
Deep Architectures and Deep Learning in Chemoinformatics: The
Prediction of Aqueous Solubility for Drug-Like Molecules
Alessandro Lusci,*,† Gianluca Pollastri,† and Pierre Baldi*,‡

†School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland
‡Department of Computer Science, University of California, Irvine, Irvine, California 92697, United States

*S Supporting Information

ABSTRACT: Shallow machine learning methods have been applied to chemo-
informatics problems with some success. As more data becomes available and more
complex problems are tackled, deep machine learning methods may also become
useful. Here, we present a brief overview of deep learning methods and show in
particular how recursive neural network approaches can be applied to the problem of
predicting molecular properties. However, molecules are typically described by
undirected cyclic graphs, while recursive approaches typically use directed acyclic
graphs. Thus, we develop methods to address this discrepancy, essentially by
considering an ensemble of recursive neural networks associated with all possible
vertex-centered acyclic orientations of the molecular graph. One advantage of this
approach is that it relies only minimally on the identification of suitable molecular
descriptors because suitable representations are learned automatically from the data.
Several variants of this approach are applied to the problem of predicting aqueous
solubility and tested on four benchmark data sets. Experimental results show that the performance of the deep learning methods
matches or exceeds the performance of other state-of-the-art methods according to several evaluation metrics and expose the
fundamental limitations arising from training sets that are too small or too noisy. A Web-based predictor, AquaSol, is available
online through the ChemDB portal (cdb.ics.uci.edu) together with additional material.

■ INTRODUCTION
Shallow machine learning methods, such as shallow neural
networks or kernel methods,1 have been applied to chemo-
informatics problems with some success, for instance, for the
prediction of the physical, chemical, or biological properties of
molecules2−5 or the outcome of chemical reactions.6,7 As more
data becomes available and more complex problems are tackled,
more complex models and deep machine learning methods may
also become useful. Here, we provide a brief introduction to
deep learning methods, demonstrate a recursive approach for
deriving deep architectures for the prediction of molecular
properties, and illustrate the approach on the problem of
predicting aqueous solubility.
Aqueous Solubility Prediction. Aqueous solubility

prediction is important in drug discovery and other
applications. Given that over 80% of human blood consists of
water, absorption of molecules with poor water solubility is low.
Therefore, early identification of molecules with poor water
solubility properties in a drug discovery pipeline can reduce the
risk of failure.8 Over the last few decades, several methods have
been developed for the in silico prediction of aqueous
solubility. Most of these methods are QSAR (quantitative
structure−activity relationship) methods9 with the general form

= =F M EActivity (structure) ((structure)) (1)

The function F() is typically factorized into two
subfunctions: the encoding function E and the mapping function

M. The enconding function E transforms input molecules,
which are naturally described by undirected graphs representing
their chemical structure, into feature vectors of fixed length
(e.g., fingerprints). This step is necessary in order to obtain a
representation that is suitable for standard regression/
classification tools such as neural networks (NN) or support
vector machines (SVM) that can be used to learn the mapping
function M from training examples.
These approaches depend crucially on the choice of

molecular features. The first example of a computational
method applied to the prediction of aqueous solubility dates
back to 1924 when Fühner noticed that adding methyl groups
to a series of homologous compounds tends to decrease
solubility.10 Adding methyl groups increases molecular size, and
thus, molecular size became a key feature in the prediction of
aqueous solubility.11 Over the years, several other molecular
features were found to correlate with aqueous solubility,
including polar surface area,12 octanol−water partition
coefficient,13−15 melting point,16 hydrogen bond count,17 and
various molecular connectivity indexes.18−20 For instance, the
octanol−water partition coefficient log Poctanol is the logarithm
of the ratio of the concentrations of a molecule in the two
phases of a mixture of octanol and water at equilibrium.21,22 It
is often taken as a measure of the ability of a molecule to

Received: March 28, 2013
Published: June 24, 2013

Article

pubs.acs.org/jcim

© 2013 American Chemical Society 1563 dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−1575

cdb.ics.uci.edu
pubs.acs.org/jcim

traverse a lipdid membrane. The GSE23 method uses a linear
equation to combine the log Poctanol and the melting point (Tm)
to predict aqueous solubility. Even if such a method were to
give satisfactory results, it displaces the problem of predicting
aqueous solubility to the problem of measuring or predicting
both log Poctanol and Tm, which is not entirely satisfactory. Thus,
other methods try to predict aqueous solubility using also
topological and structural descriptors derived from the
molecular graph.24 An example is the prediction method
combining log P, first order valency connectivity indices (1χV),
delta chi (Δ2χ), and information content (2IC) by Louis et al.25

Although nowadays many other descriptors have been
incorporated into the prediction tools, no model seems to be
able to predict solubility with perfect accuracy.11 This can be
ascribed in part to experimental variability because it has been
shown26,27 that experimental solubility data can contain errors
of up to 1.5 log units. Moreover it has been suggested28 that the
average error in experimental solubility data is no lower than
0.6 log units. Another reason behind the current limitations of
prediction methods is the size of the available training sets
which are very small compared to chemical space and contain a
variety of biases. Finally, one cannot be certain that the current
molecular descriptors capture all the relevant properties
required for solubility prediction.11

Deep Learning. Learning is essential for building intelligent
systems, whether carbon-based or silicon-based. Furthermore,
in both cases, difficult tasks are not solved in a single step but
rather require multiple processing stages. Hence the idea of
deep learning, i.e., using processing systems that have multiple
learnable stages, such as deep multilayer neural networks, for
tackling difficult problems. In recent years, deep learning
systems have improved the state-of-the-art in almost every field
they have been applied to, from computer vision to speech
recognition to natural language understanding to bioinfor-
matics.29−36 Thus, it is natural to try to apply deep learning
methods to the prediction of molecular properties.
There are several nonexclusive ways of generating deep

architectures for complex tasks, such as autoencoder-based
architectures,29,30,37−40 convolutional architectures,41,42 and
recursive architectures.43−45 When the data consists of points
with the same format and size, such as vector of fixed length or
images of fixed size, then one can use a deep stack of neural
networks to process the data. In addition, one can use stacks of
autoencoders, which can be trained in an unsupervised way,29

to automatically extract features and initialize the weights of the
architecture, while taking advantage of usually plentiful
unlabeled data. One can also use weight-sharing within each
processing stage to derive convolutional architectures with the
right invariance properties. These convolutional architectures
have been extensively used in computer vision, for instance, in
character recognition. Autoencoder-based and convolutional
architectures can be applied to the prediction of molecular
properties provided molecules are represented by vectors of
fixed length, such as molecular fingerprints. While potentially
useful for chemoinformatics, these approaches still rely heavily
on a good encoding function and will not be further discussed
here.
Because molecules are naturally represented by small graphs

of variable size, it is also useful to develop methods for deriving
more flexible deep architectures that can be applied directly to
molecules and more generally to structured data of variable size,
such as sequences, trees, graphs, and 3D structures. This can be
achieved using the recursive approach described in.44 However,

the standard recursive approach relies on data represented by
directed acyclic graphs (DAGs), whereas molecules are usually
represented by undirected graphs (UGs). Thus, we first briefly
review the general recursive approach for building deep
learning architectures from DAGs and then show how the
approach can be adapted to molecular UGs.

■ RECURSIVE DEEP LEARNING ARCHITECTURES
Directed Acyclic Graph Recursive Neural Networks

(DAG-RNN). The starting point in this approach is a directed
acyclic graph (DAG) associated with the data. Very often the
DAG corresponds to a probabilistic graphical model (Bayesian
network) of the data,46 although it does not have to be so. The
directed edges typically correspond to causal or temporal
relationships between the variables. For instance, in the case of
sequence data, such as text data or biological sequence data, the
graphs are often based on linear chains associated with Markov
models (Figure 1), such as hidden Markov models (HMMS),

input−output hidden Markov models, and other variants.47

With two-dimensional data such as images, protein contact
maps, or board games (e.g., GO), the graphs are typically based
on two-dimensional lattices with acyclic orientations. Other
kinds of structured data may be associated with oriented trees.
In all these cases, the DAG-RNN approach associates vector
variables with the nodes of the DAG and places a neural
network (or any other kind of parametrized function) on the
edges of the DAG to parametrize the relationship between the
corresponding vector variables. While a different network can
be placed on each edge, when the DAG has a regular structure,
it is natural to share the weights of the neural networks
associated with similar edges. For instance, in the example of
Figures 1 and 2, the DAG associated with a hidden Markov
model of the data can be converted to a deep neural network by
using two basic neural network building blocks. One neural
network for the transitions from state to state and one neural
network for the emission of symbols from each state. These
building blocks are shared or repeated at each position in time.
When the architecture is unfolded in time or space, it yields a
deep neural network with many layers and shared weights

Figure 1. Directed acyclic graph (DAG). This is the graphical model
(Bayesian Network) representation of a first-order hidden Markov
model for sequence data. The HMM is defined by a finite set of
hidden states, an alphabet of symbols, and two stochastic matrices: one
for the state transitions and one for the symbol emissions from a given
state. Horizontal edges correspond to transitions between hidden
(nonvisible states). Vertical edges correspond to emissions of symbols.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751564

which can be trained by gradient descent (backpropagation)
and other algorithms.
Undirected Graph Recursive Neural Networks (UG-

RNN). The DAG-RNN approach has been applied successfully
to several problems, ranging for instance from protein
secondary structure43 to protein contact map44 prediction to
the game of GO.45 However, it raises the obvious question of
how it can be extended to domains where the graphs associated
with the data are undirected graphs (UG) and possibly cyclic,
which is obviously the case for small-molecule data. One
possible approach is to try to convert the UG into a DAG in
some canonical fashion. For small molecules, one could use an
approach similar to what is used to produce canonical SMILES
strings to derive a canonical numbering of the vertices and thus
a canonical orientation of the edges. However, the resulting
canonical orientation is likely to be quite arbitrary among all
possible orientations, and hence unsatisfactory. Here instead,
we take an approach that finesses this problem essentially by
taking all possible acyclic orientations into consideration and
using them as an ensemble. This is possible here because small
molecules have a relatively small number of nodes and edges
and thus considering all possible acyclic orientations is
computationally feasible. The process is schematically illus-
trated in Figures 3 and 4. Starting from an undirected graph, we
cycle through all the vertices. When a given vertex is selected as
the root, a DAG is generated by orienting all the edges toward
the root along the shortest possible paths. Each DAG has the
same vertices as the original UG and essentially the same edges
except that the edges are single oriented edges. In some cases,
some of the original undirected edges can be oriented in either
direction while leaving the overall derived graph acyclic. One
possibility is to include all such possible orientations. Another
possibility is to choose one orientation at random. Here, to
keep things more manageable, we simply delete the
corresponding ambiguous edges from the corresponding
DAG. In short, if a molecular graph has N vertices associated
with N atoms, this procedure yields N DAGs. We can then
apply the DAG-RNN approach to each of the resulting DAGs
and combine the outputs of all the DAG-RNN models to
obtain an ensemble and derive a final prediction.

More precisely, consider a molecular graphs with N nodes
v1,...,vN, and N associated DAGs derived by the process above. A
“contextual” vector Gv,k is associated with each node v in each
DAG indexed by k. This vector is a function of the local
properties of the node v and of the contextual vectors
associated with its parent nodes in the form

=G M i G G(, , ...,)v k
G

v pa pa, v k v k
n

[,]
1

[,] (2)

where iv∈l is the input vector associated with the properties of
vertex v (e.g., information about the corresponding atom) and
pa[v,k]

1 ,..., pa[v,k]
n are the parents of vertex v in the kth DAG.

Notice how this representation is recursiveeach context
vector is computed as a function of other context vectors. The
function MG which implements this recursion by “crawling” the
molecular graph is implemented by a parametrized neural
network, although other classes of parametrized functions can
also be used. The neural network is taken to be the same for all
molecules, all DAGs, and all vertices. While this is not strictly

Figure 2. Directed acyclic graphs recursive neural network (DAG-RNN). A feed-forward neural network (or any other parametrized deterministic
function) is assigned to each edge of the DAG. The neural network implements a deterministic function between corresponding input vectors and
output vectors. The architecture and parameters of the neural networks can be shared across similar edges. In this case, this yields a model associated
with two neural networks only: one to compute the next state vector given the current state vector and one to compute the emitted symbol given the
current state vector.

Figure 3. Undirected graph.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751565

necessary, for instance, different NNs could be used for
different classes of molecules, this strong weight sharing
approach allows us to keep the number of free parameters in
the model small. Notice how in order for this representation to
be possible, there must be an upper bound n to the number of
parents a node can have (in the application presented in this
work, typically n = 4). If a node has m parent nodes with m < n,
blank vectors (all zeroes) are passed to the function MG as its
last n−m arguments. Likewise, for a source node with no
parents, only the input vector is nonzero: all the other
components of the contextual vector are set to 0.
In this approach, one is free to choose the nature of the local

information vector iv associated with each node v. This
information could go well beyond the atom type and include,
for instance, additional information about the local connectivity
or properties of the molecule (e.g., aromaticity, topological
indices, information about local paths or trees). To
demonstrate the power of the UG-RNN approach and the
underlying hypothesis that such information is extracted
automatically by the crawling process, here we use only the
atom type of the node and the bond type (single, double,
triple) associated with the edges connecting the node to its
parents pa[v,k]

1 ,..., pa[v,k]
n . This information is encoded as a binary

vector with one-hot encoding (e.g., with three atom types only,
the atom type is encoded as C = (1,0,0), N = (0,1,0), and O =
(0,0,1) and similarly for the bond types).
As there is a path from each atom in a DAG to the root of

the DAG, the recursion above ends up producing a final
contextual vector in the root node of each DAG that receives,
directly or indirectly, some contribution from all the other
contextual vectors in the DAG. Intuitively, this vector can be
viewed as the final product or summary of the crawling process
in the corresponding DAGit is a “view of the molecule” as
seen from the corresponding root node. The N different views
can be combined in different ways. Here, we simply add the
corresponding vectors. Thus, the overall description of the
molecule is obtained as the sum of descriptions of the molecule
“as seen” from each of its nodes/atoms. More formally, Gstructure
is defined as

∑= =
=

G G D D(, ...,)
k

N

r k Kstructure
1

, 1k
(3)

where here rk denotes the root of the k-th DAG. Thus. Gstructure
can be viewed as a feature vector with K learned features. The
final prediction is produced by the output function MO

=p M G()O
structure (4)

where p is a class probability in classification problems or a
continuous value in regression problem. Just like the encoding
function MG, the output function MO can be implemented by a

feed-forward neural network. An example of an alternative
approach for combining the different views would be to apply a
predictor to the contextual vector of each root node, and then
take the average prediction of the ensemble. In either case, the
resulting overall model is a deep feed-forward neural network,
and therefore, it can be trained by gradient descent.48−51 The
feed-forward nature is a direct consequence of the use of the
DAGs in the encoding step. Given a set of training examples,
the parameters of the MO and MG networks can be trained by
gradient descent to minimize the error (e.g., squared error in
the case of regression, relative entropy in the case of
classification) between predicted and true values. Thus the
features used to encode molecules are learned by the system in
a fully automated and task-specific manner. That is, if training is
successful, the Gstructure vector provides an encoding of the
molecular graph that is optimal in terms of minimizing the
prediction error.

Example: UG-RNN Model of Acetic Acid. In this section,
we illustrate the UG-RNN approach in detail using the acetic
acid molecule (Figures 5 and 6) as a concrete example. For

illustration purposes, we include hydrogen atoms, but in
practice, these are implicit and can be omitted, which has the
advantage of leading to more compact architectures and faster
training. In this case, the graph for acetic acid has eight nodes.
The first step consists in generating the corresponding eight
DAGs, each one with edges directed toward a different root
node (Figure 7, root atoms highlighted). The second step

Figure 4. Directed acyclic graphs.

Figure 5. Acetic acid.

Figure 6. Acetic acid undirected graph.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751566

consists in initializing the contextual vector for each source
node and each DAG and then propagating the information
along the DAG edges, using the neural network MG to calculate
the contextual vector for all the internal nodes up to the root

node. Specifically, using the top DAG in Figure 7 with root
node v8 as the example, one must initialize the contextual vector
for four source nodes: v1,v2,v3 associated with hydrogen atoms
and v7 associated with an oxygen atom (Figure 8). For these

four boundary nodes, the contextual vector of the parents is set
to 0, and only the input vector associated with the vertex is set
to a nonzero value, corresponding to the atom type.
Information is then propagated along the DAG structure
using eq 2 and the current parameter values for the function
MG to compute the contextual vector of each internal node, and
ultimately of the root (sink node) v8, resulting in the vector
Gv8,1 (Figure 8). The same procedure is applied to the other
seven DAGs finally producing eight vectors, each one
describing the molecular structure “as seen” from the root of
each DAG. The third step consists in generating the vector
Gstructure describing the whole molecular graph by computing
the sum of the eight contextual vectors associated with the eight
roots of the eight DAGs (Figure 9). The fourth and final step
consists in mapping the vector Gstructure using the output
function MO into the property of interest, in this case aqueous
solubility. During training, the error between the predicted and
true value is computed for each training examples and the
parameters of MG and MO are then adjusted by gradient
descent.

UG-RNN with Contracted Rings. It is well known52,53 that
backpropagation can run into problems of gradient diffusion or
exploding or vanishing gradients in deep architectures,
including recursive architectures and that generally speaking
the severity of these problems tend to increase with the depth
of the architectures. Thus here, we consider also an approach
which aims at reducing the depth of the recursive architectures
essentially by contracting rings in molecular UGs to single
points. Cyclic and polyciclic molecules with one or more rings
are of course very common.54 An example of molecule with a
single ring is aspirin (Figure 10), and an example of polycyclic
molecule is amoxicillin (Figure 11).
If one computes the smallest set of smallest rings55,56 of the

molecular graph G and contracts each ring to a single node, one
obtains a new undirected graph Gc with a smaller diameter than
G. A new node representing a ring R is assigned a new label Rn
where n is the length of the ring capped to the length of the
largest ring in the data. The new node is connected to all the
nonring nodes that were originally connected to the ring R,

Figure 7. Acetic acid DAGs.

Figure 8. Application of MG to the first DAG.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751567

with edge type labels equal to those of the original bonds. In
addition, for polyciclic molecules, a new node associated with a

ring R can also be connected to other newly created nodes that
are associated with rings sharing at least one vertex with R.
Although we experimented with various edge labeling rules, in
the end using the same label as for single-bond edges for all
new edges arising between such newly created nodes provides
the most simple and effective solution.
Applying this procedure to the graphs representing aspirin

and amoxicillin yields the graphs in Figures 12 and 13,
respectively. Thus, in the experiments, we explore also an
alternative approach in which the graph representing a

Figure 9. Sum of eight G vectors to produce the vector Gstructure = (D1,...,DK) corresponding to K descriptors learned from the data. The output
function MO produces the final prediction.

Figure 10. Aspirin.

Figure 11. Amoxicillin.

Figure 12. Contracted graph of aspirin with bond types.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751568

molecule is first reduced by contracting its rings using the
procedure above, and then the UG-RNN approach is applied.
We call this approach UG-RNN with contracted rings (UG-
RNN-CR).

■ DATA
To train and test the approach, we use four publicly available
benchmark data sets widely used in the solubility prediction
literature.
Small Delaney Data Set. This data set15 originally

contained 2874 molecules together with their measured
aqueous solubility (log mol/L at 25 °C). This data set is
particularly interesting because it can be used as a benchmark
for comparisons against the GSE method.23 As described in
Delaney,15 the GSE was obtained from a set of molecules
similar to the ones contained in the “small” Delaney data set.
Furthermore, various kernel methods57 have also been trained
and tested on this data set with better results than GSE.
Huuskonen. This data set contains 1026 organic molecules

selected by Jarmo Huuskonen58 from the AQUASOL data-
base59 and the PHYSPROP database.60 Molecules are listed
together with their aqueous solubility values, expressed in log
mol/L at 20−25°. For instance, Frohlich et al.61 report a
squared correlation coefficient of 0.90 for an 8-fold cross-
validation, using support vector machines with a RBF (radial
basis function) kernel.
Intrinsic Solubility Data Set. This data set contains 74

molecules together with their intrinsic solubility values reported
by Bergstrom62,63 and others.23,64,65 The data set has been
selected by Louis et al.25 to test a wide range of predictive
methods, including linear models, SVMs, and shallow neural
networks. Because of its small size, this set is useful for assessing
the performances of the UG-RNN method when its training set
contains few input/output examples.
Solubility Challenge Data Set. This data set contains 125

molecules selected by Linas et al.66 using the criteria that
molecules ought to contain a ionizable group (pKa between 1
and 13) and be commercially available. The set is divided into
two subsets: a training set containing 97 molecules and a test
set containing 28 molecules. The challenge consisted in
predicting the solubility of the molecules in the test set using
the solubility values of the molecules in the training set.
In general, we use 10-fold cross validation methods to assess

the performance of the various UG-RNN predictors. Thus, we
divide the data randomly into 10 subsets of equal size and use
nine of them for training and the remaining one for testing in
all 10 possible combinations. We then compute the average and
standard deviation of the performance across the 10 data splits.
In addition, each training set consisting of 90% of the original

data is randomly split into a proper training set, a small
validation set using an 80/20 proportion for the data sets
containing more than 1000 examples (Delaney and Huusko-
nen), and an 85/15 proportion for the smaller data sets
(intrinsic solubility and solubility challenge data sets). The
validation set is used to fit the hyperparameters of the models
(see below). The different proportions are used to match what
is reported in the literature for comparison purposes. The
details of all the data set splits are given in the Supporting
Information.

■ ADDITIONAL METHODOLOGICAL ASPECTS
As previously mentioned, both the encoding function MG and
the output mapping function MO are implemented using a
neural network. In both cases, we use a standard three-layer
neural network architecture with one hidden layer. All neurons
use a sigmoid transfer function (tan h) and weights are
randomly initialized. In order to reduce the residual general-
ization error,67 we use an ensemble of 20 models with a
different number of hidden units and features (i.e., the outputs
units of MG), as described in Table 1. The optimal value of the

learning rate η is determined by varying it from 10−1 to 10−4

and keeping the value that gives the lowest RMSE (root mean
square error) (see metrics). To facilitate learning, we slightly
modify the gradient descent procedure as in refs 50,51.
Specifically, the gradient of the error with respect to a weight
dw is used to modify the weight according to the simple
gradient descent rule Δw = −ηdw only if |dw|∈ [0.1,1]. Outside
this range, to avoid exploding or vanishing gradients, the
learning rule is clipped: Δw = −ηsign(dw) if |dw|>1, or Δw =
−η0.1sign(dw) if |dw| < 0.1. Each UG-RNN model is trained
for 5000 epochs, and the outputs of the best 10 networks,
selected by their root mean square error (RMSE) on the
validation set, are averaged as an ensemble to compute the
prediction on the test set,during each fold of the 10-fold cross
validation procedure.

Figure 13. Contracted graph of amoxicillin with bond types.

Table 1. Architecture of 20 Encoding Neural Networks MG

and Output Neural Networks MO

neural network MG hidden units MG output units MO hidden units

model_1 7 3 5
model_2 7 4 5
model_3 7 5 5
model_4 7 6 5
model_5 7 7 5
model_6 7 8 5
model_7 7 9 5
model_8 7 10 5
model_9 7 11 5
model_10 7 12 5
model_11 3 3 5
model_12 4 3 5
model_13 5 3 5
model_14 6 3 5
model_15 7 3 5
model_16 8 3 5
model_17 9 3 5
model_18 10 3 5
model_19 11 3 5
model_20 12 3 5

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751569

Because of the importance given to the octanol−water
partition coefficient in the aqueous solubility literature, we also
assess the performances of both the UG-RNN and UG-RNN-
CR models using two different inputs for the output network
MO. In addition to the case described above where the input to
MO is the vector Gstructure alone, we also consider the case where
the input consists of Gstructure plus the log Poctanol (calculated
using Marvin Beans68). In this way, we can partially assess how
log Poctanol affects the generalization capability of the UG-RNN
and UG-RNN-CR models and better understand the kind of
information contained in the vector Gstructure.

■ RESULTS
Metrics. In order to assess the performance of the UG-RNN

predictors and compare them with other methods, we use three
standard metrics: root mean square error (RMSE), average
absolute error (AAE), and Pearson correlation coefficient (R)
defined by

∑= −
=n

t pRMSE
1

()
i

i

i i
1

2

(5)

∑= | − |
=n

t pAAE
1

i

n

i i
1 (6)

=
∑ − ̅ − ̅

∑ − ̅ ∑ − ̅

=

= =

R
t t p p

t t p p

()()

() ()
i
n

i i

i
n

i i
n

i

1

1
2

1
2

(7)

Here, pi is the predicted value, and ti is the target value
(experimentally observed) for molecule i. In some cases, we use
R2 instead of R as our error metric in order to compare our
results with other published results. In the tables, for clarity
purposes the best results are marked in bold.
Small Delaney Data Set. Results obtained by 10-fold cross

validation on the small Delaney data set are shown in Table 2.

The UG-RNN approach gives the best results for every metric,
and the UG-RNN-CR approach does not perform as well.
Including the log P information leads to significant improve-
ments for the simplified UG-RNN-CR approach with
contracted rings but not for the full UG-RNN approach with
no ring contractions. The best UG-RNN models match or
surpass the perfomances of the GSE and 2D kernel methods,
although generally the differences are within one standard
deviation.
Huuskonen Data Set. Results obtained by 10-fold cross

validation on the Huuskonen Data set are shown in Table 3 and
are consistent with those observed on the small Delaney data

set. The UG-RNN method achieves the best results for all the
metrics. Adding the log P information does not improve its
performance but significantly improves the performance of the
restricted UG-RNN-CR method with contracted rings.
Published performances obtained with kernel methods are
similar to the performance of the UG-RNN models.

Intrinsic Solubility Data Set. Results obtained by 10-fold
cross validation on the intrinsic solubility data set are shown in
Table 4. On this small data set, the best performing model is

UG-RNN-CR + log P across all three metrics used. The UG-
RNN model does not seem to be able to generalize well on this
data set, probably because of its small size (only 60 training
examples). UG-RNN-CR does not perform well, but it benefits
substantially from the inclusion of log P in the input label. In
fact, UG-RNN-CR + log P is the only UG-RNN-based method
to outperform the best method by Louis et al.25 The latter is
based on a feed-forward neural network whose input layer
consists of a set of four descriptors: log P and three topological
descriptors, 1χV, Δ2χ, and 2IC. Given that in the UG-RNN-CR
+ log P the mapping function is also implemented by a feed-
forward neural network with log P as one of the inputs, the only
substantive difference between the two approaches is the choice
of the other input features. These are chosen in advance and
“hand-crafted” in the previously published approach, whereas
they are automatically learned from the data in the UG-RNN
approach.

Solubility Challenge Data Set. Results obtained by 10-
fold cross validation on the solublity challenge data set are
shown in Table 5. On this data set, we provide a comparison
with the relevant work of Hewitt et al.11 assessing the predictive
performances of three different approaches: linear regression,
artificial neural networks, and category formation. The input for
their models was a vector consisting of 426 molecular
descriptor values computed using the Dragon Professional
software (version 5.3).69 For validation purposes, the molecules
in the training set were ordered according to their solubility
values, and every fifth molecule was taken as a validation
molecule. Furthermore, a genetic algorithm approach was used
to select the molecular descriptors providing the best predictive

Table 2. Prediction Performances and Standard Deviations
Using 10-Fold Cross Validation on the Small Delaney Data
Set (1144 molecules)

models R2 std R2 RMSE
std

RMSE AAE
std
AAE

UG-RNN 0.92 0.02 0.58 0.07 0.43 0.04
UG-RNN-CR 0.86 0.03 0.79 0.09 0.57 0.06
UG-RNN + log P 0.91 0.02 0.61 0.07 0.46 0.05
UG-RNN-CR + log P 0.91 0.02 0.63 0.05 0.47 0.03
GSE23 − − − − 0.47 −
2D kernel (param
d = 2)57

0.91 − 0.61 − 0.44 −

Table 3. Prediction Performances and Standard Deviations
Using 10-Fold Cross Validation on the Huuskonen Data Set
(1026 molecules)

models R2 std R2 RMSE
std

RMSE AAE
sdt
AAE

UG-RNN 0.91 0.01 0.60 0.06 0.46 0.04
UG-RNN-CR 0.80 0.04 0.92 0.07 0.65 0.05
UGR-NN + log P 0.91 0.01 0.61 0.06 0.47 0.04
UG-RNN-CR + log P 0.89 0.02 0.68 0.06 0.52 0.04
RBF kernel61 0.90 − − − − −

Table 4. Prediction Performances and Standard Deviations
Using 10-Fold Cross Validation on the Intrinsic Solubility
Data Set (74 molecules)

models R std R RMSE
sdt

RMSE AAE
std
AAE

UG-RNN 0.64 0.04 0.96 0.01 0.80 0.11
UG-RNN-CR 0.55 0.09 1.05 0.12 0.88 0.12
UG-RNN + log P 0.67 0.02 0.93 0.07 0.77 0.06
UG-RNN-CR + log P 0.81 0.01 0.72 0.04 0.51 0.03
Louis et al.25 0.74 − 0.73 − 0.53 −

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751570

performance on the validation set. For completeness, they also
applied several commercially available solubility predictors to
the solubility challenge test set. Perhaps surprisingly, they
observed that a simple multiple linear regression method
(MLR-Sol-Chal) obtained better results than a more complex
approach based on neural networks (NN-Sol-Chal); commer-
cially available tools, trained on bigger data sets, obtained better
results than MLR-Sol-Chal but not as good as expected.
The UG-RNN models are trained using the solubility

challenge training set, and we observe that the best performing
models (UGRNN-log P and UGRNN-CR-log P) obtain worse
results than MLR-Sol-Chal but better results than the neural
network-based (NN-Sol-Chal). The fact that the UG-RNN-
based models outperform the NN-Sol-Chal model provides
evidence that the automated feature selection of the UG-RNN
method can capture molecular properties that are more
informative for the task at hand than precomputed molecular
descriptors. We also observe large standard deviations on each
metric, indicating that there is considerable variability in the
results across different folds. Such variability is a sign of
overfitting, and as already suggested by Hewitt at al., this is a
clear sign that the training set is too small and does not contain
enough information to address the solubility problem with any
kind of generality. Moreover, the average Tanimoto similarity
of each molecule in the test set to its 10 closest neighbors in the
training set is only 0.53, which also suggests that at least some
of the molecules in the test set are likely to be outside the
applicability domain of the trained models.
Thus, one may suspect that larger training sets could lead to

significant performance improvements. To test this hypothesis,
we also train several UG-RNN-based models on an expanded
training set that includes the molecules from both the solubility
challenge data set and the Huuskonen data set. Because the
training set should not contain any molecule that is present in

the test set, we must remove all shared molecules. Therefore,
before starting the training procedure, we compute all the
pairwise Tanimoto similarities between the molecules in the
Huuskonen data set and the solubility challenge test set. We
find that the two data sets share 10 molecules, and some of the
shared molecules are assigned significantly different log
solubility values (Table 6). Perhaps the most striking and
controversial discrepancy is provided by indomethacin, which is
known to be practically insoluble in water.70 It is reported to
have a solubility value of −2.94 log units in the solubility
challenge data set to be contrasted with a value of −4.62 in the
Huuskonen Data set, a difference of more than 1.5 log units.
We also noticed differences in excess of 0.5 log units for
hydrochlorothiazide and dibucaine. The method adopted to
determine experimental solubility values (chasing equilibrium)
for the solubility challenge is supposed to ensure a log error of
0.05 units;66 however, the significant discrepancies with some
of the values reported in the literature casts some doubts.11 In
any case, in Table 5, we also report the performance of the UG-
RNN-based models when the solubility values of the solubility
challenge test set are replaced with the solubility values of the
Huuskonen data set (only for the shared molecules). As
expected, expansion of the training set results in significant
performance improvement for all the metrics, as well as
shrinking of the standard deviations. In particular, the UG-
RNN-CR-log P-Huusk model obtains an average squared
correlation R2 = 0.67 that is even better than the one reported
in Hewitt et al. (R2 = 0.62) obtained with an ensemble of
commercial solubility tools (the new in silico consensus).
Furthermore, it is interesting to note that the substitution of the
Huuskonen solubility values further improves the overall
performance of the UG-RNN-based models, with UG-RNN-
CR-LogP-Huusk performing the best with an average squared
correlation R2 = 0.67.

Table 5. Prediction Performance and Standard Deviations Using 10-Fold Cross Validation on the Solubility Challenge Data Set
(125 molecules)

models R2 std R2 RMSE std RMSE AAE std AAE

UG-RNN 0.32 0.03 1.41 0.12 1.08 0.10
UG-RNN-log P 0.45 0.04 1.27 0.13 1.03 0.11
UG-RNN-CR-log P 0.44 0.09 1.28 0.18 1.03 0.16
UG-RNN-Huusk 0.43 0.02 1.16 0.03 0.93 0.03
UG-RNN-Huusk-sub 0.48 0.02 1.11 0.03 0.84 0.01
UG-RNN-log P-Huusk 0.54 0.02 1.00 0.03 0.82 0.03
UG-RNN-log P-Huusk-sub 0.60 0.02 0.94 0.02 0.71 0.02
UG-RNN-CR-log P-Huusk 0.62 0.03 0.96 0.06 0.83 0.06
UG-RNN-CR-log P-Huusk-sub 0.67 0.03 0.90 0.06 0.74 0.05
NN-Sol-Chal11 0.40 − 1.51 − − −
MLR-Sol-Chal11 0.51 − 0.95 − 0.77 −
new in silico consesus11 0.60 − 0.90 − 0.68 −

Table 6. Differences in Solubility Values between the Solubility Challenge and Huuskonen Data Sets

SMILES Sol Chal Huusk

CCN(CC)CCNC(C1C(CCCC2)C2NC(OCCCC)C1)O −4.39 −3.70
CC/C(C1CCC(O)CC1)C(C2CCC(O)CC2)/C −4.43 −4.35
OS1(C2CC(S(N)(O)O)C(Cl)CC2NCN1)O −3.68 −2.62
CN(C)CCCN1C2C(CCCC2)CCC3C1CCCC3 −4.11 −4.19
COC1CCC2C(C(CC(O)O)C(C)N2C(C3CCC(Cl)CC3)O)C1 −2.94 −4.62
CCN(CC)CC(NC1C(C)CCCC1C)O −1.87 −1.76
NC1CCC(S(NC2NC(C)CCN2)(O)O)CC1 −3.12 −2.85
CC1CCC(S(NC(NCCCC)O)(O)O)CC1 −3.46 −3.39

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751571

In summary, the results obtained across all four data sets are
quite consistent in demonstrating the general effectiveness and
competitiveness of the UG-RNN approach in its different forms
while also exposing the fundamental problems arising from
training sets that are too small or too noisy.
Domain of Applicability. Estimating the domain of

applicability (DOA) of a QSAR model is essential to obtain
reliable predictions. Schröter et al,71 for instance, state that
predictions of aqueous solubility for molecules whose structure
falls outside the DOA are generally poor. In the literature, there
are several methods to estimate the DOA of a QSAR model. It
is possible to sort them into three categories: range-based
methods,72−74 distance-based methods,72−75 and probability−
distribution-based methods.72 Here, we employ a distance-
based method using Euclidean distance to estimate the DOA of
the UG-RNN trained on the small Delaney data set.15 For
completeness, we also use the Tanimoto similarity measure.
During training, as described in the Data section, this data set

is randomly partitioned into 10 folds, yielding for each round of
cross validation a test set containing 10% of the entire data set
(i.e., 115 molecules) and a training set containing the remaining
90%. In addition, 20% of each training set is set aside for
validation purposes, leaving in effect 10 training sets containing
78% of the entire data set (i.e., 823 molecules). To estimate the
DOA for each of the 10 selected models, we first compute the
Euclidean distance between each molecule i in a test set and
each molecule j in the corresponding training set by

= − + + −d D D D D() ... ()ij i j iK jK1 1
2 22

(8)

where K is the length of the encoding vectors produced by the
first stage of the UG-RNN method. We then compute the
average distance Di for each molecule i in a test set to the
corresponding training set by

∑=
=

d
T

d
1

i
j i

T

ij
(9)

where here T denotes the number of molecules in the
corresponding training set. When this calculation is applied to
each fold, one ends up with an average distance di for each
molecule in the entire data set and for each one of the 10
selected models. A similar procedure is carried also with other
metrics, such as the Tanimoto similarity measure, computed for
each molecule by taking the average similarity to its 10 most
similar neighbors in the corresponding training set using the
FP4 Open Babel fingerprint format (http://openbabel.org/
wiki/Tutorial:Fingerprints).
The next step consists in binning the data according to di

into bins of equal size and calculating the average absolute error
AAEb for each bin b

∑= | − |
=

AAE
B

t p
1

i

B

i ib
1

(b) (b)

(10)

where B is the number of molecules in each bin. The results are
shown in Figure 14 with corresponding Table 7 for the
Euclidean distance and in Figure 15 with the corresponding
Table 8 for the Tanimoto similarity. In both cases, we use four
bins of equal size. One can clearly observe that on average
prediction errors increase with distance or dissimilarity, albeit
not linearly. Therefore, making predictions only for molecules
that have an average distance or dissimilarity from the training
set below a certain threshold (e.g., 2.45 ± 0.15 in Euclidean

distance) could be a way to improve the reliability of the
predictor in a screening pipeline in the absence of larger and
more diverse training sets.

Training Time. The training time for the UG-RNN models
scales roughly linearly with the size of the training set and with

Figure 14. Relationship between Euclidean distances and average
absolute error using four bins.

Table 7. AAE (average Euclidean distance) and Standard
Deviationa

bin number 1 2 3 4

AAE 0.45 0.47 0.48 0.56
distance (av) 2.45 2.91 3.44 5.09
distance (st dev) 0.15 0.14 0.18 1.67

aEach bin contains 2860 distances.

Figure 15. Relationship between Tanimoto similarity values and
average absolute error using four bins.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751572

http://openbabel.org/wiki/Tutorial:Fingerprints
http://openbabel.org/wiki/Tutorial:Fingerprints

the diameter of the molecules being processed. Detailed
training times are given in the Supporting Information, but for
the data considered here, the average time per molecule and per
epoch is 7.8 ms on a good workstation. Thus, the training time
is quite reasonable, and much larger data sets could be
accommodated by this method. The approach could be further
accelerated by using GPUs or parallel distributed implementa-
tions if necessary.
Internal Representations. Figure 16 shows the 3D space

arrangement of the UG-RNN feature vectors Gstructure resulting

from a training process on the small Delaney data set. In this
case, we use a small network with K = 3 in order to enforce
low-dimensional easy-to-visualize feature vectors. Each point
correspond to the image of a molecular structure in the space of
features. The color of the point, scaled from green to red,
represents the aqueous solubility of the corresponding
molecule. One can notice immediately that points with the
same color tend to be colocated in the 3D plot. This illustrates
how the internal representation of molecular structures learned
by the UG-RNN models can be correlated with the task at
hand, providing further evidence of their capability to
automatically extract from the molecular graphs features that
are relevant for the prediction of a given property.

■ CONCLUSION
Experimental results show that the UG-RNN approach can be
used to build aqueous solubility predictors that match and

sometimes outperform current state-of-the-art methods. One
important difference between UG-RNN-based approaches with
respect to other methods is the ability to automatically extract
internal representations from the molecular graphs that are well
suited for the specific tasks. This aspect is an important
advantage for a problem like aqueous solubility prediction,
where the optimal feature set is not known and may even vary
from one data set to the other. It also saves time and avoids
other costs and limitations associated with the use of human
expertise to select features.
The UG-RNN standard model performs well on both

thesmall Delaney data set and the Huuskonen data set, while its
results on the intrinsic solubility data set are weaker. A likely
explanation for this observation is the particularly small size of
the intrinsic solubility data set that leads to overfitting and poor
generalization. Moreover, the UG-RNN model does not seem
to benefit from the addition of log P information to its set of
features, a sign that the log P information is already implicitly
contained in the learned features.
The UG-RNN-CR model with contracted rings has weaker

predictive capabilities on all the data sets used in this study.
This suggests that the loss of information about ring structures
negatively affects the generalization capability of the UG-RNN
in spite of the decrease in the depth of the recursions that
facilitates gradient propagation during learning. On the other
hand, the model seems to be rescued when the log P
information is added to its features (UG-RNN-CR + log P)
providing further evidence that this information is implicitly
extracted by the UG-RNN approach.
Finally, a UG-RNN-based Web server for aqueous solubility

prediction called AquaSol is available through the ChemDB
chemoinformatics portal (cdb.ics.uci.edu) together with down-
loadable code and other information. However, the domain of
applicability of predictors trained on a few hundreds or a few
thousands of molecules is bound to be limited in chemical
space, and thus, annotating and gathering larger data sets on
aqueous solubility or other properties is important for future
applications. This is why the main contribution of this paper is
not the development of a specific predictor but rather the
development of a general deep learning methodology for
chemoinformatics problems. The approach uses recursive
neural networks adapted to undirected graphs representing
molecular structures. A similar deep learning approach could be
used also for other molecular representations. For instance, for
1D fingerprint representations, convolutional architectures
could be used. For 2D representations based on adjacency
matrices, the same 2D-RNN approaches51 used for protein
contact map prediction could be used, as well as their more
recent descendants.34,76 For 3D representations based on atom
coordinates, local coordinate information, such as bond lengths
and bond angles, could be included in the inputs of the neural
networks used for this study. Similar ideas could also be applied
to problems involving more than one molecule, for instance, to
predict molecular interactions or reaction grammars.6,7 It is
precisely with growing amounts of freely available data and
computing power that one can expect deep learning methods to
become useful in different areas of chemoinformatics.

■ ASSOCIATED CONTENT

*S Supporting Information
Information as mentioned in the text. This material is available
free of charge via the Internet at http://pubs.acs.org.

Table 8. AAE (average Tanimoto similarit) and Standard
Deviationa

bin number 1 2 3 4

AAE 0.40 0.50 0.51 0.56
similarity (av) 0.95 0.81 0.67 0.52
similarity (st dev) 0.05 0.04 0.04 0.08

aEach bin contains 2860 similarity measures.

Figure 16. Scatter plot of learned feature vectors for molecules in the
small Delaney data set.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751573

cdb.ics.uci.edu
http://pubs.acs.org

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: alessandro.lusci@ucdconnect.ie (A.L.); pfbaldi@uci.
edu (P.B.).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
A.L. is funded through a GREP Ph.D. scholarship from the Irish
Research Council for Science, Engineering, and Technology.
P.B.’s research is supported by the following grants: NSF IIS-
0513376, NIH LM010235, and NIH NLM T15 LM07443. We
acknowledge OpenEye Scientific Software and ChemAxon for
academic software licenses and Jordan Hayes and Yuzo
Kanomata for computing support.

■ REFERENCES
(1) Scholkopf, B.; Smola, A. J. Learning with Kernels; MIT Press:
Cambridge, MA, 2002.
(2) Ralaivola, L.; Swamidass, S. J.; Saigo, H.; Baldi, P. Neural
Networks 2005, 18, 1093−1110 Special Issue on Neural Networks and
Kernel Methods for Structured Domains..
(3) Azencott, C.; Ksikes, A.; Swamidass, S. J.; Chen, J.; Ralaivola, L.;
Baldi, P. J. Chem. Inf. Model. 2007, 47, 965−974.
(4) Ceroni, A.; Costa, F.; Frasconi, P. Bioinformatics 2007, 23, 2038−
2045.
(5) Mahe,́ P.; Vert, J.-P. Mach. Learn. 2009, 75, 3−35.
(6) Kayala, M.; Azencott, C.; Chen, J.; Baldi, P. J. Chem. Inf. Model.
2011, 51, 2209−2222.
(7) Kayala, M.; Baldi, P. J. Chem. Inf. Model. 2012, 52, 2526−2540.
(8) Waterbeemd, H. V. D.; Gifford, E. Nat. Rev. 2003, 2, 192−204.
(9) Starita, A.; Micheli, A.; Sperduti, A. J. Chem. Inf. Comput. Sci.
2000, 41, 202−218.
(10) Fühner, H. Ber. Dtsch. Chem. Ges. 1924, 57B, 510−515.
(11) Hewitt, M.; Cronin, M. T. D.; Enoch, S. J.; Madden, J. C.;
Roberts, D. W.; Dearden, J. C. J. Chem. Inf. Model. 2009, 49, 2572−
2587.
(12) Reynolds, J.; Gilbert, D. B.; Tanford, C. Proc. Natl. Acad. Sci.
U.S.A. 1974, 71, 2925−2927.
(13) Hansch, C.; Quinlan, J. E.; Lawrence, G. L. J. Org. Chem. 1968,
33, 347−350.
(14) Faller, B.; Ertl, P. Adv. Drug Delivery Rev. 2007, 59, 533−545.
(15) Delaney, J. S. J. Chem. Inf. Comput. Sci. 2003, 44, 1000−1005.
(16) Yalkowsky, S. H.; Valvani, S. C. J. Pharm. Sci. 1980, 69, 912−
922.
(17) Kamlet, M. J.; Doherty, R. M.; Abboud, J.-L. M.; Abraham, M.
H.; Taft, R. W. J. Pharm. Sci. 1986, 75, 338−348.
(18) Randic, M. J. Am. Chem. Soc. 1975, 97, 6609−6615.
(19) Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and
Drug Design; Academic Press: New York, 1976.
(20) Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure−
Activity Analysis; John Wiley & Sons: New York, 1986.
(21) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525−616.
(22) Leo, A. Chem. Rev. 1993, 1281−1306.
(23) Jain, N.; Yalkowsky, S. J. Pharm. Sci. 2001, 90, 234−252.
(24) Timmerman, H.; Todeschini, R.; Consonni, V.; Mannhold, R.;
Kubiny, H. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim,
Germany, 2002.
(25) Louis, B.; Agrawal, V. K.; Khadikar, P. V. Eur. J. Med. Chem.
2010, 45, 4018−4025.
(26) Dearden, J. Expert Opinion in Drug Discovery 2006, 1, 31−52.
(27) Dannenfelser, R. M.; Paric, M.; White, M.; Yalkowsky, S.
Chemosphere 1991, 23 (2), 141−165.
(28) Jorgensen, W.; Duffy, E. Adv. Drug Delivery Rev. 2002, 54 (30),
355−366.
(29) Hinton, G.; Osindero, S.; Teh, Y. Neural Comput. 2006, 18,
1527−1554.

(30) Bengio, Y.; LeCun, Y. Scaling Learning Algorithms towards AI.
In Large Scale Kernel Machines; Bottou, L., Chapelle, O., DeCosta, D.,
Weston, J., Eds.; MIT Press: Cambridge, MA, 2007.
(31) Lee, H.; Grosse, R.; Ranganath, R.; Ng, A. Convolutional Deep
Belief Networks for Scalable Unsupervised Learning of Hierarchical
Representations. In ICML '09 Proceedings of the 26th Annual
International Conference on Machine Learning, New York, 2009; pp
609−616.
(32) Lee, H.; Pham, P.; Largman, Y.; Ng, A. Unsupervised Feature
Learning for Audio Classification Using Convolutional Deep Belief
Networks. In Advances in Neural Information Processing Systems 22;
Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A.,
Eds.; NIPS Foundation: La Jolla, CA, 2009; pp 1096−1104.
(33) Hinton, G.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
Salakhutdinov, R. R. Improving Neural Networks by Preventing Co-
Adaptation of Feature Detectors, 2012. http://arxiv.org/abs/1207.
0580 (accessed July 1, 2013).
(34) Di Lena, P.; Nagata, K.; Baldi, P. Bioinformatics 2012, 28, 2449−
2457, DOI: 10.1093/bioinformatics/bts475.
(35) Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25; MIT Press: Cambridge, MA, 2012.
(36) Socher, R.; Pennington, J.; Huang, E. H.; Ng, A. Y.; Manning, C.
D. Semi-Supervised Recursive Autoencoders for Predicting Sentiment
Distributions. In EMNLP '11 Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Stroudsburg, PA, 2011; pp
151_161.
(37) Hinton, G.; Salakhutdinov, R. Science 2006, 313, 504.
(38) Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H.; Montreal,
U. In Advances in Neural Information Processing Systems 19; MIT Press:
Cambridge, MA, 2007; p 153.
(39) Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.-A.; Vincent,
P.; Bengio, S. J. Mach. Learn. Res. 2010, 11, 625−660.
(40) Baldi, P. Designs, Codes, Cryptogr. 2012, 65, 383−403.
(41) LeCun, Y.; Matan, O.; Boser, B.; Denker, J. S.; Henderson, D.;
Howard, R. E.; Hubbard, W.; Jackel, L. D.; Baird, H. S. Handwritten
zip code recognition with multilayer networks. Proc. IEEE 1990, 2,
35−40.
(42) LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Proc. IEEE 1998,
86, 2278−2324.
(43) Baldi, P.; Brunak, S.; Frasconi, P.; Pollastri, G.; Soda, G.
Bioinformatics 1999, 15, 937−946.
(44) Baldi, P.; Pollastri, G. J. Mach. Learn. Res. 2003, 4, 575−602.
(45) Wu, L.; Baldi, P. Neural Networks 2008, 21, 1392−1400.
(46) Koller, D.; Friedman, N. Probabilistic Graphical Models:
Principles and Techniques; MIT Press: Cambridge, MA, 2009.
(47) Baldi, P.; Brunak, S. Bioinformatics: The Machine Learning
Approach, 2nd ed.; MIT Press: Cambridge, MA, 2001.
(48) Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Nature 1986,
323, 533−536.
(49) Baldi, P. IEEE Trans. Neural Networks 1995, 6, 182−195.
(50) Pollastri, G.; Baldi, P. Bioinformatics 2002, 18, 62−70.
(51) Baldi, P.; Pollastri, G. J. Mach. Learn. Res. 2003, 4, 575−602.
(52) Bengio, Y.; Simard, P.; Frasconi, P. IEEE Trans. Neural Networks
1994, 5 (2), 157−166.
(53) Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P. J. Mach.
Learn. Res. 2009, 10, 1−40.
(54) March, J. Advanced Organic Chemistry: Reactions, Mechanisms,
and Structure, 3rd ed.; New York: Wiley, 1985.
(55) Zamora, A. J. Chem. Inf. Comput. Sci. 1976, 16, 40−43.
(56) Fan, B. T.; Panaye, A.; Doucet, J. P.; Barbu, A. J. Chem. Inf.
Comput. Sci. 1993, 33, 657−662.
(57) Azencott, C.-A.; Ksikes, A.; Swamidass, S. J.; Chen, J. H.;
Ralaivola, L.; Baldi, P. J. Chem. Inf. Comput. Sci. 2007, 47, 965−974.
(58) Huuskonen, J. J. Chem. Inf. Comput. Sci. 2000, 40, 773−777.
(59) Yalkowsky, S. H.; M., D. R. The Arizona Database of Aqueous
Solubility; College of Pharmacy, University of Arizona: Tucson, AZ,
1990.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751574

mailto:alessandro.lusci@ucdconnect.ie
mailto:pfbaldi@uci.edu
mailto:pfbaldi@uci.edu
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580

(60) Physical/Chemical Property Database(PHYSOPROP). SRC
Environmental Science Center: Syracuse, NY, 1994.
(61) Fröhlich, H.; Wegner, J. K.; Zell, A. QSAR Comb. Sci. 2004, 23,
311−318.
(62) Bergstroem, C.; Strafford, M.; Lazorova, L.; Avdeef, A.;
Luthman, K.; Artursson, P. J. Med. Chem. 2003, 46, 558−570.
(63) Wassvik, C.; Holmen, A.; Bergstrom, C.; Zamora, I.; Artursson,
P. Eur. J. Pharm. Sci. 2006, 29, 294−305.
(64) Faller, B.; Ertl, P. Adv. Drug Delivery Rev. 2007, 59, 533−545.
(65) Glomme, A.; Maerz, J.; Dressman, J. J. Pharm. Sci. 2005, 94, 1−
16.
(66) Linas, A.; Glen, R.; Goodman, J. J. Chem. Inf. Model. 2008, 48,
1289−1303.
(67) Hanses, L.; Salamon, L. IEEE Trans. 1990, 12, 993−1001.
(68) Marvin Beans. ChemAxon. http://chemaxon.com (accessed July
1, 2013).
(69) Dragon Professional Software for Windows. Milano Chemo-
metrics and QSAR Research Group. http://michem.disat.unimib.it/
chm/ (accessed July 1, 2013).
(70) O’Neil, M. J. The Merck Index, 13th ed.; Merck & Co. Inc.:
Whitehouse Station, NJ, 2001.
(71) Schröeter, T. S.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelze,
D.; Ganzer, U.; Heinrich, N.; Müller, K.-R. Estimating the Domain of
Applicability for Machine Learning Qsar Models: A Study on Acqueous
Solubility of Drug Discovery Molecules; Springer Science+Business
Media B.V.: Dordrecht, The Netherlands, 2007.
(72) Netzeva, T. I.; et al. ATLA, Altern. Lab. Anim. 2005, 33 (2), 1−
19.
(73) Tetko, I. V.; Bruneau, P.; Mewes, H.-W.; Rohrer, D. C.; Poda,
G. I. Drug Discovery Today 2006, 11 (15/16), 700−707.
(74) Tropsha, A. Variable Selection QSAR Modeling, Model
Validation, and Virtual Screening. In Annual Reports in Computational
Chemistry; Spellmeyer, D. C., Ed.; Elsevier: Amsterdam, The
Netherlands, 2006; Volume 2, Chapter 7, pp 113−126.
(75) Bruneau, P.; McElroy, N. R. J. Chem. Inf. Model. 2006, 46,
1379−1387.
(76) Tegge, A. N.; Wang, Z.; Eickholt, J.; Cheng, J. Nucleic Acids Res.
2009, 37, W515−W518.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400187y | J. Chem. Inf. Model. 2013, 53, 1563−15751575

http://chemaxon.com
http://michem.disat.unimib.it/chm/
http://michem.disat.unimib.it/chm/

