.lmp
	Adobe PhotoShop
	.psd

	Half-Life Model
	.mdl
	Raw Data
	.raw

	Mng Animation
	.mng
	Silicon Graphics
	.sgi, .bw, .rgb, .rgba

	PhotoCD
	.pcd
	Targa
	.tga

	ZSoft PCX
	.pcx
	TIF
	.tif, .tiff

	PIC
	.pic
	
	

	PIX
	.pix
	
	

	Portable Network Graphics
	.png
	
	

	Pnm
	.pbm, .pgm, .ppm, .pnm
	
	

	PhotoShop
	.psd
	
	

	Pixar
	.pxr
	
	

	Silicon Graphics
	.sgi, .bw, .rgb, .rgba
	
	

	Targa
	.tga
	
	

	TIF
	.tif, .tiff
	
	

	Quake2 Texture
	.wal
	
	

	X Pixel Map
	.xpm
	
	

	Raw Data
	Any
	
	

Table B-1. Types of image file formats DevIL supports
ilLoad, ilLoadF and ilLoadL all accept a Type parameter. Possible values for the Type parameter for each function are listed below. If you use an unsupported value for Type, then the function generates an IL_INVALID_ENUM error and returns IL_FALSE.

	Supported Loading Types

	DevIL #define
	Hex Value
	Decimal Value
	Supported by ilLoad
	Supported by ilLoadF
	Supported by ilLoadL

	IL_BMP
	0x420
	1056
	√
	√
	√

	IL_CUT
	0x421
	1057
	√
	√
	√

	IL_DCX
	0x438
	1080
	√
	√
	√

	IL_DDS
	0x437
	1079
	√
	√
	√

	IL_DOOM
	0x422
	1058
	√
	√
	√

	IL_DOOM_FLAT
	0x423
	1059
	√
	√
	√

	IL_GIF
	0x436
	1078
	√
	√
	√

	IL_ICO
	0x424
	1060
	√
	√
	√

	IL_JNG
	0x435
	1077
	√
	√
	√

	IL_JPG (IJL)
	0x425
	1061
	√
	
	√

	IL_JPG (libjpeg)
	0x425
	1061
	√
	√
	√

	IL_LBM
	0x426
	1062
	√
	√
	√

	IL_LIF
	0x434
	1076
	√
	√
	√

	IL_MDL
	0x431
	1073
	√
	√
	√

	IL_MNG
	0x435
	1077
	√
	√
	√

	IL_PCD
	0x427
	1063
	√
	√
	√

	IL_PCX
	0x428
	1064
	√
	√
	√

	IL_PIC
	0x429
	1065
	√
	√
	√

	IL_PIX
	0x43C
	1084
	√
	√
	√

	IL_PNG
	0x42A
	1066
	√
	√
	√

	IL_PNM
	0x42B
	1067
	√
	√
	√

	IL_PSD
	0x439
	1081
	√
	√
	√

	IL_PSP
	0x43B
	1083
	√
	√
	√

	IL_PXR
	0x43D
	1085
	√
	√
	√

	IL_RAW
	0x430
	1072
	√
	√
	√

	IL_SGI
	0x42C
	1068
	√
	√
	√

	IL_TGA
	0x42D
	1069
	√
	√
	√

	IL_TIF
	0x42E
	1070
	√
	√
	√

	IL_WAL
	0x432
	1074
	√
	√
	√

	IL_XPM
	0x43E
	1086
	√
	√
	√

Table B-2. Values for the Type parameter
ilSave, ilSaveF and ilSaveL all accept a Type parameter. Possible values for the Type parameter for each function are listed below. If you use an unsupported value for Type, then the function generates an IL_INVALID_ENUM error and returns IL_FALSE.

	Supported Saving Types

	DevIL #define
	Hex Value
	Decimal Value
	Supported by ilSave
	Supported by ilSaveF
	Supported by ilSaveL

	IL_BMP
	0x420
	1056
	√
	√
	√

	IL_CHEAD
	0x42F
	1071
	√
	√
	√

	IL_DDS
	0x437
	1079
	√
	√
	√

	IL_JPG (IJL)
	0x425
	1061
	√
	
	√

	IL_JPG (libjpeg)
	0x425
	1061
	√
	√
	√

	IL_PCX
	0x428
	1064
	√
	√
	√

	IL_PNG
	0x42A
	1066
	√
	√
	√

	IL_PNM
	0x42B
	1067
	√
	√
	√

	IL_PSD
	0x439
	1081
	√
	√
	√

	IL_RAW
	0x430
	1072
	√
	√
	√

	IL_SGI
	0x42C
	1068
	√
	√
	√

	IL_TGA
	0x42D
	1069
	√
	√
	√

	IL_TIF
	0x42E
	1070
	√
	√
	√

Table B-3. Values for the Type parameter
Index
	
	
	

[image: image38.bmp]

