
Version 1.2.196

October 8, 2015

2

Contents

1 General Information 9

2 HOTINT User Manual 39
2.1 Multibody formulation . 40

2.1.1 Solution vector . 40
2.1.2 Main structure of the multibody kernel 40
2.1.3 Object library . 42
2.1.4 The dynamic solver � implicit time integration 42
2.1.5 The static solver � incremental loading 44
2.1.6 Eigenmode computation . 44
2.1.7 Parameter Variation, Sensitivity Analysis, Identi�cation and Optimization 49
2.1.8 The Element Concept . 55
2.1.9 Nodes for Direct Connection of Finite Elements 56
2.1.10 The Concept of Loads . 56
2.1.11 Sensors for Measuring . 57
2.1.12 Geometric Elements for Bodies with Complex Geometry 57

2.2 Getting started . 58
2.2.1 Instructions for installing HOTINT on a MS-Windows computer 58
2.2.2 First steps . 61
2.2.3 Command Line Usage . 62
2.2.4 Con�gure Notepad++ for HOTINT . 63

2.3 HOTINT Windows User Interface . 65
2.3.1 Using the graphics window . 65
2.3.2 Mouse control . 65
2.3.3 HOTINT main application window . 65
2.3.4 Speci�c buttons . 66
2.3.5 HOTINT Main Menu . 67

2.4 Creating your model in HOTINT . 72
2.4.1 Introduction . 72
2.4.2 Model setup via the script language . 72
2.4.3 Model setup via the graphical user interface 76

2.5 Options Dialogs . 77
2.5.1 Introduction . 77
2.5.2 Hotint Options . 77
2.5.3 Viewing Options . 80
2.5.4 OpenGL Drawing Options . 81
2.5.5 Finite Element Drawing Options . 83
2.5.6 Body / Joint Options . 85
2.5.7 Data Manager . 87

3

4 CONTENTS

2.5.8 Solver Options . 88
2.6 Data visualization and graphics export . 90
2.7 Visualization Tool . 90

2.7.1 How to record a video . 92
2.8 HOTINT File and Folder Structure . 94

2.8.1 Input Files . 94
2.8.2 Folder Structure . 94

3 HOTINT Reference Manual 95
3.1 Preface . 95

3.1.1 Examples . 95
3.1.2 Data objects . 95
3.1.3 Observable FieldVariables . 95
3.1.4 Observable special values . 95
3.1.5 Controllable special values . 95

3.2 Element . 96
3.2.1 Mass1D . 96
3.2.2 Rotor1D . 99
3.2.3 Mass2D . 102
3.2.4 Rigid2D . 105
3.2.5 Mass3D . 108
3.2.6 NodalDiskMass3D . 110
3.2.7 Rigid3D . 112
3.2.8 Rigid3DKardan . 115
3.2.9 Rigid3DMinCoord . 118
3.2.10 LinearBeam3D . 122
3.2.11 RotorBeamXAxis . 127
3.2.12 ANCFBeamShear3DLinear . 131
3.2.13 ANCFBeamShear3DQuadratic . 136
3.2.14 ANCFBeam3DTorsion . 142

3.3 Connector . 148
3.3.1 PointJoint . 149
3.3.2 CoordinateConstraint . 154
3.3.3 VelocityCoordinateConstraint . 157
3.3.4 MultiCoordConstraint . 160
3.3.5 SlidingPointJoint . 163
3.3.6 SlidingPrismaticJoint . 167
3.3.7 Rope3D . 170
3.3.8 FrictionConstraint . 173
3.3.9 Contact1D . 177
3.3.10 GenericBodyJoint . 180
3.3.11 RevoluteJoint . 186
3.3.12 PrismaticJoint . 188
3.3.13 UniversalJoint . 191
3.3.14 RigidJoint . 195
3.3.15 CylindricalJoint . 198
3.3.16 SpringDamperActuator . 200
3.3.17 RigidLink . 207
3.3.18 RotatorySpringDamperActuator . 211

CONTENTS 5

3.3.19 SpringDamperActuator2D . 217
3.3.20 PointJoint2D . 220

3.4 Control elements . 223
3.4.1 IODiscreteTransferFunction . 224
3.4.2 IODigitalFilter . 226
3.4.3 IORandomSource . 229
3.4.4 IOLinearTransformation . 231
3.4.5 IOQuantizer . 233
3.4.6 IOContinuousTransferFunction . 235
3.4.7 IOLinearODE . 238
3.4.8 IOMathFunction . 240
3.4.9 IOSaturate . 243
3.4.10 IODeadZone . 245
3.4.11 IOProduct . 248
3.4.12 IOTime . 250
3.4.13 IOPulseGenerator . 251
3.4.14 IOTimeWindow . 253
3.4.15 IOStopComputation . 255
3.4.16 IOElementDataModi�er . 257
3.4.17 IODisplay . 260
3.4.18 IOMinMax . 262
3.4.19 IOTCPIPBlock . 264
3.4.20 IOX2C . 272
3.4.21 IOLinearTransducer . 274

3.5 Material . 279
3.5.1 Material . 279

3.6 BeamProperties . 281
3.6.1 Beam3DProperties . 281

3.7 Node . 283
3.7.1 Node3DS1rot1 . 283
3.7.2 Node3DS2S3 . 284
3.7.3 Node3DRxyz . 285
3.7.4 Node3DR123 . 286
3.7.5 Node3DS1S2 . 287
3.7.6 Node3DThermoMechanic . 287
3.7.7 Node3DThermo . 288

3.8 Load . 290
3.8.1 GCLoad . 290
3.8.2 BodyLoad . 292
3.8.3 ForceVector2D . 292
3.8.4 ForceVector3D . 294
3.8.5 MomentVector3D . 295
3.8.6 Gravity . 296
3.8.7 SurfacePressure . 297

3.9 Sensor . 298
3.9.1 FVElementSensor . 298
3.9.2 ElementSensor . 299
3.9.3 LoadSensor . 300
3.9.4 MultipleSensor . 301

6 CONTENTS

3.9.5 SystemSensor . 302
3.10 GeomElement . 304

3.10.1 GeomMesh3D . 304
3.10.2 GeomCylinder3D . 305
3.10.3 GeomSphere3D . 305
3.10.4 GeomCube3D . 306
3.10.5 GeomOrthoCube3D . 306

3.11 Set . 308
3.11.1 ElementSet . 308
3.11.2 GlobalNodeSet . 308
3.11.3 LocalNodeSetA . 309
3.11.4 LocalNodeSetB . 309
3.11.5 GlobalCoordSet . 309
3.11.6 LocalCoordSetA . 309
3.11.7 LocalCoordSetB . 310

3.12 Command . 311
3.12.1 AddElement . 312
3.12.2 AddGeomElement . 312
3.12.3 AssignGeomElementToElement . 313
3.12.4 AddConnector . 314
3.12.5 AddLoad . 315
3.12.6 AddSensor . 316
3.12.7 AddMaterial . 317
3.12.8 AddBeamProperties . 317
3.12.9 AddNode . 318
3.12.10 Include . 318
3.12.11Print . 318
3.12.12ReadSTLFile . 319
3.12.13LoadVectorFromFile . 320
3.12.14TransformPoints . 321
3.12.15ComputeInertia . 322
3.12.16Sum . 323
3.12.17Product . 323
3.12.18Transpose . 324
3.12.19CrossProduct . 324
3.12.20 for . 325
3.12.21 if . 326
3.12.22DoesEntryExist . 328
3.12.23GetByName . 328
3.12.24SetByName . 329
3.12.25Compare . 330
3.12.26StrCat . 330
3.12.27Zeros . 331
3.12.28AddSet . 332
3.12.29GenerateConstraints . 332
3.12.30AssignMaterial . 334
3.12.31AssignLoad . 335
3.12.32ChangeProperties . 336
3.12.33SetInitialCondition . 338

CONTENTS 7

3.13 Options . 339
3.13.1 SolverOptions . 339
3.13.2 LoggingOptions . 346
3.13.3 GeneralOptions . 347
3.13.4 ViewingOptions . 348
3.13.5 PlotToolOptions . 354

Bibliography 355

8 CONTENTS

Chapter 1

General Information

Introduction

Development history and background information

The code HOTINT has been initiated by Johannes Gerstmayr in 1997 and, until now, gone
over the following steps:

• solution methods and basic linear algebra routines for static solver (diploma thesis of the
main developer, 1997)

• addition of time integration methods for the accurate solution of large-scale �exible and
discontinuous multibody systems (up to 2004)

• integration with graphical interface in 2003 (with Yury Vetyukov)

• implementation of various structural �nite elements, such as �exible beam and plate elements
based on the absolute nodal coordinate formulation

• implementation of the �oating frame of reference concept, as well as the component mode
synthesis

• HOTINT made available to and further developed by Linz Center of Mechatronics (since
2007)

• HOTINT made available to and further developed by Austrian Center of Competence in
Mechatronics (from 2008 to 2013)

• User version of HOTINT V1.1 available as freeware (2013)

• A open source version of HOTINT is available (end of 2013)

Current State of HOTINT

HOTINT mainly consists of the multibody kernel, the solver and linear algebra kernel, and the
graphics and user interface, and currently comprises several hundred thousand lines of code. It
has been particularly developed for the use of arbitrary classes of fully implicit Runge Kutta
(IRK) methods. The IRK-tableaus can be de�ned in an external text-�le and are given for
several methods for 1 to 10 stages. The code makes advantage of the very high order reached
through the use of fully implicit methods, which makes it especially then fast, when higher

9

10 CHAPTER 1. GENERAL INFORMATION

accuracy is needed.
In the current version, the K-form of IRK-equations has been implemented for the fast inte-
gration of 2nd order (mechanical) systems. Instead of trying to invert the mass matrix, which
leads to large terms in the case of symbolic inversion, or instead of trying to add the system
as a constraint equation (this has been done by some people who implemented their system
into existing codes), you can now provide the mass matrix and the right hand side separately
and the solver only solves one large system, but does not need the accelerations to be written
explicitly as function of the remaining unknowns.

Summarizing, advanced methods from �exible multibody dynamics cover

• the e�cient geometrical description for moving rigid bodies and bodies with superimposed
small deformation,

• the application of special �nite element methods, which are well suited for simulating large
deformations of structural elements,

• high-order implicit time-integration schemes, in order to enforce stability for the numerical
solution,

• a sophisticated treatment of algebraic equations for the arbitrary coupling of bodies, and for
the incorporation of certain (boundary) conditions,

• and �nally the reduction of the system size by a component mode synthesis (CMS).

General Information

Chief developer

Johannes Gerstmayr

Further developers

Larissa Aigner, Markus Dibold, Alexander Dorninger, Rafael Eder, Peter Gruber, Alexander
Humer, Karin Nachbagauer, Astrid Pechstein, Daniel Reischl, Martin Saxinger, Markus Schör-
genhumer, Michael Stangl, Yury Vetyukov, Simon Weitzhofer

Contact

support@hotint.org

Linz Center of Mechatronics GmbH
Altenbergerstr. 69, 4040 Linz, AUSTRIA
http://www.lcm.at

Thanks

The help and support from the contributors of the Institute of Technical Mechanics and Insti-
tute of Numerical Mathematics at the Johannes Kepler University of Linz is greatly appreciated.

11

I would like to acknowledge the important grant of the FWF ("Fond zur Förderung Wis-
senschaftlicher Forschung" - the Austrian National Science Fund) within the project P15195-
N03 and the APART project of the Austrian Academy of Sciences.

Parts of this software have been developed in the project "Nachhaltig ressourcenschonende
elektrische Antriebe durch höchste Energie- und Material-E�zienz" (sustainable and resource
saving electrical drives through high energy and material e�ciency) which is part of the Eu-
ropean Union program "Regionale Wettbewerbsfähigkeit OÖ 2007-2013 (Regio 13)" sponsored
by the European Regional Development Fund (ERDF) and the Province of Upper Austria.

Parts of this software have been developed with the support of the Comet K2 Austrian Center
of Competence in Mechatronics (ACCM).

Link

http://www.hotint.org

12 CHAPTER 1. GENERAL INFORMATION

Copyright and license

HotInt General L i cense (Vers ion 1 . 0)
====================================

Copyright (c) 1997 − 2013 Johannes Gerstmayr , Linz Center o f Mechatronics GmbH,
Austr ian Center o f Competence in Mechatronics GmbH, I n s t i t u t e o f Technica l
Mechanics at the Johannes Kepler Un i v e r s i t a e t Linz , Austr ia . Al l r i g h t s
r e s e rved .

Red i s t r i bu t i on and use in source and binary forms , with or without mod i f i ca t i on ,
are permitted provided that the f o l l ow i ng cond i t i on s are met :

− Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight
not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r .

− Red i s t r i bu t i on s in binary form must reproduce the above copyr ight
not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r l i s t e d
in t h i s l i c e n s e in the documentation and/or other mat e r i a l s
provided with the d i s t r i b u t i o n .

− Neither the name o f the copyr ight ho lde r s nor the names o f i t s
c on t r i bu t o r s may be used to endorse or promote products der ived from
th i s so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .

The copyr ight ho lde r s prov ide no r ea s su rance s that the source code
provided does not i n f r i n g e any patent , copyr ight , or any other
i n t e l l e c t u a l property r i g h t s o f th i rd p a r t i e s . The copyr ight ho lde r s
d i s c l a im any l i a b i l i t y to any r e c i p i e n t f o r c la ims brought aga in s t
r e c i p i e n t by any th i rd party f o r in f r ingement o f that p a r t i e s
i n t e l l e c t u a l property r i g h t s .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This program conta in s SuperLU 4 . 3 , ExtGL , BLAS 3 . 5 . 0 and LAPACK 3 . 5 . 0 covered
under the f o l l ow i n g l i c e n s e s :

SuperLU 4 .3
=======

Copyright (c) 2003 , The Regents o f the Un ive r s i ty o f Ca l i f o rn i a , through
Lawrence Berke ley Nat iona l Laboratory (sub j e c t to r e c e i p t o f any requ i r ed
approva l s from U. S . Dept . o f Energy) . Al l r i g h t s r e s e rved .

Red i s t r i bu t i on and use in source and binary forms , with or without mod i f i ca t i on ,
are permitted provided that the f o l l ow i ng cond i t i on s are met :

13

(1) Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not i ce , t h i s
l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r .

(2) Red i s t r i bu t i on s in binary form must reproduce the above copyr ight not i ce ,
t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r in the documentation and
/or other mat e r i a l s provided with the d i s t r i b u t i o n .

(3) Ne i ther the name o f Lawrence Berke ley Nat ional Laboratory , U. S . Dept . o f
Energy nor the names o f i t s c on t r i bu t o r s may be used to endorse or promote
products der ived from th i s so f tware without s p e c i f i c p r i o r wr i t t en permis s ion
.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ExtGl
=====

Copyright (c) 2002 , Lev Povalahev . Al l r i g h t s r e s e rved .

Red i s t r i bu t i on and use in source and binary forms , with or without mod i f i ca t i on ,
are permitted provided that the f o l l ow i ng cond i t i on s are met :

∗ Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not i ce ,
t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r .

∗ Red i s t r i bu t i on s in binary form must reproduce the above copyr ight not i ce ,
t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r in the documentation
and/or other mat e r i a l s provided with the d i s t r i b u t i o n .

∗ The name o f the author may not be used to endorse or promote products
der ived from th i s so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

BLAS 3 . 5 . 0
======
The r e f e r e n c e BLAS i s a f r e e l y−av a i l a b l e so f tware package . I t i s a v a i l a b l e from

n e t l i b v ia anonymous f tp and the World Wide Web. Thus , i t can be inc luded in
commercial so f tware packages (and has been) . We only ask that proper c r e d i t
be g iven to the authors .

14 CHAPTER 1. GENERAL INFORMATION

Like a l l so f tware , i t i s copyr ighted . I t i s not trademarked , but we do ask the
f o l l ow i ng :

I f you modify the source f o r the se r ou t i n e s we ask that you change the
name o f the rou t ine and comment the changes made to the o r i g i n a l

We w i l l g l ad l y answer any que s t i on s regard ing the so f tware . I f a
mod i f i c a t i on i s done , however , i t i s the r e s p o n s i b i l i t y o f the person who
modi f i ed the rou t in e to prov ide support .

LAPACK 3 . 5 . 0
======

Copyright (c) 1992−2013 The Un ive r s i ty o f Tennessee and The Un ive r s i ty
o f Tennessee Research Foundation . Al l r i g h t s
r e s e rved .

Copyright (c) 2000−2013 The Un ive r s i ty o f Ca l i f o r n i a Berke ley . Al l
r i g h t s r e s e rved .

Copyright (c) 2006−2013 The Un ive r s i ty o f Colorado Denver . Al l r i g h t s
r e s e rved .

$COPYRIGHT$

Addi t iona l copyr i gh t s may f o l l ow

$HEADER$

Red i s t r i bu t i on and use in source and binary forms , with or without
mod i f i ca t i on , are permitted provided that the f o l l ow i ng cond i t i on s are
met :

− Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight
not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r .

− Red i s t r i bu t i on s in binary form must reproduce the above copyr ight
not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r l i s t e d
in t h i s l i c e n s e in the documentation and/or other mat e r i a l s
provided with the d i s t r i b u t i o n .

− Neither the name o f the copyr ight ho lde r s nor the names o f i t s
c on t r i bu t o r s may be used to endorse or promote products der ived from
th i s so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .

The copyr ight ho lde r s prov ide no r ea s su rance s that the source code
provided does not i n f r i n g e any patent , copyr ight , or any other
i n t e l l e c t u a l property r i g h t s o f th i rd p a r t i e s . The copyr ight ho lde r s
d i s c l a im any l i a b i l i t y to any r e c i p i e n t f o r c la ims brought aga in s t
r e c i p i e n t by any th i rd party f o r in f r ingement o f that p a r t i e s
i n t e l l e c t u a l property r i g h t s .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT

15

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The f o l l ow i n g l i b r a r i e s are not l i nked to HOTINT d i r e c t l y but are requi rements
o f the so f tware l i b r a r i e s BLAS and LAPACK.

LIBGFORTRAN
======
Copyright (C) 2002−2013 Free Software Foundation , Inc .
Contr ibuted by Paul Brook <paul@nowt . org >, and
Andy Vaught <andy@xena . eas . asu . edu>

Libg fo r t ran i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify
i t under the terms o f the GNU General Publ ic L i cense as pub l i shed by
the Free Software Foundation ; e i t h e r v e r s i on 3 , or (at your opt ion)
any l a t e r v e r s i on .

L ibg fo r t ran i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Publ ic L i cense f o r more d e t a i l s .

Under Sec t i on 7 o f GPL ve r s i on 3 , you are granted add i t i o na l
pe rmi s s i ons de s c r ibed in the GCC Runtime Library Exception , v e r s i on
3 . 1 , as pub l i shed by the Free Software Foundation .

You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense and
a copy o f the GCC Runtime Library Exception along with t h i s program ;
see the f i l e s COPYING3 and COPYING.RUNTIME r e s p e c t i v e l y . I f not , s e e
<http ://www. gnu . org / l i c e n s e s />.

LIBGCC
======
Copyright (C) 2005−2014 Free Software Foundation , Inc .

GCC i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t under
the terms o f the GNU General Publ ic L i cense as pub l i shed by the Free
Software Foundation ; e i t h e r v e r s i on 3 , or (at your opt ion) any l a t e r
v e r s i on .

GCC i s d i s t r i b u t e d in the hope that i t w i l l be us e fu l , but WITHOUT ANY
WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Publ ic L i cense
f o r more d e t a i l s .

Under Sec t i on 7 o f GPL ve r s i on 3 , you are granted add i t i o na l
pe rmi s s i ons de s c r ibed in the GCC Runtime Library Exception , v e r s i on
3 . 1 , as pub l i shed by the Free Software Foundation .

You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense and
a copy o f the GCC Runtime Library Exception along with t h i s program ;
see the f i l e s COPYING3 and COPYING.RUNTIME r e s p e c t i v e l y . I f not , s e e
<http ://www. gnu . org / l i c e n s e s />

LibQuadmath
======

16 CHAPTER 1. GENERAL INFORMATION

GCC Quad−Pre c i s i on Math Library
Copyright (C) 2010 , 2011 Free Software Foundation , Inc .
Written by Francois−Xavier Coudert <fxcoudert@gcc . gnu . org>
This f i l e i s part o f the libquadmath l i b r a r y .
Libquadmath i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Library General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 o f the License , or (at your opt ion) any l a t e r v e r s i on .
Libquadmath i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Publ ic L i cense f o r more d e t a i l s .
You should have r e c e i v ed a copy o f the GNU Library General Publ ic
L i cense along with libquadmath ; s ee the f i l e COPYING. LIB . I f
not , wr i t e to the Free Software Foundation , Inc . , 51 Frankl in S t r e e t − Fi f th

Floor ,
Boston , MA 02110−1301 , USA.

Libwinpthread
======
Copyright (c) 2011 mingw−w64 p r o j e c t

Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a
copy o f t h i s so f tware and a s s o c i a t ed documentation f i l e s (the " Software ") ,
to dea l in the Software without r e s t r i c t i o n , i n c l ud ing without l im i t a t i o n
the r i g h t s to use , copy , modify , merge , publ i sh , d i s t r i bu t e , sub l i c en s e ,
and/ or s e l l c op i e s o f the Software , and to permit persons to whom the
Software i s f u rn i shed to do so , sub j e c t to the f o l l ow i ng cond i t i on s :

The above copyr ight no t i c e and t h i s permis s ion no t i c e s h a l l be inc luded in
a l l c op i e s or s ub s t an t i a l po r t i on s o f the Software .

THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

/∗
∗ Parts o f t h i s l i b r a r y are der ived by :
∗
∗ Posix Threads l i b r a r y f o r Mic roso f t Windows
∗
∗ Use at own r i sk , the re i s no impl i ed warranty to t h i s code .
∗ I t uses undocumented f e a t u r e s o f Mic roso f t Windows that can change
∗ at any time in the fu tu r e .
∗
∗ (C) 2010 Lock l e s s Inc .
∗ Al l r i g h t s r e s e rved .
∗
∗ Red i s t r i bu t i on and use in source and binary forms , with or without

mod i f i ca t i on ,
∗ are permitted provided that the f o l l ow i ng cond i t i on s are met :
∗
∗

17

∗ ∗ Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not i ce ,
∗ t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r .
∗ ∗ Red i s t r i bu t i on s in binary form must reproduce the above copyr ight not i ce ,
∗ t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r in the documentation
∗ and/or other mat e r i a l s provided with the d i s t r i b u t i o n .
∗ ∗ Neither the name o f Lock l e s s Inc . nor the names o f i t s c on t r i bu t o r s may be
∗ used to endorse or promote products der ived from th i s so f tware without
∗ s p e c i f i c p r i o r wr i t t en permis s ion .
∗
∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AN
∗ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
∗ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED.
∗ IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT,
∗ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING

,
∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,
∗ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF
∗ LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING

NEGLIGENCE
∗ OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED
∗ OF THE POSSIBILITY OF SUCH DAMAGE.
∗/

GNU LIBRARY GENERAL PUBLIC LICENSE Vers ion 2
======

GNU LIBRARY GENERAL PUBLIC LICENSE
Vers ion 2 , June 1991

Copyright (C) 1991 Free Software Foundation , Inc .
51 Frankl in Street , F i f th Floor , Boston , MA 02110−1301 USA
Everyone i s permitted to copy and d i s t r i b u t e verbatim cop i e s
o f t h i s l i c e n s e document , but changing i t i s not a l lowed .

[This i s the f i r s t r e l e a s e d ve r s i on o f the l i b r a r y GPL. I t i s
numbered 2 because i t goes with ve r s i on 2 o f the ord inary GPL .]

Preamble

The l i c e n s e s f o r most so f tware are des igned to take away your
freedom to share and change i t . By contras t , the GNU General Publ ic
L i c en s e s are intended to guarantee your freedom to share and change
f r e e so ftware−−to make sure the so f tware i s f r e e f o r a l l i t s u s e r s .

This l i c e n s e , the Library General Publ ic License , a pp l i e s to some
s p e c i a l l y des ignated Free Software Foundation software , and to any
other l i b r a r i e s whose authors dec ide to use i t . You can use i t f o r
your l i b r a r i e s , too .

When we speak o f f r e e so f tware , we are r e f e r r i n g to freedom , not
p r i c e . Our General Publ ic L i c en s e s are des igned to make sure that you
have the freedom to d i s t r i b u t e cop i e s o f f r e e so f tware (and charge f o r
t h i s s e r v i c e i f you wish) , that you r e c e i v e source code or can get i t

18 CHAPTER 1. GENERAL INFORMATION

i f you want i t , that you can change the so f tware or use p i e c e s o f i t
in new f r e e programs ; and that you know you can do these th ing s .

To pro t e c t your r i gh t s , we need to make r e s t r i c t i o n s that f o rb i d
anyone to deny you these r i g h t s or to ask you to sur render the r i g h t s .
These r e s t r i c t i o n s t r a n s l a t e to c e r t a i n r e s p o n s i b i l i t i e s f o r you i f
you d i s t r i b u t e cop i e s o f the l i b r a ry , or i f you modify i t .

For example , i f you d i s t r i b u t e cop i e s o f the l i b r a ry , whether g r a t i s
or f o r a fee , you must g ive the r e c i p i e n t s a l l the r i g h t s that we gave
you . You must make sure that they , too , r e c e i v e or can get the source
code . I f you l i n k a program with the l i b r a ry , you must prov ide
complete ob j e c t f i l e s to the r e c i p i e n t s so that they can r e l i n k them
with the l i b r a ry , a f t e r making changes to the l i b r a r y and recompi l ing
i t . And you must show them these terms so they know th e i r r i g h t s .

Our method o f p r o t e c t i ng your r i g h t s has two s t ep s : (1) copyr ight
the l i b r a ry , and (2) o f f e r you t h i s l i c e n s e which g i v e s you l e g a l
permis s ion to copy , d i s t r i b u t e and/ or modify the l i b r a r y .

Also , f o r each d i s t r i bu t o r ' s p ro tec t i on , we want to make c e r t a i n
that everyone understands that the re i s no warranty f o r t h i s f r e e
l i b r a r y . I f the l i b r a r y i s modi f i ed by someone e l s e and passed on , we
want i t s r e c i p i e n t s to know that what they have i s not the o r i g i n a l
ver s ion , so that any problems introduced by othe r s w i l l not r e f l e c t on
the o r i g i n a l authors ' r epu ta t i on s .

F ina l ly , any f r e e program i s threatened cons tant ly by so f tware
patents . We wish to avoid the danger that companies d i s t r i b u t i n g f r e e
so f tware w i l l i n d i v i d u a l l y obta in patent l i c e n s e s , thus in e f f e c t
t rans forming the program in to p rop r i e t a ry so f tware . To prevent th i s ,
we have made i t c l e a r that any patent must be l i c e n s e d f o r everyone ' s
f r e e use or not l i c e n s e d at a l l .

Most GNU software , i n c l ud ing some l i b r a r i e s , i s covered by the ord inary
GNU General Publ ic License , which was des igned f o r u t i l i t y programs . This
l i c e n s e , the GNU Library General Publ ic License , a pp l i e s to c e r t a i n
des ignated l i b r a r i e s . This l i c e n s e i s qu i t e d i f f e r e n t from the ord inary
one ; be sure to read i t in f u l l , and don ' t assume that anything in i t i s
the same as in the ord inary l i c e n s e .

The reason we have a separa te pub l i c l i c e n s e f o r some l i b r a r i e s i s that
they b lur the d i s t i n c t i o n we usua l l y make between modifying or adding to a
program and simply us ing i t . Linking a program with a l i b r a ry , without
changing the l i b r a ry , i s in some sense s imply us ing the l i b r a ry , and i s
analogous to running a u t i l i t y program or app l i c a t i o n program . However , in
a t ex tua l and l e g a l sense , the l i nked executab l e i s a combined work , a
d e r i v a t i v e o f the o r i g i n a l l i b r a ry , and the ord inary General Publ ic L i cense
t r e a t s i t as such .

Because o f t h i s b lur red d i s t i n c t i o n , us ing the ord inary General
Publ ic L i cense f o r l i b r a r i e s did not e f f e c t i v e l y promote so f tware
shar ing , because most deve l ope r s did not use the l i b r a r i e s . We
concluded that weaker cond i t i on s might promote shar ing be t t e r .

However , un r e s t r i c t e d l i n k i n g o f non−f r e e programs would depr ive the
u s e r s o f those programs o f a l l b e n e f i t from the f r e e s t a tu s o f the
l i b r a r i e s themse lves . This Library General Publ ic L i cense i s intended to
permit deve l ope r s o f non−f r e e programs to use f r e e l i b r a r i e s , whi l e

19

pr e s e rv ing your freedom as a user o f such programs to change the f r e e
l i b r a r i e s that are incorpora ted in them . (We have not seen how to ach ieve
t h i s as regards changes in header f i l e s , but we have achieved i t as regards
changes in the ac tua l f unc t i on s o f the Library .) The hope i s that t h i s
w i l l l ead to f a s t e r development o f f r e e l i b r a r i e s .

The p r e c i s e terms and cond i t i on s f o r copying , d i s t r i b u t i o n and
mod i f i c a t i on f o l l ow . Pay c l o s e a t t en t i on to the d i f f e r e n c e between a
"work based on the l i b r a r y " and a "work that uses the l i b r a r y " . The
former conta in s code der ived from the l i b r a ry , whi l e the l a t t e r only
works toge the r with the l i b r a r y .

Note that i t i s p o s s i b l e f o r a l i b r a r y to be covered by the ord inary
General Publ ic L i cense ra the r than by t h i s s p e c i a l one .

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0 . This L i cense Agreement app l i e s to any so f tware l i b r a r y which
conta in s a no t i c e p laced by the copyr ight ho lder or other author i zed
party say ing i t may be d i s t r i b u t e d under the terms o f t h i s Library
General Publ ic L i cense (a l s o c a l l e d " t h i s L i cense ") . Each l i c e n s e e i s
addressed as "you " .

A " l i b r a r y " means a c o l l e c t i o n o f so f tware f unc t i on s and/ or data
prepared so as to be conven i ent ly l i nked with app l i c a t i o n programs
(which use some o f those f unc t i on s and data) to form execu tab l e s .

The "Library " , below , r e f e r s to any such so f tware l i b r a r y or work
which has been d i s t r i b u t e d under the se terms . A "work based on the
Library " means e i t h e r the Library or any d e r i v a t i v e work under
copyr ight law : that i s to say , a work conta in ing the Library or a
por t i on o f i t , e i t h e r verbatim or with mod i f i c a t i on s and/ or t r an s l a t ed
s t r a i gh t f o rwa rd l y in to another language . (Here ina f t e r , t r a n s l a t i o n i s
inc luded without l im i t a t i o n in the term "mod i f i c a t i on " .)

" Source code" f o r a work means the p r e f e r r e d form o f the work f o r
making mod i f i c a t i on s to i t . For a l i b r a ry , complete source code means
a l l the source code f o r a l l modules i t conta ins , p lus any a s s o c i a t ed
i n t e r f a c e d e f i n i t i o n f i l e s , p lus the s c r i p t s used to con t r o l compi la t ion
and i n s t a l l a t i o n o f the l i b r a r y .

A c t i v i t i e s other than copying , d i s t r i b u t i o n and mod i f i c a t i on are not
covered by t h i s L i cense ; they are ou t s id e i t s scope . The act o f
running a program us ing the Library i s not r e s t r i c t e d , and output from
such a program i s covered only i f i t s content s c on s t i t u t e a work based
on the Library (independent o f the use o f the Library in a t o o l f o r
wr i t i ng i t) . Whether that i s t rue depends on what the Library does
and what the program that uses the Library does .

1 . You may copy and d i s t r i b u t e verbatim cop i e s o f the Library ' s
complete source code as you r e c e i v e i t , in any medium , provided that
you consp i cuous ly and approp r i a t e l y pub l i sh on each copy an
appropr ia te copyr ight no t i c e and d i s c l a ime r o f warranty ; keep i n t a c t
a l l the no t i c e s that r e f e r to t h i s L i cense and to the absence o f any
warranty ; and d i s t r i b u t e a copy o f t h i s L i cense along with the
Library .

20 CHAPTER 1. GENERAL INFORMATION

You may charge a f e e f o r the phy s i c a l act o f t r a n s f e r r i n g a copy ,
and you may at your opt ion o f f e r warranty p ro t e c t i on in exchange f o r a
f e e .

2 . You may modify your copy or cop i e s o f the Library or any por t i on
o f i t , thus forming a work based on the Library , and copy and
d i s t r i b u t e such mod i f i c a t i on s or work under the terms o f Sec t i on 1
above , provided that you a l s o meet a l l o f the se c ond i t i on s :

a) The modi f i ed work must i t s e l f be a so f tware l i b r a r y .

b) You must cause the f i l e s modi f i ed to car ry prominent no t i c e s
s t a t i n g that you changed the f i l e s and the date o f any change .

c) You must cause the whole o f the work to be l i c e n s e d at no
charge to a l l t h i rd p a r t i e s under the terms o f t h i s L i cense .

d) I f a f a c i l i t y in the modi f i ed Library r e f e r s to a func t i on or a
tab l e o f data to be supp l i ed by an app l i c a t i o n program that uses
the f a c i l i t y , other than as an argument passed when the f a c i l i t y
i s invoked , then you must make a good f a i t h e f f o r t to ensure that ,
in the event an app l i c a t i o n does not supply such func t i on or
tab le , the f a c i l i t y s t i l l operates , and performs whatever part o f
i t s purpose remains meaningful .

(For example , a func t i on in a l i b r a r y to compute square roo t s has
a purpose that i s e n t i r e l y wel l−de f ined independent o f the
app l i c a t i o n . Therefore , Subsect ion 2d r e qu i r e s that any
app l i c a t i on−supp l i ed func t i on or t ab l e used by t h i s f unc t i on must
be op t i ona l : i f the app l i c a t i o n does not supply i t , the square
root func t i on must s t i l l compute square roo t s .)

These requ i rements apply to the modi f i ed work as a whole . I f
i d e n t i f i a b l e s e c t i o n s o f that work are not der ived from the Library ,
and can be reasonab ly cons ide r ed independent and separa te works in
themselves , then t h i s License , and i t s terms , do not apply to those
s e c t i o n s when you d i s t r i b u t e them as separa t e works . But when you
d i s t r i b u t e the same s e c t i o n s as part o f a whole which i s a work based
on the Library , the d i s t r i b u t i o n o f the whole must be on the terms o f
t h i s License , whose pe rmi s s i ons f o r other l i c e n s e e s extend to the
e n t i r e whole , and thus to each and every part r e g a r d l e s s o f who wrote
i t .

Thus , i t i s not the i n t en t o f t h i s s e c t i o n to c la im r i g h t s or cont e s t
your r i g h t s to work wr i t t en e n t i r e l y by you ; rather , the i n t en t i s to
e x e r c i s e the r i gh t to c on t r o l the d i s t r i b u t i o n o f d e r i v a t i v e or
c o l l e c t i v e works based on the Library .

In addit ion , mere aggregat ion o f another work not based on the Library
with the Library (or with a work based on the Library) on a volume o f
a s to rage or d i s t r i b u t i o n medium does not br ing the other work under
the scope o f t h i s L i cense .

3 . You may opt to apply the terms o f the ord inary GNU General Publ ic
L i cense in s t ead o f t h i s L i cense to a given copy o f the Library . To do
th i s , you must a l t e r a l l the no t i c e s that r e f e r to t h i s License , so
that they r e f e r to the ord inary GNU General Publ ic License , v e r s i on 2 ,
i n s t ead o f to t h i s L i cense . (I f a newer ve r s i on than ve r s i on 2 o f the
ord inary GNU General Publ ic L i cense has appeared , then you can s p e c i f y

21

that ve r s i on in s t ead i f you wish .) Do not make any other change in
these n o t i c e s .

Once t h i s change i s made in a given copy , i t i s i r r e v e r s i b l e f o r
that copy , so the ord inary GNU General Publ ic L i cense app l i e s to a l l
subsequent cop i e s and d e r i v a t i v e works made from that copy .

This opt ion i s u s e f u l when you wish to copy part o f the code o f
the Library in to a program that i s not a l i b r a r y .

4 . You may copy and d i s t r i b u t e the Library (or a por t i on or
d e r i v a t i v e o f i t , under Sec t i on 2) in ob j e c t code or executab l e form
under the terms o f Se c t i on s 1 and 2 above provided that you accompany
i t with the complete cor re spond ing machine−r eadab le source code , which
must be d i s t r i b u t e d under the terms o f Se c t i on s 1 and 2 above on a
medium customar i ly used f o r so f tware in te r change .

I f d i s t r i b u t i o n o f ob j e c t code i s made by o f f e r i n g a c c e s s to copy
from a des ignated place , then o f f e r i n g equ iva l en t a c c e s s to copy the
source code from the same p lace s a t i s f i e s the requirement to
d i s t r i b u t e the source code , even though th i rd p a r t i e s are not
compel led to copy the source along with the ob j e c t code .

5 . A program that conta in s no d e r i v a t i v e o f any por t i on o f the
Library , but i s des igned to work with the Library by being compiled or
l i nked with i t , i s c a l l e d a "work that uses the Library " . Such a
work , in i s o l a t i o n , i s not a d e r i v a t i v e work o f the Library , and
t h e r e f o r e f a l l s ou t s i d e the scope o f t h i s L i cense .

However , l i n k i n g a "work that uses the Library " with the Library
c r e a t e s an executab l e that i s a d e r i v a t i v e o f the Library (because i t
conta in s po r t i on s o f the Library) , r a the r than a "work that uses the
l i b r a r y " . The executab l e i s t h e r e f o r e covered by t h i s L i cense .
Sec t i on 6 s t a t e s terms f o r d i s t r i b u t i o n o f such execu tab l e s .

When a "work that uses the Library " uses mate r i a l from a header f i l e
that i s part o f the Library , the ob j e c t code f o r the work may be a
d e r i v a t i v e work o f the Library even though the source code i s not .
Whether t h i s i s t rue i s e s p e c i a l l y s i g n i f i c a n t i f the work can be
l i nked without the Library , or i f the work i s i t s e l f a l i b r a r y . The
thr e sho ld f o r t h i s to be t rue i s not p r e c i s e l y de f ined by law .

I f such an ob j e c t f i l e uses only numerica l parameters , data
s t r u c tu r e l ayout s and acce s so r s , and smal l macros and smal l i n l i n e
f unc t i on s (ten l i n e s or l e s s in l ength) , then the use o f the ob j e c t
f i l e i s un r e s t r i c t ed , r e g a r d l e s s o f whether i t i s l e g a l l y a d e r i v a t i v e
work . (Executables conta in ing t h i s ob j e c t code p lus po r t i on s o f the
Library w i l l s t i l l f a l l under Sec t i on 6 .)

Otherwise , i f the work i s a d e r i v a t i v e o f the Library , you may
d i s t r i b u t e the ob j e c t code f o r the work under the terms o f Sec t i on 6 .
Any execu tab l e s conta in ing that work a l s o f a l l under Sec t i on 6 ,
whether or not they are l i nked d i r e c t l y with the Library i t s e l f .

6 . As an except ion to the Sec t i on s above , you may a l s o compi le or
l i n k a "work that uses the Library " with the Library to produce a
work conta in ing po r t i on s o f the Library , and d i s t r i b u t e that work
under terms o f your cho ice , provided that the terms permit
mod i f i c a t i on o f the work f o r the customer ' s own use and r ev e r s e

22 CHAPTER 1. GENERAL INFORMATION

eng ine e r i ng f o r debugging such mod i f i c a t i on s .

You must g ive prominent no t i c e with each copy o f the work that the
Library i s used in i t and that the Library and i t s use are covered by
t h i s L i cense . You must supply a copy o f t h i s L i cense . I f the work
during execut ion d i s p l a y s copyr ight not i c e s , you must in c lude the
copyr ight no t i c e f o r the Library among them , as we l l as a r e f e r e n c e
d i r e c t i n g the user to the copy o f t h i s L i cense . Also , you must do one
o f these th ing s :

a) Accompany the work with the complete corre spond ing
machine−r eadab le source code f o r the Library in c l ud ing whatever
changes were used in the work (which must be d i s t r i b u t e d under
Sec t i on s 1 and 2 above) ; and , i f the work i s an executab l e l i nked
with the Library , with the complete machine−r eadab le "work that
uses the Library " , as ob j e c t code and/ or source code , so that the
user can modify the Library and then r e l i n k to produce a modi f i ed
executab l e conta in ing the modi f i ed Library . (I t i s understood
that the user who changes the contents o f d e f i n i t i o n s f i l e s in the
Library w i l l not n e c e s s a r i l y be ab le to recompi l e the app l i c a t i o n
to use the modi f i ed d e f i n i t i o n s .)

b) Accompany the work with a wr i t t en o f f e r , v a l i d f o r at
l e a s t three years , to g ive the same user the mat e r i a l s
s p e c i f i e d in Subsect ion 6a , above , f o r a charge no more
than the co s t o f per forming t h i s d i s t r i b u t i o n .

c) I f d i s t r i b u t i o n o f the work i s made by o f f e r i n g a c c e s s to copy
from a des ignated place , o f f e r equ iva l en t a c c e s s to copy the above
s p e c i f i e d mat e r i a l s from the same p lace .

d) Ver i fy that the user has a l r eady r e c e i v ed a copy o f these
mat e r i a l s or that you have a l r eady sent t h i s user a copy .

For an executable , the r equ i r ed form o f the "work that uses the
Library " must in c lude any data and u t i l i t y programs needed f o r
reproduc ing the executab l e from i t . However , as a s p e c i a l except ion ,
the source code d i s t r i b u t e d need not in c lude anything that i s normally
d i s t r i b u t e d (in e i t h e r source or binary form) with the major
components (compiler , kerne l , and so on) o f the opera t ing system on
which the executab l e runs , un l e s s that component i t s e l f accompanies
the executab l e .

I t may happen that t h i s requirement c on t r ad i c t s the l i c e n s e
r e s t r i c t i o n s o f other p rop r i e t a ry l i b r a r i e s that do not normally
accompany the opera t ing system . Such a con t r ad i c t i on means you cannot
use both them and the Library toge the r in an executab l e that you
d i s t r i b u t e .

7 . You may p lace l i b r a r y f a c i l i t i e s that are a work based on the
Library s ide−by−s i d e in a s i n g l e l i b r a r y toge the r with other l i b r a r y
f a c i l i t i e s not covered by t h i s License , and d i s t r i b u t e such a combined
l i b r a ry , provided that the s epara te d i s t r i b u t i o n o f the work based on
the Library and o f the other l i b r a r y f a c i l i t i e s i s o therw i se
permitted , and provided that you do these two th ings :

a) Accompany the combined l i b r a r y with a copy o f the same work
based on the Library , uncombined with any other l i b r a r y
f a c i l i t i e s . This must be d i s t r i b u t e d under the terms o f the

23

Sec t i on s above .

b) Give prominent no t i c e with the combined l i b r a r y o f the f a c t
that part o f i t i s a work based on the Library , and exp l a i n i ng
where to f i nd the accompanying uncombined form o f the same work .

8 . You may not copy , modify , sub l i c en s e , l i n k with , or d i s t r i b u t e
the Library except as exp r e s s l y provided under t h i s L i cense . Any
attempt otherwi se to copy , modify , sub l i c en s e , l i n k with , or
d i s t r i b u t e the Library i s void , and w i l l au tomat i ca l l y terminate your
r i g h t s under t h i s L i cense . However , p a r t i e s who have r e c e i v ed cop ie s ,
or r i gh t s , from you under t h i s L i cense w i l l not have t h e i r l i c e n s e s
terminated so long as such p a r t i e s remain in f u l l compliance .

9 . You are not r equ i r ed to accept t h i s License , s i n c e you have not
s igned i t . However , nothing e l s e grants you permis s ion to modify or
d i s t r i b u t e the Library or i t s d e r i v a t i v e works . These a c t i on s are
p roh ib i t ed by law i f you do not accept t h i s L i cense . Therefore , by
modifying or d i s t r i b u t i n g the Library (or any work based on the
Library) , you i nd i c a t e your acceptance o f t h i s L i cense to do so , and
a l l i t s terms and cond i t i on s f o r copying , d i s t r i b u t i n g or modifying
the Library or works based on i t .

10 . Each time you r e d i s t r i b u t e the Library (or any work based on the
Library) , the r e c i p i e n t automat i ca l l y r e c e i v e s a l i c e n s e from the
o r i g i n a l l i c e n s o r to copy , d i s t r i bu t e , l i n k with or modify the Library
sub j e c t to these terms and cond i t i on s . You may not impose any fu r t h e r
r e s t r i c t i o n s on the r e c i p i e n t s ' e x e r c i s e o f the r i g h t s granted he r e in .
You are not r e s p on s i b l e f o r en f o r c i ng compliance by th i rd p a r t i e s to
t h i s L i cense .

11 . I f , as a consequence o f a court judgment or a l l e g a t i o n o f patent
in f r ingement or f o r any other reason (not l im i t ed to patent i s s u e s) ,
c ond i t i on s are imposed on you (whether by court order , agreement or
otherwi se) that con t r ad i c t the cond i t i on s o f t h i s License , they do not
excuse you from the cond i t i on s o f t h i s L i cense . I f you cannot
d i s t r i b u t e so as to s a t i s f y s imu l taneous ly your o b l i g a t i o n s under t h i s
L i cense and any other pe r t i n en t ob l i g a t i on s , then as a consequence you
may not d i s t r i b u t e the Library at a l l . For example , i f a patent
l i c e n s e would not permit roya l ty−f r e e r e d i s t r i b u t i o n o f the Library by
a l l those who r e c e i v e cop i e s d i r e c t l y or i n d i r e c t l y through you , then
the only way you could s a t i s f y both i t and t h i s L i cense would be to
r e f r a i n e n t i r e l y from d i s t r i b u t i o n o f the Library .

I f any por t i on o f t h i s s e c t i o n i s he ld i n v a l i d or unen fo rceab l e under any
p a r t i c u l a r c ircumstance , the balance o f the s e c t i o n i s intended to apply ,
and the s e c t i o n as a whole i s intended to apply in other c i r cumstances .

I t i s not the purpose o f t h i s s e c t i o n to induce you to i n f r i n g e any
patents or other property r i g h t c la ims or to cont e s t v a l i d i t y o f any
such c la ims ; t h i s s e c t i o n has the s o l e purpose o f p r o t e c t i ng the
i n t e g r i t y o f the f r e e so f tware d i s t r i b u t i o n system which i s
implemented by pub l i c l i c e n s e p r a c t i c e s . Many people have made
generous c on t r i bu t i on s to the wide range o f so f tware d i s t r i b u t e d
through that system in r e l i a n c e on c on s i s t e n t app l i c a t i o n o f that
system ; i t i s up to the author /donor to dec ide i f he or she i s w i l l i n g
to d i s t r i b u t e so f tware through any other system and a l i c e n s e e cannot
impose that cho i c e .

24 CHAPTER 1. GENERAL INFORMATION

This s e c t i o n i s intended to make thoroughly c l e a r what i s b e l i e v ed to
be a consequence o f the r e s t o f t h i s L i cense .

12 . I f the d i s t r i b u t i o n and/or use o f the Library i s r e s t r i c t e d in
c e r t a i n c oun t r i e s e i t h e r by patents or by copyr ighted i n t e r f a c e s , the
o r i g i n a l copyr ight ho lder who p l a c e s the Library under t h i s L i cense may add
an e x p l i c i t g eog raph i ca l d i s t r i b u t i o n l im i t a t i o n exc lud ing those count r i e s ,
so that d i s t r i b u t i o n i s permitted only in or among coun t r i e s not thus
excluded . In such case , t h i s L i cense i n c o rpo r a t e s the l im i t a t i o n as i f
wr i t t en in the body o f t h i s L i cense .

13 . The Free Software Foundation may pub l i sh r e v i s ed and/ or new
ve r s i on s o f the Library General Publ ic L i cense from time to time .
Such new ve r s i on s w i l l be s im i l a r in s p i r i t to the pre sent vers ion ,
but may d i f f e r in d e t a i l to address new problems or concerns .

Each ve r s i on i s g iven a d i s t i n g u i s h i n g ve r s i on number . I f the Library
s p e c i f i e s a ve r s i on number o f t h i s L i cense which app l i e s to i t and
"any l a t e r v e r s i on " , you have the opt ion o f f o l l ow i ng the terms and
cond i t i on s e i t h e r o f that ve r s i on or o f any l a t e r v e r s i on publ i shed by
the Free Software Foundation . I f the Library does not s p e c i f y a
l i c e n s e ve r s i on number , you may choose any ve r s i on ever pub l i shed by
the Free Software Foundation .

14 . I f you wish to in co rpo ra t e par t s o f the Library in to other f r e e
programs whose d i s t r i b u t i o n cond i t i on s are incompat ib le with these ,
wr i t e to the author to ask f o r permis s ion . For so f tware which i s
copyr ighted by the Free Software Foundation , wr i t e to the Free
Software Foundation ; we sometimes make except i ons f o r t h i s . Our
d e c i s i o n w i l l be guided by the two goa l s o f p r e s e rv ing the f r e e s t a tu s
o f a l l d e r i v a t i v e s o f our f r e e so f tware and o f promoting the shar ing
and reuse o f so f tware g en e r a l l y .

NO WARRANTY

15 . BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16 . IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHOMAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE) , EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New L i b r a r i e s

25

I f you develop a new l i b r a ry , and you want i t to be o f the g r e a t e s t
p o s s i b l e use to the publ ic , we recommend making i t f r e e so f tware that
everyone can r e d i s t r i b u t e and change . You can do so by permit t ing
r e d i s t r i b u t i o n under the se terms (or , a l t e r n a t i v e l y , under the terms o f the
ord inary General Publ ic L i cense) .

To apply these terms , attach the f o l l ow i ng no t i c e s to the l i b r a r y . I t i s
s a f e s t to attach them to the s t a r t o f each source f i l e to most e f f e c t i v e l y
convey the ex c l u s i on o f warranty ; and each f i l e should have at l e a s t the
" copyr ight " l i n e and a po in t e r to where the f u l l n o t i c e i s found .

<one l i n e to g ive the l i b r a ry ' s name and a b r i e f idea o f what i t does .>
Copyright (C) <year> <name o f author>

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Library General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 o f the License , or (at your opt ion) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be us e fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Library General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 51 Frankl in Street , F i f th Floor , Boston , MA 02110−1301

USA

Also add in fo rmat ion on how to contact you by e l e c t r o n i c and paper mail .

You should a l s o get your employer (i f you work as a programmer) or your
school , i f any , to s i gn a " copyr ight d i s c l a ime r " f o r the l i b r a ry , i f
nece s sa ry . Here i s a sample ; a l t e r the names :

Yoyodyne , Inc . , hereby d i s c l a ims a l l copyr ight i n t e r e s t in the
l i b r a r y ` Frob ' (a l i b r a r y f o r tweaking knobs) wr i t t en by James Random Hacker .

<s i gna tu r e o f Ty Coon>, 1 Apr i l 1990
Ty Coon , Pres ident o f Vice

That ' s a l l the re i s to i t !

GNU GENERAL PUBLIC LICENSE Vers ion 3
======

GNU GENERAL PUBLIC LICENSE
Vers ion 3 , 29 June 2007

Copyright (C) 2007 Free Software Foundation , Inc . <http :// f s f . org/>
Everyone i s permitted to copy and d i s t r i b u t e verbatim cop i e s
o f t h i s l i c e n s e document , but changing i t i s not a l lowed .

Preamble

The GNU General Publ ic L i cense i s a f r e e , c opy l e f t l i c e n s e f o r
so f tware and other k inds o f works .

26 CHAPTER 1. GENERAL INFORMATION

The l i c e n s e s f o r most so f tware and other p r a c t i c a l works are des igned
to take away your freedom to share and change the works . By contras t ,
the GNU General Publ ic L i cense i s intended to guarantee your freedom to
share and change a l l v e r s i on s o f a program−−to make sure i t remains f r e e
so f tware f o r a l l i t s u s e r s . We, the Free Software Foundation , use the
GNU General Publ ic L i cense f o r most o f our so f tware ; i t a pp l i e s a l s o to
any other work r e l e a s e d t h i s way by i t s authors . You can apply i t to
your programs , too .

When we speak o f f r e e so f tware , we are r e f e r r i n g to freedom , not
p r i c e . Our General Publ ic L i c en s e s are des igned to make sure that you
have the freedom to d i s t r i b u t e cop i e s o f f r e e so f tware (and charge f o r
them i f you wish) , that you r e c e i v e source code or can get i t i f you
want i t , that you can change the so f tware or use p i e c e s o f i t in new
f r e e programs , and that you know you can do these th ing s .

To pro t e c t your r i gh t s , we need to prevent o the r s from denying you
these r i g h t s or ask ing you to sur render the r i g h t s . Therefore , you have
c e r t a i n r e s p o n s i b i l i t i e s i f you d i s t r i b u t e cop i e s o f the sof tware , or i f
you modify i t : r e s p o n s i b i l i t i e s to r e sp e c t the freedom of o the r s .

For example , i f you d i s t r i b u t e cop i e s o f such a program , whether
g r a t i s or f o r a fee , you must pass on to the r e c i p i e n t s the same
freedoms that you r e c e i v ed . You must make sure that they , too , r e c e i v e
or can get the source code . And you must show them these terms so they
know th e i r r i g h t s .

Deve lopers that use the GNU GPL pro t e c t your r i g h t s with two s t ep s :
(1) a s s e r t copyr ight on the software , and (2) o f f e r you t h i s L i cense
g i v ing you l e g a l permis s ion to copy , d i s t r i b u t e and/or modify i t .

For the deve lopers ' and authors ' p ro tec t i on , the GPL c l e a r l y exp l a i n s
that the re i s no warranty f o r t h i s f r e e so f tware . For both users ' and
authors ' sake , the GPL r e qu i r e s that modi f i ed v e r s i on s be marked as
changed , so that t h e i r problems w i l l not be a t t r i bu t ed e r roneous l y to
authors o f prev ious v e r s i on s .

Some dev i c e s are des igned to deny use r s a c c e s s to i n s t a l l or run
modi f i ed v e r s i on s o f the so f tware i n s i d e them , although the manufacturer
can do so . This i s fundamental ly incompat ib le with the aim o f
p ro t e c t i ng users ' freedom to change the so f tware . The sys temat i c
pattern o f such abuse occurs in the area o f products f o r i n d i v i d u a l s to
use , which i s p r e c i s e l y where i t i s most unacceptable . Therefore , we
have des igned t h i s v e r s i on o f the GPL to p roh i b i t the p r a c t i c e f o r those
products . I f such problems a r i s e s u b s t a n t i a l l y in other domains , we
stand ready to extend t h i s p r ov i s i on to those domains in fu tu r e v e r s i on s
o f the GPL, as needed to pro t e c t the freedom of u s e r s .

F ina l ly , every program i s threatened cons tant ly by so f tware patents .
S ta t e s should not a l low patents to r e s t r i c t development and use o f
so f tware on genera l−purpose computers , but in those that do , we wish to
avoid the s p e c i a l danger that patents app l i ed to a f r e e program could
make i t e f f e c t i v e l y p rop r i e t a ry . To prevent th i s , the GPL as su r e s that
patents cannot be used to render the program non−f r e e .

The p r e c i s e terms and cond i t i on s f o r copying , d i s t r i b u t i o n and
mod i f i c a t i on f o l l ow .

TERMS AND CONDITIONS

27

0 . D e f i n i t i o n s .

"This L i cense " r e f e r s to ve r s i on 3 o f the GNU General Publ ic L i cense .

"Copyright " a l s o means copyr ight− l i k e laws that apply to other k inds o f
works , such as semiconductor masks .

"The Program" r e f e r s to any copyr i gh tab l e work l i c e n s e d under t h i s
L i cense . Each l i c e n s e e i s addressed as "you " . " L i c en s e e s " and
" r e c i p i e n t s " may be i nd i v i d u a l s or o r gan i z a t i on s .

To "modify" a work means to copy from or adapt a l l or part o f the work
in a f a sh i on r e qu i r i n g copyr ight permiss ion , other than the making o f an
exact copy . The r e s u l t i n g work i s c a l l e d a "modi f i ed ve r s i on " o f the
e a r l i e r work or a work "based on" the e a r l i e r work .

A " covered work" means e i t h e r the unmodif ied Program or a work based
on the Program .

To "propagate " a work means to do anything with i t that , without
permiss ion , would make you d i r e c t l y or s e c onda r i l y l i a b l e f o r
in f r ingement under app l i c ab l e copyr ight law , except execut ing i t on a
computer or modifying a p r i va t e copy . Propagation i n c l ud e s copying ,
d i s t r i b u t i o n (with or without mod i f i c a t i on) , making a v a i l a b l e to the
publ ic , and in some coun t r i e s other a c t i v i t i e s as we l l .

To "convey" a work means any kind o f propagat ion that enab l e s other
p a r t i e s to make or r e c e i v e cop i e s . Mere i n t e r a c t i o n with a user through
a computer network , with no t r a n s f e r o f a copy , i s not conveying .

An i n t e r a c t i v e user i n t e r f a c e d i s p l a y s "Appropriate Legal Not i ce s "
to the extent that i t i n c l ud e s a convenient and prominently v i s i b l e
f e a t u r e that (1) d i s p l a y s an appropr ia te copyr ight not i ce , and (2)
t e l l s the user that the re i s no warranty f o r the work (except to the
extent that war rant i e s are provided) , that l i c e n s e e s may convey the
work under t h i s License , and how to view a copy o f t h i s L i cense . I f
the i n t e r f a c e p r e s en t s a l i s t o f user commands or opt ions , such as a
menu , a prominent item in the l i s t meets t h i s c r i t e r i o n .

1 . Source Code .

The " source code" f o r a work means the p r e f e r r e d form o f the work
f o r making mod i f i c a t i on s to i t . "Object code" means any non−source
form o f a work .

A "Standard I n t e r f a c e " means an i n t e r f a c e that e i t h e r i s an o f f i c i a l
standard de f ined by a recogn i z ed standards body , or , in the case o f
i n t e r f a c e s s p e c i f i e d f o r a p a r t i c u l a r programming language , one that
i s wide ly used among deve l ope r s working in that language .

The "System L i b r a r i e s " o f an executab l e work inc lude anything , other
than the work as a whole , that (a) i s inc luded in the normal form o f
packaging a Major Component , but which i s not part o f that Major
Component , and (b) s e r v e s only to enable use o f the work with that
Major Component , or to implement a Standard I n t e r f a c e f o r which an
implementation i s a v a i l a b l e to the pub l i c in source code form . A
"Major Component" , in t h i s context , means a major e s s e n t i a l component
(kerne l , window system , and so on) o f the s p e c i f i c opera t ing system

28 CHAPTER 1. GENERAL INFORMATION

(i f any) on which the executab l e work runs , or a compi ler used to
produce the work , or an ob j e c t code i n t e r p r e t e r used to run i t .

The "Corresponding Source " f o r a work in ob j e c t code form means a l l
the source code needed to generate , i n s t a l l , and (f o r an executab l e
work) run the ob j e c t code and to modify the work , i n c l ud ing s c r i p t s to
c on t r o l those a c t i v i t i e s . However , i t does not in c lude the work ' s
System L ib ra r i e s , or genera l−purpose t o o l s or g en e r a l l y a v a i l a b l e f r e e
programs which are used unmodif ied in per forming those a c t i v i t i e s but
which are not part o f the work . For example , Corresponding Source
i n c l ud e s i n t e r f a c e d e f i n i t i o n f i l e s a s s o c i a t ed with source f i l e s f o r
the work , and the source code f o r shared l i b r a r i e s and dynamical ly
l i nked subprograms that the work i s s p e c i f i c a l l y des igned to requ i r e ,
such as by int imate data communication or c on t r o l f low between those
subprograms and other par t s o f the work .

The Corresponding Source need not in c lude anything that u s e r s
can r egene ra t e automat i ca l l y from other par t s o f the Corresponding
Source .

The Corresponding Source f o r a work in source code form i s that
same work .

2 . Bas ic Permiss ions .

Al l r i g h t s granted under t h i s L i cense are granted f o r the term o f
copyr ight on the Program , and are i r r e v o c ab l e provided the s ta t ed
cond i t i on s are met . This L i cense e x p l i c i t l y a f f i rm s your un l imited
permis s ion to run the unmodif ied Program . The output from running a
covered work i s covered by t h i s L i cense only i f the output , g iven i t s
content , c o n s t i t u t e s a covered work . This L i cense acknowledges your
r i g h t s o f f a i r use or other equ iva l ent , as provided by copyr ight law .

You may make , run and propagate covered works that you do not
convey , without cond i t i on s so long as your l i c e n s e otherwi se remains
in f o r c e . You may convey covered works to o the r s f o r the s o l e purpose
o f having them make mod i f i c a t i on s e x c l u s i v e l y f o r you , or prov ide you
with f a c i l i t i e s f o r running those works , provided that you comply with
the terms o f t h i s L i cense in conveying a l l mate r i a l f o r which you do
not c on t r o l copyr ight . Those thus making or running the covered works
f o r you must do so e x c l u s i v e l y on your beha l f , under your d i r e c t i o n
and contro l , on terms that p r oh i b i t them from making any cop i e s o f
your copyr ighted mate r i a l ou t s i d e t h e i r r e l a t i o n s h i p with you .

Conveying under any other c i r cumstances i s permitted s o l e l y under
the cond i t i on s s ta t ed below . Sub l i c en s i ng i s not a l lowed ; s e c t i o n 10
makes i t unnecessary .

3 . Protec t ing Users ' Legal Rights From Anti−Circumvention Law .

No covered work s h a l l be deemed part o f an e f f e c t i v e t e c hno l o g i c a l
measure under any app l i c ab l e law f u l f i l l i n g o b l i g a t i o n s under a r t i c l e
11 o f the WIPO copyr ight t r ea ty adopted on 20 December 1996 , or
s im i l a r laws p r oh i b i t i n g or r e s t r i c t i n g c i rcumvent ion o f such
measures .

When you convey a covered work , you waive any l e g a l power to f o rb i d
c i rcumvent ion o f t e c hno l o g i c a l measures to the extent such c ircumvent ion
i s e f f e c t e d by e x e r c i s i n g r i g h t s under t h i s L i cense with r e sp e c t to

29

the covered work , and you d i s c l a im any i n t en t i on to l im i t operat i on or
mod i f i c a t i on o f the work as a means o f en fo rc ing , aga in s t the work ' s
users , your or th i rd pa r t i e s ' l e g a l r i g h t s to f o rb i d c i rcumvent ion o f
t e c hno l o g i c a l measures .

4 . Conveying Verbatim Copies .

You may convey verbatim cop i e s o f the Program ' s source code as you
r e c e i v e i t , in any medium , provided that you consp i cuous ly and
approp r i a t e l y pub l i sh on each copy an appropr ia te copyr ight no t i c e ;
keep i n t a c t a l l n o t i c e s s t a t i n g that t h i s L i cense and any
non−permi s s i v e terms added in accord with s e c t i o n 7 apply to the code ;
keep i n t a c t a l l n o t i c e s o f the absence o f any warranty ; and g ive a l l
r e c i p i e n t s a copy o f t h i s L i cense along with the Program .

You may charge any p r i c e or no p r i c e f o r each copy that you convey ,
and you may o f f e r support or warranty p ro t e c t i on f o r a f e e .

5 . Conveying Modif ied Source Vers ions .

You may convey a work based on the Program , or the mod i f i c a t i on s to
produce i t from the Program , in the form o f source code under the
terms o f s e c t i o n 4 , provided that you a l s o meet a l l o f the se c ond i t i on s :

a) The work must car ry prominent no t i c e s s t a t i n g that you modi f i ed
i t , and g iv ing a r e l e van t date .

b) The work must car ry prominent no t i c e s s t a t i n g that i t i s
r e l e a s e d under t h i s L i cense and any cond i t i on s added under s e c t i o n
7 . This requirement mod i f i e s the requirement in s e c t i o n 4 to
"keep i n t a c t a l l n o t i c e s " .

c) You must l i c e n s e the e n t i r e work , as a whole , under t h i s
L i cense to anyone who comes in to po s s e s s i on o f a copy . This
L icense w i l l t h e r e f o r e apply , a long with any app l i c ab l e s e c t i o n 7
add i t i ona l terms , to the whole o f the work , and a l l i t s parts ,
r e g a r d l e s s o f how they are packaged . This L i cense g i v e s no
permis s ion to l i c e n s e the work in any other way , but i t does not
i n v a l i d a t e such permis s ion i f you have s epa r a t e l y r e c e i v ed i t .

d) I f the work has i n t e r a c t i v e user i n t e r f a c e s , each must d i sp l ay
Appropriate Legal Not i ce s ; however , i f the Program has i n t e r a c t i v e
i n t e r f a c e s that do not d i sp l ay Appropriate Legal Not ices , your
work need not make them do so .

A compi la t ion o f a covered work with other s epara te and independent
works , which are not by t h e i r nature ex t en s i on s o f the covered work ,
and which are not combined with i t such as to form a l a r g e r program ,
in or on a volume o f a s to rage or d i s t r i b u t i o n medium , i s c a l l e d an
" aggregate " i f the compi la t ion and i t s r e s u l t i n g copyr ight are not
used to l im i t the a c c e s s or l e g a l r i g h t s o f the compi lat ion ' s u s e r s
beyond what the i nd i v i dua l works permit . I n c l u s i o n o f a covered work
in an aggregate does not cause t h i s L i cense to apply to the other
par t s o f the aggregate .

6 . Conveying Non−Source Forms .

You may convey a covered work in ob j e c t code form under the terms
o f s e c t i o n s 4 and 5 , provided that you a l s o convey the

30 CHAPTER 1. GENERAL INFORMATION

machine−r eadab le Corresponding Source under the terms o f t h i s License ,
in one o f the se ways :

a) Convey the ob j e c t code in , or embodied in , a phy s i c a l product
(i n c l ud ing a phy s i c a l d i s t r i b u t i o n medium) , accompanied by the
Corresponding Source f i x ed on a durable phy s i c a l medium
customar i ly used f o r so f tware in te r change .

b) Convey the ob j e c t code in , or embodied in , a phy s i c a l product
(i n c l ud ing a phy s i c a l d i s t r i b u t i o n medium) , accompanied by a
wr i t t en o f f e r , v a l i d f o r at l e a s t three years and va l i d f o r as
long as you o f f e r spare par t s or customer support f o r that product
model , to g ive anyone who po s s e s s e s the ob j e c t code e i t h e r (1) a
copy o f the Corresponding Source f o r a l l the so f tware in the
product that i s covered by t h i s License , on a durable phy s i c a l
medium customar i ly used f o r so f tware interchange , f o r a p r i c e no
more than your r ea sonab l e co s t o f phy s i c a l l y per forming t h i s
conveying o f source , or (2) a c c e s s to copy the
Corresponding Source from a network s e r v e r at no charge .

c) Convey i nd i v i dua l c op i e s o f the ob j e c t code with a copy o f the
wr i t t en o f f e r to prov ide the Corresponding Source . This
a l t e r n a t i v e i s a l lowed only o c c a s i o n a l l y and noncommercial ly , and
only i f you r e c e i v ed the ob j e c t code with such an o f f e r , in accord
with subse c t i on 6b .

d) Convey the ob j e c t code by o f f e r i n g a c c e s s from a des ignated
p lace (g r a t i s or f o r a charge) , and o f f e r equ iva l en t a c c e s s to the
Corresponding Source in the same way through the same p lace at no
f u r t h e r charge . You need not r e qu i r e r e c i p i e n t s to copy the
Corresponding Source along with the ob j e c t code . I f the p lace to
copy the ob j e c t code i s a network se rver , the Corresponding Source
may be on a d i f f e r e n t s e r v e r (operated by you or a th i rd party)
that supports equ iva l en t copying f a c i l i t i e s , provided you maintain
c l e a r d i r e c t i o n s next to the ob j e c t code say ing where to f i nd the
Corresponding Source . Regard le s s o f what s e r v e r hos t s the
Corresponding Source , you remain ob l i g a t ed to ensure that i t i s
a v a i l a b l e f o r as long as needed to s a t i s f y the se requi rements .

e) Convey the ob j e c t code us ing peer−to−peer t ransmis s ion , provided
you inform other pee r s where the ob j e c t code and Corresponding
Source o f the work are being o f f e r e d to the gene ra l pub l i c at no
charge under subse c t i on 6d .

A separab l e por t i on o f the ob j e c t code , whose source code i s excluded
from the Corresponding Source as a System Library , need not be
inc luded in conveying the ob j e c t code work .

A "User Product" i s e i t h e r (1) a "consumer product " , which means any
t ang i b l e pe r sona l property which i s normally used f o r persona l , fami ly ,
or household purposes , or (2) anything des igned or so ld f o r i n co rpo ra t i on
in to a dwe l l i ng . In determining whether a product i s a consumer product ,
doubt fu l c a s e s s h a l l be r e s o l v ed in favor o f coverage . For a p a r t i c u l a r
product r e c e i v ed by a p a r t i c u l a r user , " normally used" r e f e r s to a
t yp i c a l or common use o f that c l a s s o f product , r e g a r d l e s s o f the s t a tu s
o f the p a r t i c u l a r user or o f the way in which the p a r t i c u l a r user
a c t ua l l y uses , or expect s or i s expected to use , the product . A product
i s a consumer product r e g a r d l e s s o f whether the product has s ub s t an t i a l
commercial , i n d u s t r i a l or non−consumer uses , un l e s s such uses r ep r e s en t

31

the only s i g n i f i c a n t mode o f use o f the product .

" I n s t a l l a t i o n Informat ion " f o r a User Product means any methods ,
procedures , au tho r i z a t i on keys , or other in fo rmat ion r equ i r ed to i n s t a l l
and execute modi f i ed v e r s i on s o f a covered work in that User Product from
a modi f i ed ve r s i on o f i t s Corresponding Source . The in fo rmat ion must
s u f f i c e to ensure that the cont inued func t i on ing o f the modi f i ed ob j e c t
code i s in no case prevented or i n t e r f e r e d with s o l e l y because
mod i f i c a t i on has been made .

I f you convey an ob j e c t code work under t h i s s e c t i o n in , or with , or
s p e c i f i c a l l y f o r use in , a User Product , and the conveying occurs as
part o f a t r an sa c t i on in which the r i gh t o f po s s e s s i on and use o f the
User Product i s t r a n s f e r r e d to the r e c i p i e n t in pe rpe tu i ty or f o r a
f i x ed term (r e g a r d l e s s o f how the t r an sa c t i on i s cha r a c t e r i z ed) , the
Corresponding Source conveyed under t h i s s e c t i o n must be accompanied
by the I n s t a l l a t i o n In format ion . But t h i s requirement does not apply
i f n e i t h e r you nor any th i rd party r e t a i n s the a b i l i t y to i n s t a l l
modi f i ed ob j e c t code on the User Product (f o r example , the work has
been i n s t a l l e d in ROM) .

The requirement to prov ide I n s t a l l a t i o n Informat ion does not in c lude a
requirement to cont inue to prov ide support s e r v i c e , warranty , or updates
f o r a work that has been modi f i ed or i n s t a l l e d by the r e c i p i e n t , or f o r
the User Product in which i t has been modi f i ed or i n s t a l l e d . Access to a
network may be denied when the mod i f i c a t i on i t s e l f ma t e r i a l l y and
adve r s e l y a f f e c t s the opera t i on o f the network or v i o l a t e s the r u l e s and
p ro t o c o l s f o r communication ac ro s s the network .

Corresponding Source conveyed , and I n s t a l l a t i o n In format ion provided ,
in accord with t h i s s e c t i o n must be in a format that i s pub l i c l y
documented (and with an implementation a v a i l a b l e to the pub l i c in
source code form) , and must r e qu i r e no s p e c i a l password or key f o r
unpacking , read ing or copying .

7 . Addi t iona l Terms .

"Addi t iona l pe rmi s s i ons " are terms that supplement the terms o f t h i s
L i cense by making except i ons from one or more o f i t s c ond i t i on s .
Addi t iona l pe rmi s s i ons that are app l i c ab l e to the e n t i r e Program s h a l l
be t r ea t ed as though they were inc luded in t h i s License , to the extent
that they are va l i d under app l i c ab l e law . I f add i t i ona l pe rmi s s i ons
apply only to part o f the Program , that part may be used s epa r a t e l y
under those permiss ions , but the e n t i r e Program remains governed by
t h i s L i cense without regard to the add i t i ona l pe rmi s s i ons .

When you convey a copy o f a covered work , you may at your opt ion
remove any add i t i ona l pe rmi s s i ons from that copy , or from any part o f
i t . (Addi t iona l pe rmi s s i ons may be wr i t t en to r e qu i r e t h e i r own
removal in c e r t a i n ca s e s when you modify the work .) You may p lace
add i t i o na l pe rmi s s i ons on mater ia l , added by you to a covered work ,
f o r which you have or can g ive appropr ia te copyr ight permis s ion .

Notwithstanding any other p r ov i s i on o f t h i s License , f o r mate r i a l you
add to a covered work , you may (i f author i zed by the copyr ight ho lde r s o f
that mate r i a l) supplement the terms o f t h i s L i cense with terms :

a) Di sc la iming warranty or l im i t i n g l i a b i l i t y d i f f e r e n t l y from the
terms o f s e c t i o n s 15 and 16 o f t h i s L i cense ; or

32 CHAPTER 1. GENERAL INFORMATION

b) Requir ing p r e s e rva t i on o f s p e c i f i e d r ea sonab l e l e g a l n o t i c e s or
author a t t r i b u t i o n s in that mate r i a l or in the Appropriate Legal
Not i ce s d i sp layed by works conta in ing i t ; or

c) Proh ib i t i ng mi s r ep r e s en ta t i on o f the o r i g i n o f that mater ia l , or
r e qu i r i n g that modi f i ed v e r s i on s o f such mate r i a l be marked in
rea sonab l e ways as d i f f e r e n t from the o r i g i n a l v e r s i on ; or

d) Limit ing the use f o r pub l i c i t y purposes o f names o f l i c e n s o r s or
authors o f the mate r i a l ; or

e) Dec l in ing to grant r i g h t s under trademark law f o r use o f some
trade names , trademarks , or s e r v i c e marks ; or

f) Requir ing i ndemn i f i c a t i on o f l i c e n s o r s and authors o f that
mate r i a l by anyone who conveys the mate r i a l (or modi f i ed v e r s i on s o f
i t) with con t ra c tua l assumptions o f l i a b i l i t y to the r e c i p i e n t , f o r
any l i a b i l i t y that the se con t ra c tua l assumptions d i r e c t l y impose on
those l i c e n s o r s and authors .

Al l other non−permi s s i v e add i t i o na l terms are cons ide r ed " f u r t h e r
r e s t r i c t i o n s " with in the meaning o f s e c t i o n 10 . I f the Program as you
r e c e i v ed i t , or any part o f i t , conta in s a no t i c e s t a t i n g that i t i s
governed by t h i s L i cense along with a term that i s a f u r t h e r
r e s t r i c t i o n , you may remove that term . I f a l i c e n s e document conta in s
a f u r t h e r r e s t r i c t i o n but permits r e l i c e n s i n g or conveying under t h i s
License , you may add to a covered work mate r i a l governed by the terms
o f that l i c e n s e document , provided that the f u r t h e r r e s t r i c t i o n does
not su rv iv e such r e l i c e n s i n g or conveying .

I f you add terms to a covered work in accord with t h i s s e c t i on , you
must place , in the r e l e van t source f i l e s , a statement o f the
add i t i o na l terms that apply to those f i l e s , or a no t i c e i nd i c a t i n g
where to f i nd the app l i c ab l e terms .

Addi t iona l terms , pe rmi s s i v e or non−permiss ive , may be s ta t ed in the
form o f a s epa r a t e l y wr i t t en l i c e n s e , or s ta t ed as except i on s ;
the above requi rements apply e i t h e r way .

8 . Termination .

You may not propagate or modify a covered work except as exp r e s s l y
provided under t h i s L i cense . Any attempt otherwi se to propagate or
modify i t i s void , and w i l l au tomat i ca l l y terminate your r i g h t s under
t h i s L i cense (i n c l ud ing any patent l i c e n s e s granted under the th i rd
paragraph o f s e c t i o n 11) .

However , i f you cease a l l v i o l a t i o n o f t h i s License , then your
l i c e n s e from a pa r t i c u l a r copyr ight ho lder i s r e i n s t a t e d (a)
p r ov i s i o n a l l y , un l e s s and un t i l the copyr ight ho lder e x p l i c i t l y and
f i n a l l y te rminates your l i c e n s e , and (b) permanently , i f the copyr ight
ho lder f a i l s to no t i f y you o f the v i o l a t i o n by some reasonab l e means
p r i o r to 60 days a f t e r the c e s s a t i o n .

Moreover , your l i c e n s e from a pa r t i c u l a r copyr ight ho lder i s
r e i n s t a t e d permanently i f the copyr ight ho lder n o t i f i e s you o f the
v i o l a t i o n by some rea sonab l e means , t h i s i s the f i r s t time you have
r e c e i v ed no t i c e o f v i o l a t i o n o f t h i s L i cense (f o r any work) from that

33

copyr ight holder , and you cure the v i o l a t i o n p r i o r to 30 days a f t e r
your r e c e i p t o f the no t i c e .

Termination o f your r i g h t s under t h i s s e c t i o n does not terminate the
l i c e n s e s o f p a r t i e s who have r e c e i v ed cop i e s or r i g h t s from you under
t h i s L i cense . I f your r i g h t s have been terminated and not permanently
r e i n s t a t ed , you do not qua l i f y to r e c e i v e new l i c e n s e s f o r the same
mate r i a l under s e c t i o n 10 .

9 . Acceptance Not Required f o r Having Copies .

You are not r equ i r ed to accept t h i s L i cense in order to r e c e i v e or
run a copy o f the Program . Anc i l l a r y propagat ion o f a covered work
occur r ing s o l e l y as a consequence o f us ing peer−to−peer t ransmi s s i on
to r e c e i v e a copy l i k ew i s e does not r e qu i r e acceptance . However ,
nothing other than t h i s L i cense grants you permis s ion to propagate or
modify any covered work . These a c t i on s i n f r i n g e copyr ight i f you do
not accept t h i s L i cense . Therefore , by modifying or propagat ing a
covered work , you i nd i c a t e your acceptance o f t h i s L i cense to do so .

10 . Automatic L i c ens ing o f Downstream Rec ip i en t s .

Each time you convey a covered work , the r e c i p i e n t automat i ca l l y
r e c e i v e s a l i c e n s e from the o r i g i n a l l i c e n s o r s , to run , modify and
propagate that work , sub j e c t to t h i s L i cense . You are not r e s p on s i b l e
f o r en f o r c i ng compliance by th i rd p a r t i e s with t h i s L i cense .

An " en t i t y t r an sa c t i on " i s a t r an sa c t i on t r a n s f e r r i n g con t r o l o f an
organ i za t i on , or s u b s t a n t i a l l y a l l a s s e t s o f one , or subd iv id ing an
organ i za t i on , or merging o r gan i z a t i on s . I f propagat ion o f a covered
work r e s u l t s from an en t i t y t ransac t i on , each party to that
t r an sa c t i on who r e c e i v e s a copy o f the work a l s o r e c e i v e s whatever
l i c e n s e s to the work the party ' s p r edec e s s o r in i n t e r e s t had or could
g ive under the prev ious paragraph , p lus a r i g h t to po s s e s s i on o f the
Corresponding Source o f the work from the pr edec e s s o r in i n t e r e s t , i f
the p r edec e s so r has i t or can get i t with rea sonab l e e f f o r t s .

You may not impose any f u r t h e r r e s t r i c t i o n s on the e x e r c i s e o f the
r i g h t s granted or a f f i rmed under t h i s L i cense . For example , you may
not impose a l i c e n s e fee , roya l ty , or other charge f o r e x e r c i s e o f
r i g h t s granted under t h i s License , and you may not i n i t i a t e l i t i g a t i o n
(i n c l ud ing a cros s−c la im or counterc la im in a l awsu i t) a l l e g i n g that
any patent c la im i s i n f r i n g e d by making , using , s e l l i n g , o f f e r i n g f o r
sa l e , or import ing the Program or any por t i on o f i t .

11 . Patents .

A " con t r i bu to r " i s a copyr ight ho lder who au tho r i z e s use under t h i s
L i cense o f the Program or a work on which the Program i s based . The
work thus l i c e n s e d i s c a l l e d the cont r ibutor ' s " con t r i bu to r ve r s i on " .

A contr ibutor ' s " e s s e n t i a l patent c la ims " are a l l patent c la ims
owned or c on t r o l l e d by the cont r ibutor , whether a l r eady acqu i red or
h e r e a f t e r acquired , that would be i n f r i n g e d by some manner , permitted
by t h i s License , o f making , using , or s e l l i n g i t s con t r i bu to r ver s ion ,
but do not in c lude c la ims that would be i n f r i n g e d only as a
consequence o f f u r t h e r mod i f i c a t i on o f the con t r i bu to r v e r s i on . For
purposes o f t h i s d e f i n i t i o n , " c on t r o l " i n c l ud e s the r i gh t to grant
patent s ub l i c e n s e s in a manner c on s i s t e n t with the requi rements o f

34 CHAPTER 1. GENERAL INFORMATION

t h i s L i cense .

Each con t r i bu to r grants you a non−exc lu s i v e , worldwide , roya l ty−f r e e
patent l i c e n s e under the cont r ibutor ' s e s s e n t i a l patent c la ims , to
make , use , s e l l , o f f e r f o r sa l e , import and otherwi se run , modify and
propagate the contents o f i t s c on t r i bu to r v e r s i on .

In the f o l l ow i ng three paragraphs , a " patent l i c e n s e " i s any expre s s
agreement or commitment , however denominated , not to en f o r c e a patent
(such as an expre s s permis s ion to p r a c t i c e a patent or covenant not to
sue f o r patent in f r ingement) . To " grant " such a patent l i c e n s e to a
party means to make such an agreement or commitment not to en f o r c e a
patent aga in s t the party .

I f you convey a covered work , knowingly r e l y i n g on a patent l i c e n s e ,
and the Corresponding Source o f the work i s not a v a i l a b l e f o r anyone
to copy , f r e e o f charge and under the terms o f t h i s License , through a
pub l i c l y a v a i l a b l e network s e r v e r or other r e a d i l y a c c e s s i b l e means ,
then you must e i t h e r (1) cause the Corresponding Source to be so
ava i l ab l e , or (2) arrange to depr ive y ou r s e l f o f the b en e f i t o f the
patent l i c e n s e f o r t h i s p a r t i c u l a r work , or (3) arrange , in a manner
c on s i s t e n t with the requi rements o f t h i s License , to extend the patent
l i c e n s e to downstream r e c i p i e n t s . "Knowingly r e l y i n g " means you have
ac tua l knowledge that , but f o r the patent l i c e n s e , your conveying the
covered work in a country , or your r e c i p i e n t ' s use o f the covered work
in a country , would i n f r i n g e one or more i d e n t i f i a b l e patents in that
country that you have reason to b e l i e v e are va l i d .

I f , pursuant to or in connect ion with a s i n g l e t r an sa c t i on or
arrangement , you convey , or propagate by procur ing conveyance of , a
covered work , and grant a patent l i c e n s e to some o f the p a r t i e s
r e c e i v i n g the covered work autho r i z i ng them to use , propagate , modify
or convey a s p e c i f i c copy o f the covered work , then the patent l i c e n s e
you grant i s automat i ca l l y extended to a l l r e c i p i e n t s o f the covered
work and works based on i t .

A patent l i c e n s e i s " d i s c r im ina to ry " i f i t does not in c lude with in
the scope o f i t s coverage , p r oh i b i t s the e x e r c i s e of , or i s
cond i t i oned on the non−e x e r c i s e o f one or more o f the r i g h t s that are
s p e c i f i c a l l y granted under t h i s L i cense . You may not convey a covered
work i f you are a party to an arrangement with a th i rd party that i s
in the bus ine s s o f d i s t r i b u t i n g software , under which you make payment
to the th i rd party based on the extent o f your a c t i v i t y o f conveying
the work , and under which the th i rd party grants , to any o f the
p a r t i e s who would r e c e i v e the covered work from you , a d i s c r im ina to ry
patent l i c e n s e (a) in connect ion with cop i e s o f the covered work
conveyed by you (or cop i e s made from those cop i e s) , or (b) p r imar i l y
f o r and in connect ion with s p e c i f i c products or compi l a t i ons that
conta in the covered work , un l e s s you entered in to that arrangement ,
or that patent l i c e n s e was granted , p r i o r to 28 March 2007 .

Nothing in t h i s L i cense s h a l l be construed as exc lud ing or l im i t i n g
any impl i ed l i c e n s e or other d e f en s e s to in f r ingement that may
otherwi se be a v a i l a b l e to you under app l i c ab l e patent law .

12 . No Surrender o f Others ' Freedom .

I f c ond i t i on s are imposed on you (whether by court order , agreement or
otherwi se) that con t r ad i c t the cond i t i on s o f t h i s License , they do not

35

excuse you from the cond i t i on s o f t h i s L i cense . I f you cannot convey a
covered work so as to s a t i s f y s imu l taneous ly your o b l i g a t i o n s under t h i s
L i cense and any other pe r t i n en t ob l i g a t i on s , then as a consequence you may
not convey i t at a l l . For example , i f you agree to terms that ob l i g a t e you
to c o l l e c t a roya l ty f o r f u r t h e r conveying from those to whom you convey
the Program , the only way you could s a t i s f y both those terms and t h i s
L i cense would be to r e f r a i n e n t i r e l y from conveying the Program .

13 . Use with the GNU Af fe ro General Publ ic L i cense .

Notwithstanding any other p r ov i s i on o f t h i s License , you have
permis s ion to l i n k or combine any covered work with a work l i c e n s e d
under ve r s i on 3 o f the GNU Af f e ro General Publ ic L i cense in to a s i n g l e
combined work , and to convey the r e s u l t i n g work . The terms o f t h i s
L i cense w i l l cont inue to apply to the part which i s the covered work ,
but the s p e c i a l requ i rements o f the GNU Af f e ro General Publ ic License ,
s e c t i o n 13 , concern ing i n t e r a c t i o n through a network w i l l apply to the
combination as such .

14 . Revised Vers ions o f t h i s L i cense .

The Free Software Foundation may pub l i sh r e v i s ed and/ or new ve r s i on s o f
the GNU General Publ ic L i cense from time to time . Such new ve r s i on s w i l l
be s im i l a r in s p i r i t to the pre sent ver s ion , but may d i f f e r in d e t a i l to
address new problems or concerns .

Each ve r s i on i s g iven a d i s t i n g u i s h i n g ve r s i on number . I f the
Program s p e c i f i e s that a c e r t a i n numbered ve r s i on o f the GNU General
Publ ic L i cense " or any l a t e r v e r s i on " app l i e s to i t , you have the
opt ion o f f o l l ow i ng the terms and cond i t i on s e i t h e r o f that numbered
ve r s i on or o f any l a t e r v e r s i on publ i shed by the Free Software
Foundation . I f the Program does not s p e c i f y a ve r s i on number o f the
GNU General Publ ic License , you may choose any ve r s i on ever pub l i shed
by the Free Software Foundation .

I f the Program s p e c i f i e s that a proxy can dec ide which fu tu r e
v e r s i on s o f the GNU General Publ ic L i cense can be used , that proxy ' s
pub l i c statement o f acceptance o f a ve r s i on permanently au tho r i z e s you
to choose that ve r s i on f o r the Program .

Later l i c e n s e v e r s i on s may g ive you add i t i o na l or d i f f e r e n t
pe rmi s s i ons . However , no add i t i ona l o b l i g a t i o n s are imposed on any
author or copyr ight ho lder as a r e s u l t o f your choos ing to f o l l ow a
l a t e r v e r s i on .

15 . Di sc la imer o f Warranty .

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16 . L imitat ion o f L i a b i l i t y .

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

36 CHAPTER 1. GENERAL INFORMATION

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) ,
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17 . I n t e r p r e t a t i o n o f Se c t i on s 15 and 16 .

I f the d i s c l a ime r o f warranty and l im i t a t i o n o f l i a b i l i t y provided
above cannot be g iven l o c a l l e g a l e f f e c t accord ing to t h e i r terms ,
r ev i ewing cour t s s h a l l apply l o c a l law that most c l o s e l y approximates
an abso lu t e waiver o f a l l c i v i l l i a b i l i t y in connect ion with the
Program , un l e s s a warranty or assumption o f l i a b i l i t y accompanies a
copy o f the Program in return f o r a f e e .

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

I f you develop a new program , and you want i t to be o f the g r e a t e s t
p o s s i b l e use to the publ ic , the best way to ach ieve t h i s i s to make i t
f r e e so f tware which everyone can r e d i s t r i b u t e and change under these terms .

To do so , attach the f o l l ow i ng no t i c e s to the program . I t i s s a f e s t
to attach them to the s t a r t o f each source f i l e to most e f f e c t i v e l y
s t a t e the ex c l u s i on o f warranty ; and each f i l e should have at l e a s t
the " copyr ight " l i n e and a po in t e r to where the f u l l no t i c e i s found .

<one l i n e to g ive the program ' s name and a b r i e f idea o f what i t does .>
Copyright (C) <year> <name o f author>

This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
i t under the terms o f the GNU General Publ ic L i cense as pub l i shed by
the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
(at your opt ion) any l a t e r v e r s i on .

This program i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
along with t h i s program . I f not , s e e <http ://www. gnu . org / l i c e n s e s />.

Also add in fo rmat ion on how to contact you by e l e c t r o n i c and paper mail .

I f the program does te rmina l i n t e r a c t i on , make i t output a shor t
no t i c e l i k e t h i s when i t s t a r t s in an i n t e r a c t i v e mode :

<program> Copyright (C) <year> <name o f author>
This program comes with ABSOLUTELY NO WARRANTY; f o r d e t a i l s type ` show w' .
This i s f r e e so ftware , and you are welcome to r e d i s t r i b u t e i t
under c e r t a i n cond i t i on s ; type ` show c ' f o r d e t a i l s .

The hypo the t i c a l commands ` show w' and ` show c ' should show the appropr ia te
par t s o f the General Publ ic L i cense . Of course , your program ' s commands

37

might be d i f f e r e n t ; f o r a GUI i n t e r f a c e , you would use an "about box " .

You should a l s o get your employer (i f you work as a programmer) or school ,
i f any , to s i gn a " copyr ight d i s c l a ime r " f o r the program , i f nece s sa ry .
For more in fo rmat ion on th i s , and how to apply and f o l l ow the GNU GPL, see
<http ://www. gnu . org / l i c e n s e s />.

The GNU General Publ ic L i cense does not permit i n co rpo ra t i ng your program
in to p rop r i e t a ry programs . I f your program i s a subrout ine l i b r a ry , you
may cons id e r i t more u s e f u l to permit l i n k i n g p rop r i e t a ry app l i c a t i o n s with
the l i b r a r y . I f t h i s i s what you want to do , use the GNU Lesse r General
Publ ic L i cense in s t ead o f t h i s L i cense . But f i r s t , p l e a s e read
<http ://www. gnu . org / phi losophy /why−not−l g p l . html>.

GCC Runtime Library Exception Vers ion 3 .1
======
GCC RUNTIME LIBRARY EXCEPTION

Vers ion 3 . 1 , 31 March 2009

Copyright (C) 2009 Free Software Foundation , Inc . <http :// f s f . org/>

Everyone i s permitted to copy and d i s t r i b u t e verbatim cop i e s o f t h i s
l i c e n s e document , but changing i t i s not a l lowed .

This GCC Runtime Library Exception (" Exception ") i s an add i t i ona l
permis s ion under s e c t i o n 7 o f the GNU General Publ ic License , v e r s i on
3 ("GPLv3") . I t app l i e s to a g iven f i l e (the "Runtime Library ") that
bears a no t i c e p laced by the copyr ight ho lder o f the f i l e s t a t i n g that
the f i l e i s governed by GPLv3 along with t h i s Exception .

When you use GCC to compi le a program , GCC may combine po r t i on s o f
c e r t a i n GCC header f i l e s and runtime l i b r a r i e s with the compiled
program . The purpose o f t h i s Exception i s to a l low compi la t ion o f
non−GPL (in c l ud ing p rop r i e t a ry) programs to use , in t h i s way , the
header f i l e s and runtime l i b r a r i e s covered by t h i s Exception .

0 . D e f i n i t i o n s .

A f i l e i s an " Independent Module" i f i t e i t h e r r e qu i r e s the Runtime
Library f o r execut ion a f t e r a Compilation Process , or makes use o f an
i n t e r f a c e provided by the Runtime Library , but i s not otherwi se based
on the Runtime Library .

"GCC" means a ve r s i on o f the GNU Compiler Co l l e c t i on , with or without
mod i f i c a t i on s , governed by ve r s i on 3 (or a s p e c i f i e d l a t e r v e r s i on) o f
the GNU General Publ ic L i cense (GPL) with the opt ion o f us ing any
subsequent v e r s i on s pub l i shed by the FSF .

"GPL−compatible Software " i s so f tware whose cond i t i on s o f propagation ,
mod i f i c a t i on and use would permit combination with GCC in accord with
the l i c e n s e o f GCC.

"Target Code" r e f e r s to output from any compi ler f o r a r e a l or v i r t u a l
t a r g e t p ro c e s s o r a r ch i t e c tu r e , in executab l e form or s u i t a b l e f o r
input to an assembler , loader , l i n k e r and/or execut ion
phase . Notwithstanding that , Target Code does not in c lude data in any
format that i s used as a compi ler in t e rmed ia t e r ep r e s en ta t i on , or used

38 CHAPTER 1. GENERAL INFORMATION

f o r producing a compi ler in t e rmed ia t e r ep r e s en t a t i on .

The "Compilation Process " trans forms code e n t i r e l y r epr e s ent ed in
non−i n t e rmed ia t e languages des igned f o r human−wr i t t en code , and/ or in
Java Vi r tua l Machine byte code , i n to Target Code . Thus , f o r example ,
use o f source code gene ra to r s and p r ep ro c e s s o r s need not be cons ide r ed
part o f the Compilation Process , s i n c e the Compilation Process can be
understood as s t a r t i n g with the output o f the gene ra to r s or
p r ep r o c e s s o r s .

A Compilation Process i s " E l i g i b l e " i f i t i s done us ing GCC, a lone or
with other GPL−compatib le so f tware , or i f i t i s done without us ing any
work based on GCC. For example , us ing non−GPL−compatible Software to
opt imize any GCC inte rmed ia t e r e p r e s en t a t i o n s would not qua l i f y as an
E l i g i b l e Compilation Process .

1 . Grant o f Addi t iona l Permiss ion .

You have permis s ion to propagate a work o f Target Code formed by
combining the Runtime Library with Independent Modules , even i f such
propagat ion would otherwi se v i o l a t e the terms o f GPLv3 , provided that
a l l Target Code was generated by E l i g i b l e Compilation Proce s s e s . You
may then convey such a combination under terms o f your cho ice ,
c o n s i s t e n t with the l i c e n s i n g o f the Independent Modules .

2 . No Weakening o f GCC Copyle f t .

The a v a i l a b i l i t y o f t h i s Exception does not imply any gene ra l
presumption that th i rd−party so f tware i s una f f e c t ed by the c opy l e f t
requ i rements o f the l i c e n s e o f GCC.

Chapter 2

HOTINT User Manual

39

40 CHAPTER 2. HOTINT USER MANUAL

2.1 Multibody formulation

The present code is based on a redundant coordinate formulation for the modeling of the mo-
tion and deformation of bodies. This means that e.g. every rigid body has its own six degrees
of freedom (DOF), no matter how this body is constrained by other bodies or even if it is �xed
to the ground. The main reason for this formulation is the simple extensibility of the code
regarding the development of new elements, constraints, forces, etc. . The numerical e�ciency
is gained by adapted solvers for the sparse structure of the system equations, which leads to a
similar e�ort as in recursive and minimal coordinate approaches.

Several main points have been focused in the multibody kernel:

• The application of implicit time integration algorithms shall be e�cient

• The code shall be capable of structural and solid �nite elements

• The code shall be extendable and open for new elements (e.g. non-mechanical, variable
mass, variable topology, etc.)

Some things you should know:

Dimensions: dimensions are chosen by user, but should use standard international units:
kg/m/s.

Numbering: All lists, arrays or other ordering numbers start with 1 if not speci�ed di�erently.

Elements: Bodies and connectors are elements. If you search for bodies or connectors (e.g.
for editing) in the HOTINT program, you should look for elements.

2.1.1 Solution vector

The multibody system and solver always have two solution vectors. One containing either the
initial vector or the actual solution (this is the solution vector) and another one that is used
for the graphics drawing which is called drawing solution vector. The latter vector is utilized
to independently draw the solution of a certain computed time instant during the computation
(e.g. if the computation lasts very long or is of inde�nite length).
The solution vector is split into a �position level� (not necessarily a real position) and �velocity
level� part for the case of the second order di�erential variables. Assume that there are n second
order di�erential equation variables, then the solution vector will contain �rst n position level
coordinates and after that n velocity level coordinates. The local coordinates of a body (e.g.
accessible via the sensor) are ordered in a similar way. The local second order di�erential
variables of a body contain �rst m position level coordinates and after that another m velocity
level coordinates.

2.1.2 Main structure of the multibody kernel

There were some main points to be ful�lled with the present multibody kernel:

• The formulation shall be easily accessible and maintainable via C++ functions

• The formulation shall be easily accessible and maintainable via the Windows user interface.

2.1. MULTIBODY FORMULATION 41

In the current implementation there is one base multibody system object which contains all
information about the system. On top of this structure, there is a dynamic and static solver
class, i.e. an implicit time integration method and a incremental nonlinear solver. The solver
requires the multibody system to provide residuals and derivatives of the di�erential and alge-
braic equations based on assumed values.

The multibody system consists of the following components:

• Elements

• Nodes

• Loads

• Sensors

• Geometric elements

Figure: Multibody system core and windows interface.

Every object of a multibody system, see Sec. 2.1.3 and Fig. 2.1, adds a certain set of their
own (local) equations to the whole set of (global) equations. The crucial task of the Multibody
System kernel is to assemble these global equations based on the connections of the multibody
system, and to provide the system equations to the solver. Apart from that, the kernel is
responsible for setting up the model, steering the simulation, organizing in- and output of �le
data, as well as accessing or modifying speci�c element data.

42 CHAPTER 2. HOTINT USER MANUAL

Figure 2.1: Structure of the multibody system (MBS).

2.1.3 Object library

The object library provides a set of rigid bodies (links), basic joints, loads and sensors, similar
to any other simulation code. As a main feature of HOTINT, there exists a variety of �exible
bodies (Finite Elements), connectors (actuators, springs, and dampers), loads, sensors, and
IO-Blocks (controllers) � as outlined in Fig. 2.1.
Among �exible bodies are structural Finite Elements for beams, available either in geometrically
exact formulation (for large deformation processes, ropes, cables, etc.), or in linearized form
(faster). Joints are designed such that complex combinations of bodies and joints are possible,
e.g. a point of body may move along a deformable body's axis (sliding joint). Since also �exible
bodies are available, the object de�nition is based on generalized (redundant) coordinates for
the bodies.
In the core part of the code, objects are represented by means of �rst order and second order
di�erential equations, algebraic equations and jump or switching conditions. Furthermore, the
objects include standardized coupling conditions (for joints and loads), graphical representation
and measurable quantities (for sensors). These objects de�ne bodies (links) and joints and may
be easily extended.

2.1.4 The dynamic solver � implicit time integration

The numerical time-integration tool included in HOTINT is designed to compute the numerical
solution of mixed �rst and second order di�erential equations (ODE) and
di�erential-algebraic equations (DAEs) up to an index of 3. The numerical solution is obtained
by using implicit Runge-Kutta (IRK) schemes like Gauss, Radau and Lobatto formulas. The
code is developed for an arbitrary number of stages, so far 20 stages have been tested resulting
in the conclusion that computing with as much as 10 stages can improve the speed of the

2.1. MULTIBODY FORMULATION 43

numerical simulation before the machine precision is limiting the convergence of the underlying
Newton method.
Di�erent IRK schemes are de�ned by tableaus of coe�cients which are de�ned by means of
ASCII-Files (�le �tableaus.txt�). These �les are automatically generated by means of built in
functions of the code Mathematica 5.0. While it is known that multi-step solvers can integrate
DAEs of index 2 (e.g.\ BDF), it has been found out that the inability to restart the multi-step
method quickly after a discontinuous step makes it unattractive for discontinuous problems.
Furthermore, the order of multi-step methods is limited by a comparatively low upper bound,
while it is possible to show that an order of 20 for the integration is possible and can even be
most e�cient.
It shall be mentioned that in the special case, where a high accuracy of the solution of the
DAE is needed, e.g. for sensitivity analysis or optimization methods, the very high order of
IRK methods is very advantageous.
For the present case of the freeware HOTINT code, only low order IRK formulas are available,
while the higher order methods will be available in future versions.

For a description of the methods see the paper (download via homepage of HOTINT):

J. Gerstmayr, M. Stangl. High-Order Implicit Runge-Kutta Methods for Discontinuous Multi-
body Systems, In: Proceedings of the XXXII Summer School APM' 2004, June 24- July 1,
Editor D.A. Indeitsev, pp. 162-169, St. Petersburg, Russia, 2004.

2.1.4.1 Index 2 Formulation

In the present implementation, only the index 2 formulation can be chosen. The index 2
multibody formalism transforms all constraints to the velocity level. This leads to a highly
stable and e�cient formalism (the velocity level can be solved much easier than the position
level).
The time integration algorithm forces the constraint conditions at the velocity level in each
time step (at the integration points of each time step). The integration over the velocity does
not exactly give the ful�llment of the position level constraint, thus a small drift occurs. The
drift becomes considerably smaller with smaller step size and can be usually ignored.
Recommendations: Do not select too large time steps. If you have fast rotating bodies, it is
important to guarantee su�cient time steps during each rotation of the bodies., It is usually
su�cient to use between 20 and 100 steps per one rotation in order to get su�cient accuracy
and small drift.
Future implementations: Stabilization techniques are already included in HOTINT, but
they need to be built into the general framework. The stabilization as well as the error control
of the drift will be available in future versions of HOTINT.

44 CHAPTER 2. HOTINT USER MANUAL

Figure: Scheme of the dynamic solver.

2.1.5 The static solver � incremental loading

The nonlinear solver sets all velocities and acceleration terms to zero. The solver tries to �nd
a static solution (if possible) starting with the initial con�guration. All loads are increased
linearly between the virtual time 0 and 1, in order to achieve convergence for very nonlinear
problems. The (virtual) time step (=load increment) can be theoretically set to 1, but then the
load is applied in one step and the nonlinear problem needs to be solved at once. The static
solver tries to decrease the load increment as far as necessary in order to achieve convergence,
however, it is advantageous to specify a certain load increment which can help the solver to
speed up the computation and avoid failed steps.
The static solver does not work for kinematical systems (statically underdetermined systems).
Small rotational or translational springs can be added in order to transform the system to a
statically determined system.

2.1.6 Eigenmode computation

There are di�erent methods used in order to compute eigenmodes of the multibody system.
The di�erent methods are described below. The eigensolver in HOTINT does not work yet for
general Lagrange-multiplier constraints, although it is known how to compute eigenmodes for
problems with Lagrange multipliers, [11]. Presently, all penalty-based constraints can be used
and constraints can be applied on single coordinates, e.g. in order to obtain clamped constraint
conditions.

How to compute the eigenvalues and eigenmodes for a still standing multibody
system:

Equations of motion: M (x) ẍ + K (x) x = 0

Computed are the eigenvalues/modes of the �rst order system A:

2.1. MULTIBODY FORMULATION 45

ẍ = A x = ẍ =
[
−M−1K

]
x (2.1)

K v = λM v (2.2)

M ... mass matrix of the multibody system
K ... sti�ness matrix of the multibody system
v ... eigenvectors of matrix A
λ ... eigenvalues of matrix A

1.) Open the menu Edit Solver Options

2.) Set general options, they are independent from selected solver
2 a) Eigensolver.do_eigenmode_computation ... if checked→ eigenvalue computation on button
START.
2 b) Eigensolver.linearize_about_actual_solution ... use actual solution as con�guration for
linearization of K/M. Eigenvalues are computed for linearization around stored solution vector
of last static/dynamic solution! All velocities are set to zero.
2 c) Eigensolver.use_gyroscopic_terms ... make sure that box is not checked
2 d) Eigensolver.eigenmodes_scaling_factor ... scaling factor for eigenmodes, eigenvectors are
multiplied with this factor
2 e) Eigensolver.eigenmodes_normalization_mode ... 0 → standard mode, max(v) = 1; 1 →
vTv = 1;
2 f) Eigensolver.use_n_zero_modes ... �ag is not used in current version
2 g) Eigensolver.reuse_last_eigenvectors ... �ag is not used in current version

3.) Set the subtree Eigensolver.solver_type ... de�ne the solver type
0 ... LAPACK dsygv direct solver, LAPACK package used
The solver will calculate all possible eigenvalues/eigenmodes of the multibody system. Solver
options are not o�ered. For information about the accuracy see the LAPACK documentation.

1 ... Arnoldi iterative solver (Matlab), Matlab licence is needed
Eigensolver.max_iterations ... maximum number of iterations for iterative eigenvalue solver
Eigensolver.accuracy ... tolerance for iterative eigenvalue solver
Eigensolver.n_eigvals ... number of eigenvalues and eigenmodes to be computed for sparce iter-
ative methods
Eigensolver.n_zero_modes ... number of zero eigenvalues (convergence check)

2 ... LOBPCG iterative solver, implemented in HOTINT
Eigensolver.max_iterations ... maximum number of iterations for iterative eigenvalue solver
Eigensolver.accuracy ... tolerance for iterative eigenvalue solver
Eigensolver.use_preconditioning ... if checked→ set a value for lambda in Eigensolver.preconditioner_lambda,
inv(K + λM)
Eigensolver.n_eigvals ... number of eigenvalues and eigenmodes to be computed for sparce iter-
ative methods
Eigensolver.n_zero_modes ... number of zero eigenvalues (convergence check)

How to compute the eigenvalues and eigenmodes for a multibody system with gy-
roscopic terms:

46 CHAPTER 2. HOTINT USER MANUAL

Equations of motion: M (x) ẍ + G (x, ẋ) ẋ + K (x) x = 0

Computed are the eigenvalues/modes of the �rst order system A:

A =

[
0 E

−M−1K −M−1G

]
(2.3)

[
ẋ

ẍ

]
= A

[
x

ẋ

]
(2.4)

A v = λv (2.5)

M ... mass matrix of the multibody system
K ... sti�ness matrix of the multibody system
G ... gyroscopy matrix of the multibody system
v ... eigenvectors of matrix A
λ ... eigenvalues of matrix A

1.) Open the menu Edit Solver Options

2.) Set general options, they are independent from selected solver
2 a) Eigensolver.do_eigenmode_computation ... if checked→ eigenvalue computation on button
START.
2 b) Eigensolver.linearize_about_actual_solution ... use actual solution as con�guration for
linearization of K/M. Eigenvalues are computed for linearization around stored solution vector
of last static/dynamic solution!
2 c) Eigensolver.eigenmodes_scaling_factor ... scaling factor for eigenmodes, eigenvectors are
multiplied with this factor
2 d) Eigensolver.eigenmodes_normalization_mode ... 0 → standard mode, max(v̄) = 1; 1 →
v̄T v̄ = 1; Attention: For a proper drawing representation the vector v̄ (used for normalization)
contains only the the positions

(
v =

[
v̄, ˙̄v

])
.

3.) Check Eigensolver.use_gyroscopic_terms ... use gyroscopy terms for eigenvalue computation
The eigenvalues/modes of the nonsymmetric matrix A are computed with the LAPACK dgeev
solver. Other options for this solver are not necessary. Relating to the accuracy see the LA-
PACK documentation.

The computation of the eigenvalues/eigenmodes requires a inversion of the full mass matrix of
the dynamic system. This could be a problem for very large systems.

How to create a campbell diagram, e.g. for rotordynamics:
It is very simple to create a campbell diagram with HOTINT. To create a campbell diagramm
do the following steps:

1.) Set up a rotor model, e.g. by adding RotorBeamXAxis and NodalDiskMass3D elements and
Node3DR123 nodes to the multibody system

2.1. MULTIBODY FORMULATION 47

1 a) Initialize all nodes Node3DR123 in dependence of the variable you want to vary, e.g. in
the case of the campbell diagram the rotor speed omega:
Initialization.node_initial_values = [0, 0, 0, 0, 0, 0, 0, 0, 0, omega, 0, 0]
2.) Set the eigensolver, see "How to compute the eigenvalues and eigenmodes for a multibody
system in motion"
3.) Set a parametervariation for omega (range and step size)
4.) Perform computation, the eigenvalues and varied parameter are stored in the solution �le,
e.g. solpar.txt in the output folder
5.) Open the plot tool and load output �le:
5 a) Click External �le and select the output �le, e.g. solpar.txt
5 b) Select n_rot and a eigenvalue of your choice, e.g. eigval1 and create a x/y plot
6.) For a campbell diagram it is necessary to add a line with the frequency of the rotor speed.
Create a txt �le with the following lines:

Example

%Comment: y=x/60 (x in 1/min, y in Hz)

%1 2

%n_rot frequency

0 0

x y

Replace the x with the max. rotor speed and y with calculated frequency value, load the �le
and create a x/y plot.
7.) Label the plot

In the following is an excerpt of such a rotor example (the full example is included in exam-
ples/campbell):

Example

% Rotor Beam Example �> Campbell diagram

% parameters

%...

n_rot = 1000 % rpm, vary this parameter

omega = 2*Pi*n_rot/60 % rad/s

%==

% rotordynamics model

%==

% add materials (the material does not depend on omega)

%...

% add node 1 with initial velocity

n

{

48 CHAPTER 2. HOTINT USER MANUAL

node_type = "Node3DR123"

name = "node_1"

Geometry.reference_position = [0,0,0]

Initialization.node_initial_values =

[0, 0, 0, 0, 0, 0, 0, 0, 0, omega, 0, 0]

% initial values for all DOF of node: 1...6 => pos, 7...12 => vel

}

n1 = AddNode(n)

% ...similar for all other nodes

% add rotor beams

% ...

% add nodal disk masses

% ...

% add bearings

% ...

%==

% set parameter variation

%==

solveroptions.parametervariation.activate = 1 % do parameter variation

solveroptions.parametervariation.start_value = 0 % rpm

solveroptions.parametervariation.end_value = 80000 % rpm

solveroptions.parametervariation.arithmetic_step = 1000 % rpm

solveroptions.parametervariation.mbs_edc_variable_name = "n_rot" % name

%==

% set eigensolver

%==

SolverOptions.Eigensolver.use_gyroscopic_terms = 1 % use gyro terms

SolverOptions.Eigensolver.do_eigenmode_computation = 1 % must be set to 1

Figure: Two disk rotor created with �le campbell.txt

2.1. MULTIBODY FORMULATION 49

Figure: Campbell diagram created with the �le examples/campell. The eigenfrequencies are
the �rst bending modes.

2.1.7 Parameter Variation, Sensitivity Analysis, Identi�cation and
Optimization

In order to study the global in�uence of certain parameters to the simulation results, a parame-
ter variation can be performed, which e.g. gives a set of results with respect to one or two varied
parameters. In order to investigate the local in�uence of speci�c parameters on the solution, a
sensitivity analysis can be performed, which results in a matrix which shows the dependence
of a cost function with respect to the change of parameters. Based on the functionality of
the parameter variation, it is possible to perform optimization and parameter identi�cation in
HOTINT. The implemented genetic parameter identi�cation algorithm, documented in [12], is
used to search the best �tting model parameters in a systematic way. The cost function for
the identi�cation/optimization can be based on the di�erence of a reference solution, e.g. from
measurements and simulated results. The algorithm searches the optimal parameters in a given
parameter space (e.g. parameter ranges). Multiple minima of the cost function may occur and
are no problem for the genetic algorithm. In contrast to Newton�s method, derivatives of the
cost function with respect to the parameters are not required. In a �rst step, for each set of
randomly chosen parameters, a simulation is performed and the cost function is evaluated. A
speci�ed number of best parameters is taken into account for the next generation of parameters,
the surviving parameters. Based on these parameters a new set of parameters (children) are
generated using the principle of mutation and the parameter search range is reduced. This
procedure is repeated until the optimum is nearly reached.

Parameter Variation: In the menu Edit Solver Options under the subtree
SolverOptions.ParameterVariation the parameter variation can be set.

For the start of the parameter optimization, following things have to be done:

1.) Set up your HOTINT model which contains a parameter for variation

50 CHAPTER 2. HOTINT USER MANUAL

2.) SolverOptions.ParameterVariation.MBS_EDC_variable_name ... de�ne EDC-name of the
parameter (e.g. "i")

3.) De�ne the range of the parameter value. The variation is repeated as long as the pi ≤ pn.
3 a) SolverOptions.ParameterVariation.start_value ... start value of the parameter p0
3 b) SolverOptions.ParameterVariation.end_value ... end value of the parameter pn

4.) De�ne arithmetic or geometric step method ... arithmetic: pi = pi−1 + ∆p; geometric:
pi = pi−1f ; pi ... parameter value at step i;
4 a) SolverOptions.ParameterVariation.geometric ... check for geometric step, else arithmetic step
4 b) SolverOptions.ParameterVariation.arithmetic_step ... set ∆p
4 c) SolverOptions.ParameterVariation.arithmetic_step ... set f

5.) Activate variation algorithm
5 a) Check �eld SolverOptions.ParameterVariation.activate

In the following there is a simple example code of a parameter variation. A parameter i is
varied from 1 to 5 with a step size of 1 and displayed in the output window.

Example

% Test for printing in combination with parameter variation

HOTINT_data_file_version="1.1.498"

i=1

Print("The number is ")

Print(i)

Print("\n")

SolverOptions.ParameterVariation.activate = 1

SolverOptions.ParameterVariation.start_value = 1

SolverOptions.ParameterVariation.end_value = 5

SolverOptions.ParameterVariation.arithmetic_step = 1

SolverOptions.ParameterVariation.MBS_EDC_variable_name = "i"

Genetic Optimization: Generally, the subtree SolverOptions.Optimization in the menu Edit
Solver Options contains methods for optimization or in other words minimization of certain com-
putation values (or cost function) from sensor signals in form of a search of the best-matching pa-
rameters. See the excerpt of the hid �le of a two mass oscillator (examples/two_mass_oscillator),
which shows the optimization of a unknown spring sti�ness. The optimization is based on the
di�erence to a reference two mass oscillator example.

For the start of the parameter optimization, following things have to be done:

1.) Set up your HOTINT model with at least one sensor (e.g. Two-Mass-Oscillator)

2.) De�ne computation value(s) from sensor signal(s) with SolverOptions.Optimization.sensors.
They are minimized by the optimization; if more than one sensor computation value is de�ned,
the sum of the computational value will be minimized

2.1. MULTIBODY FORMULATION 51

3.) De�ne optimized parameters and their limits
3 a) SolverOptions.Optimization.number_of_params ... number of parameters, which are opti-
mized (e.g. 1)
3 b) SolverOptions.Optimization.param_name1 ... de�ne EDC-name of optimized parameter(e.g.
"k1_var")
3 c) SolverOptions.Optimization.[min|max]val1 ... de�ne limits for the parameter search (e.g.
SolverOptions.timization.minval = 0 and SolverOptions.Optimization.maxval = 1)
3 d) Repeat a)-c) until all parameters and limits are de�ned
4.) Check the Genetic Optimization Options SolverOptions.Optimization.Genetic

This option should only be modi�ed, if the computation time or accuracy of the optimiza-
tion process should be changed. For more accurate results increase the
SolverOptions.Optimization.Genetic.initial_population_size,
SolverOptions.Optimization.Genetic.surviving_population_size,
SolverOptions.Optimization.Genetic.number_of_children or try to change the other options in
SolverOptions.Optimization.Genetic. This is a very critical point, because the accuracy but also
the computation time is increased. Further descriptions and more detailed insight to the in-
�uence of the genetic optimization parameters can be found in previous work (R. Ludwig and
J. Gerstmayr, AUTOMATIC PARAMETER IDENTIFICATION FOR GENERIC ROBOT
MODELS, MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Conference, J.C. Samin,
P. Fisette (eds.), Brussels, Belgium, 4-7 July 2011).

5.) Activate optimization algorithm
5 a) Check �eld SolverOptions.Optimization.activate
5 a1) Optional: check �eld SolverOptions.Optimization.run_with_nominal_parameters (for check-
ing the consistency of the model and the nominal sensor computation value)
5 a2) Optional: check �eld SolverOptions.Optimization.restart (if genetic optimization should be
restarted with already known parameters from previous genetic optimizations). This option
saves computation time if results from previous optimization(s) should be used.
5 b) Set option SolverOptions.Optimization.method = "Genetic". Further algorithms are planned.

6.) Press OK-Button in Edit Solver Options, then Start! in the main window
The optimization repeats the simulation with di�erent parameter sets and writes usually further
informations about the optimization process into the Computation Output - Window. Further-
more, a result �le is written into the path GeneralOptions.Paths.sensor_output_path with the
�lename de�ned in the option SolverOptions.Solution.ParameterFile.parameter_variation_�lename
(e.g. solpar.txt). This �le is needed for the SolverOptions.Optimization.restart option, see 5 a2).

7.) Check result
7a) Use optimized parameters as nominal parameters, simulate once (e.g. with 5 a1))
7b1) If results are accurate enough → optimization process �nished.
7b2) otherwise repeat points 3.)-7.)

Important notes:
For a higher speed of the optimization it is useful to close the GUI Data Manager as well as
the Computation Output. If you want to see some information about the optimization progress
during the computation open the static output window instead (Results → Show Static Out-
put). It is also recommended to uncheck SolverOptions.Solution.write_solution in Edit Solver
Options. Otherwise the sensor data of every optimization step is written to the output �le

52 CHAPTER 2. HOTINT USER MANUAL

SolverOptions.Solution.SolutionFile.output_�lename (e.g. sol.txt).

Figure: Two mass oscillator with sti�ness and damping optimization.

An excerpt of the full example (included in examples/two_mass_oscillator) is written below:

Example

% parameters:

% ...

k1= 500 % N/m, stiffness spring 1, nominal value

k1_var= 350 % N/m, stiffness spring 1, arbitrary value, not used

% for optimization, this value is used if

% run_with_nominal_parameters= 1

d2= 30 % N/(m/s), damping spring 2, nominal value

d2_var= 10 % N/(m/s), damping spring 2, arbitrary value

%==

% read vectors from file (measurement data) and create math functions

%==

t = LoadVectorFromFile("...path...",1)

disp_m1 = LoadVectorFromFile("...path...",2)

vel_m1 = LoadVectorFromFile("...path...",3)

disp_m2 = LoadVectorFromFile("...path...",4)

vel_m2 = LoadVectorFromFile("...path...",5)

mathFunction

{

MathFunction

{

piecewise_mode= 1

piecewise_points= t

piecewise_values= disp_m1

}

}

}

nSensDisp1Ref = AddElement(mathFunction)

%... similar for other math functions ...

2.1. MULTIBODY FORMULATION 53

%==

% model with varied parameters

%==

% ... add masses, spring dampers, sensors with varied parameters (in this

% case only the stiffness of spring damper 1 differs to nom. parameters)

spring_damper1

{

% ...

Physics.Linear.spring_stiffness= k1_var

}

nSpringDamper1Var= AddConnector(spring_damper1)

spring_damper2

{

% ...

Physics.Linear.damping= d2_var

}

nSpringDamper2Var= AddConnector(spring_damper2)

%==

% optimization

%==

nSensor= AddSensor(...) % this sensor measures the cost function (in

% this example it is the average of sum of the quatratic errors of the

% displacments and velocities of the masses)

SolverOptions

{

Optimization

{

activate= 1 % set this flag for optimization

run_with_nominal_parameters= 0 % 1..perform single simulation

restart= 0 %0..create new parameter file

method= "Genetic" % genetic: optimize using random parameters,

% best parameters are further tracked.

sensors= nSensor % sensor which measures the cost function

}

Genetic

{

initial_population_size= 20 % size of initial trial values.

surviving_population_size= 15 % values which are further tracked

number_of_children= 15 % number of children of surviving population

number_of_generations= 4 % number of generations in genetic optimization

range_reduction_factor= 0.5 % reduction of range of possible mutations

randomizer_initialization= 0 % initialization of random function

min_allowed_distance_factor= 0 % set to value greater than zero

}

Parameters

{

54 CHAPTER 2. HOTINT USER MANUAL

number_of_params= 2 %Number of parameters to optimize.

param_name1= "k1_var" %Parameter name.

param_minval1= 3e2 %Lower limit of parameter.

param_maxval1= 7e2 %Upper limit of parameter.

param_name2= "d2_var" %Parameter name.

param_minval2= 10 %Lower limit of parameter.

param_maxval2= 70 %Upper limit of parameter.

}

}

}

Results of the optimization taken from solpar.txt �le:

k1 = 498.642 N/m
d2 = 30.0115 N/(m/s)
cost function = 3.21674e-005; The cost function in this example is the sum of squares of devia-
tions between positions and velocities (see example �le for more detail).

For a visualization of the optimization results open Results → PlotToolDialog. Select External
File as Data Sources and choose the optimization �le (e.g. solpar.txt as default �lename) in the
output folder. Click k1_var and Ctrl + cost_function_value and select Add x/y. Change the
Point Style to X and the Line Style to invisible. Add a Title label X-Axis and Y-Axis. Save the
picture and repeat the procedure for d2_var. You should get the �gures below.

Figure: Cost function in dependence of spring sti�ness k1.

2.1. MULTIBODY FORMULATION 55

Figure: Cost function in dependence of spring damping d2.

2.1.8 The Element Concept

Elements: Bodies and connectors are elements. In fact, an element only needs to provide a
set of di�erential and algebraic equations and it can add forces to other elements. A rigid body
modeled with Euler parameters includes one constraint for the four Euler parameters and a
hydraulic actor includes a di�erential equation for the pressure build-up equations. Therefore,
bodies and connectors are treated within the same framework. Even forces or sensors could be
elements, however, there would be too much overhead in treating just everything as an element.

56 CHAPTER 2. HOTINT USER MANUAL

Element

Body2D Constraint

Mass2D

Rigid2D

ANCFCable2D

ANCFBeam2D

ReferenceFrame2D

Body3D

Mass3D

Rigid3D

Tetrahedral=TetrahedalGeneric<FiniteElement3D>

ANCFCable3D

Beam3D SphericalJoint

RevoluteJoint

PrismaticJoint

UniversalJoint

RigidJoint

SlidingJoint

CoordConstraint

SpringDamperActor

AngSpringDamperActor

IOLinearTransformation

InputOutputElement

IOSTransferFunction

IOQuantizer

IOMathFunction

IOTime

ANCFBeamShear2D

Plate2D

Plate2Dlin

Plate2Dquad

Plate2DquadFFRF

Trig2Dlin

ANCFAxMovBeam2D

ANCFPipe2D

ANCFBeam2Dlin

CMSElement2D

Trig2Dquad

FiniteElement3D

NodalMass3D

Rigid3DKardan

Rigid3DMinCoord

ANCFBeam3DTorsion

ANCFBeamShear3D

ANCFPlate3D

ANCFThinPlate3D

PrismaticJoint2D

GeneralContact3D

GeneralContact2D

SlidingJoint2D

RollingJoint3D

RollingJoint2D

CylindricalPointJoint

CylindricalJoint

GravityConstraint

GeneralizedAngleConstraint

Angle2DConstraint

InertialLinearSpringDamper

SpringDamperBearing

InertialLinearSpringDamper2D

IODeadZone

IOLinearODE

IOSaturate

HydraulicActor

HydraulicActorDA

HydraulicActorDA2D

HydraulicActorDA2Dh

KardanSDRotActor

LinearRotationalSpringDamper

NodalConstraintCMS

Pos2DConstraint

RigidLinkConstraint

SDRotActor2DFiniteElementGeneric<Body2D>

FiniteElementGeneric<Body3D>

FiniteElement3DFFRF

TetrahedralFFRF=TetrahedalGeneric<FiniteElement3DFFRF>

Hexahedral=HexahedalGeneric<FiniteElement3D>

HexahedralFFRF=HexahedalGeneric<FiniteElement3DFFRF>

FiniteElement2D

Quadrilateral

Figure: Element class structure; elements which are not yet available in the current freeware
version via the script language (cf. section 2.4.2) are greyed out.

2.1.9 Nodes for Direct Connection of Finite Elements

Sometimes it is more e�cient no connect two elements without the application of constraints.
E.g. in the case of nodal �nite elements it is advantageous if the connected elements share nodal
coordinates. Therefore, it is possible in HOTINT to de�ne nodes, which can be afterwards used
to assign nodal coordinates to elements.
A node is de�ned only for a certain number of coordinates (degrees of freedom � DOF), e.g. for
a 2D position node DOF = 2, for a 3D position node DOF = 3, for a node using position and
gradient, the DOF = 12 per node. Additionally, the nodal position in the reference con�guration
can be assigned to the node. This position can be later on used to �nd nodes or to automatically
determine the nodal number depending on the nodal coordinate.
The nodes are consecutively ordered starting with the nodal number 1. The elements can
afterwards refer to this number. When editing nodes, the available nodal numbers are shown.

2.1.10 The Concept of Loads

Loads are used to add forces at the right hand side of the second order di�erential equations
that describe the dynamics of a body. Loads are directly linked to bodies and they do not have
own generalized coordinates (unknowns). However, loads can depend on the body coordinates
or body deformation (e.g. in the case of pressure).
The loads can have a time-dependency which is evaluated in every step of the computation.
Loads can only be applied to bodies that provide according information of the work of external
linear, angular or integrated loads.

2.1. MULTIBODY FORMULATION 57

2.1.11 Sensors for Measuring

Sensors are used to measure certain quantities of the multibody system at the current state
of the computation. The output of a sensor is usually written to output �les at certain time
steps (See Computation Settings dialog). The solution �le �sol.txt� contains the output of all
sensors, each sensor in a row, versus the time (�rst row). Apart from output and controllers,
sensors do not in�uence the computation.
While local_DOF_sensors can be used to measure the coordinates of any element (e.g. of a
constraint), the position, angle, distance and de�ection sensors can only be applied to elements
of the type body.
Note that local second order di�erential variables of a body contain �rst [1 . . . m] position
level coordinates and another [m+1 . . . 2m] velocity level coordinates.
Sensors can not have own generalized coordinates (unknowns).

2.1.12 Geometric Elements for Bodies with Complex Geometry

Geometric elements are used to represent a realistic shape of complex bodies in the multibody
simulation. Usually, a geometric element is either used to de�ne objects in the background or
it is attached to a (rigid) body.
Geometric elements can be either de�ned with geometric primitives or by triangular meshes
(see the Section about GeomMesh). The only in�uence to the computation by GeomElements
is present by the automatic computation of mass, volume and inertia from the GeomElements.
Usually, the complexity of GeomElements does not in�uence the computational time (CPU
time), except for the drawing and loading/saving of multibody models. In the case of big
GeomMesh models, it is recommended that the redrawing time is set to a high value, e.g. set
the redrawing to every 20 seconds.

58 CHAPTER 2. HOTINT USER MANUAL

2.2 Getting started

2.2.1 Instructions for installing HOTINT on a MS-Windows com-
puter

To begin with, you need to download the HOTINT zip-archive, and extract it to a folder of
your choice using a program such as Winzip or 7-Zip. Then run the executable �setup.exe�, and
follow the setup instructions as shown below:

First, you will see the start screen of the HOTINT setup wizard:

Click �Next� to proceed. Now you can choose the installation folder, and specify whether to
install HOTINT for all users on your computer, or just for you.

ATTENTION: Do not use a folder which is locked by windows for admin use only, e.g. the
default program folder. It is recommended to use a folder within the �documents� or �user�
folders.

2.2. GETTING STARTED 59

Click �Next�, read the license agreement, check �I Agree�, and click �Next� in order to proceed;
click �Cancel� otherwise.

HOTINT is now ready to be installed on your computer; click �Next� to start the installation.

60 CHAPTER 2. HOTINT USER MANUAL

After the installation process, the following screen appears:

Click �Close� to exit the setup wizard.

The installation of HOTINT now is complete, and your your chosen installation directory should
contain a number of �.dll�-�les, as well as the following folders:

documentation Contains the HOTINT user documentation, an �.rtf� license text
�le, and an �example� folder with ready-to-use �.hid� example model

2.2. GETTING STARTED 61

�les.

HotIntWin32 Contains the subfolder release, where the HOTINT executable �hot-
int.exe� and the con�guration �le �hotint_cfg.txt� are located.

output This is, by default, the output directory where the solution �le
�sol.txt� containing sensor data is stored. Furthermore, the solu-
tion data �les are created here in a subdirectory �solution_data�, if
the �ag store_data_to_�les is checked in the solver options under
�Solution� (see 2.5.8 or section 3.13 for details).

userdata This folder can be used for your user-de�ned model �les (cf. 2.4).

HOTINT is started by running the executable �hotint.exe� in the �HotIntWin32\release� folder.
For convenience, it is recommended to create a shortcut (e.g., on your desktop or in the start
menu directory) referencing that executable. The following section guides you through your
�rst steps in HOTINT.

2.2.2 First steps

Start HOTINT by double-clicking �hotint.exe� located in the subfolder �HotIntWin32\release�
in your installation directory, or a corresponding shortcut. The program starts with an empty
multibody model.

The best way to experience the capabilities of HOTINT is to load one of the examples included
in the subfolder �examples� and start to experiment. Select �OpenMBS� in the �File�-menu,
and navigate to the examples located in �documentation\examples�:

62 CHAPTER 2. HOTINT USER MANUAL

Here, we choose the �le �double_pendulum.txt�...

2.2.3 Command Line Usage

HOTINT can also be con�gured and started via the command line (or from MATLAB). The
syntax is

hotint [option1=value [option2=value [...]]]

Some remarks:

• When starting hotint.exe from DOS/Matlab, the current directory MUST be the root direc-
tory of hotint.exe.

• To start the Windows command prompt, run the executable cmd.exe (under Windows 7,
just type �cmd.exe" in the search bar in the start menu and hit enter; alternatively, or in
other Windows versions, use the �Run" command). Any settings of HOTINT options via
the command line are accounted for after the HOTINT model �le � possibly containing
speci�cations for some options too � has been read in.

• Single option speci�cations must not include spaces; mutually, they are separated by spaces.

• Use \" instead of ".

• In order to run several instances of HOTINT in parallel, append the &-character at the end
of each line which calls hotint.exe.

In order to open a model with HOTINT from command line use the options

GeneralOptions.ModelFile.hotint_input_data_filename

if you want to open a script model (hid-�le) or

2.2. GETTING STARTED 63

GeneralOptions.ModelFile.internal_model_function_name

if you want to run a C++ model (models compiled with HOTINT).
A few examples for starting HOTINT via the command line:

hotint.exe GeneralOptions.ModelFile.hotint_input_data_filename=\"D:\models\hotint_file.hid\"

GeneralOptions.Application.start_computation_automatically=1

hotint.exe SolverOptions.Solution.output_filename=\"dir/myfile.txt\"

hotint.exe SolverOptions.Timeint.tableau_name=\"RadauIIA\"

One example using MATLAB:

dos('hotint.exe SolverOptions.Solution.output_filename=\"matlabfile1.txt\" &')

In C++ you can have user-de�ned options. You can set these options via the command line
too:

hotint.exe MyOptions.usemodeNr=2

2.2.4 Con�gure Notepad++ for HOTINT

As described in 2.8.1 it is possible to set up systems with text-�les. These �les can be written
and changed in any editor, e.g. notepad++. Some editors provide the functionality of syntax
highlighting and an auto-complete function for user-de�ned languages.
For this purpose 2 speci�c �les are stored on your computer during the installation process in
the folder documentation:

• HOTINT.xml

• hotint_highlight_notepad.xml

In the following it is described how to set up notepad++, such that these functionalities can
be used. If you are using a di�erent editor, the steps may be very similar.

1. save �le 'HOTINT.xml' to the notepad folder 'plugins\APIs'
(e.g. C:\Program Files (x86)\Notepad++ \plugins\APIs)

2. open NOTEPAD++

3. click on icon

4. import �le 'hotint_highlight_notepad.xml

64 CHAPTER 2. HOTINT USER MANUAL

If you open a �le with the extensions 'txt' or 'hid' with notepad++ there should be 2 new
features now:

• highlighting of known keywords

• auto complete (ctrl + space) for known keywords

2.3. HOTINT WINDOWS USER INTERFACE 65

2.3 HOTINT Windows User Interface

2.3.1 Using the graphics window

The 3D graphics window is used to visualize the multibody model by user-de�ned representation
of the bodies, joints and forces. The graphical representation might be a simpli�cation of the
parameters used to perform the dynamical simulation.

2.3.2 Mouse control

Rotation: Press the right mouse button and move up/downwards and left/right to rotate the
model.

Zooming: Use the scroll wheel to zoom in / out or press the right mouse button and �Shift�
and move up/downwards.

Zoom selection: Use �Shift� and the left mouse button and select a rectangle to be zoomed
into.

Moving: Press the left mouse button to move the model on the screen.

Perspective: Press the right mouse button, �Shift� and �Ctrl� and move up/downwards to
change the distance of the camera to the object in order to change its perspective (the closer
you zoom, the more distorted it gets).

2.3.3 HOTINT main application window

66 CHAPTER 2. HOTINT USER MANUAL

The main HOTINT window is used to load, save and edit models, start the computation, or
modify computation parameters and viewing settings. After a computation the results can
plotted as well as animated.

The �Computation Output� window is used to print important messages, show computation
results, the computation state, computation background information (e.g. number of Newton
iterations), error and warning messages.

2.3.4 Speci�c buttons

The following buttons are available in the main view in HOTINT:

2.3. HOTINT WINDOWS USER INTERFACE 67

Start computation of multibody system

Pause computation of multibody system

Stop computation of multibody system

Restart computation of multibody system

Save HOTINT options (i.e. the con�guration except for the solver settings)

Reload the selected (internal) model or the open skript �le

Enable/Disable rotation of model � for planar examples

Zoom whole model

Show x-y plane

Show x-z plane

Show y-z plane

Show user-de�ned view (see viewing options)

Choose / hide axes position

Automatic rotation

Save single image, directory is speci�ed in record frames dialog

Open the record frames dialog in order to capture a series of images
for an animation
Click to change viewing options to stored ones
Ctrl + Click to store current viewing options
3 independent settings are possible
Filenames can be set in GeneralOptions.SavedViewingOptions

2.3.5 HOTINT Main Menu

Outlining, the HOTINT main menu comprises the following entries which are described in more
detail below:

• File

• View

• Edit

• Add Object

• System

• Computation

• Results

• ?

68 CHAPTER 2. HOTINT USER MANUAL

2.3.5.1 File

Select Model Select a multibody model

New MBS Create a new multibody model

Open MBS Open an existing MBS �le

Save MBS (as) Save the current multibody model (as...)

Exit Exit program

Recent: List of recent �les

2.3.5.2 View

Edit Hotint Options Open the Hotint options dialog: Access all options concerning the
MBS and the program, except for the solver options. See subsection
2.5.2 or section 3.13 in the reference manual for details.

Save Hotint Options Saves the current con�guration of Hotint options

Show Data Manager Open dialog for viewing and animating the results of the computa-
tion; see subsection 2.5.7 for further information.

Show Output Window Show the output window which reports important information, cur-
rent state of the simulation, errors, etc. during the computation and
modeling

Viewing Options Open the viewing options dialog: con�gure redrawing, animation
settings, grid (raster), standard view; see subsection 2.5.3 or section
3.13 in the reference manual for details.

OpenGL Options Set the options for OpenGL 3D graphics: de�ne lights positions and
intensities, transparency, shading model and lighting; see subsection
2.5.4 or section 3.13 in the reference manual for details.

FE Drawing options Dialog mainly to change settings for �nite elements: Contour-iso
plots, color/grey mode, shrinking factor, stress-type, tiling, reso-
lution, line thickness; see subsection 2.5.5 or section 3.13 in the
reference manual for details.

Body / Joint Options Used to con�gure the user-input and drawing of bodies and joints:
Rotation input mode, show body number, body frame, body trans-
parency
Show joints, joint transparent and joint number; see subsection 2.5.6
or section 3.13 in the reference manual for details.

X-Y / X-Z / Y-Z View X-Y / X-Z / Y-Z plane

Default View Select the default viewing orientation, de�ned in the viewing options

2.3. HOTINT WINDOWS USER INTERFACE 69

2.3.5.3 Add Object

Add Element Add a rigid or �exible body.

Add Connector Add a joint/constraint/connector or a control element.

Add Load Add a load to a rigid or �exible body: generalized coordinate load,
body load, force vector, moment vector

Add Material Add material for �nite elements

Add BeamProperties Add the properties of beam elements

Add Node Add a node for �nite elements

Add Sensor Add a sensor in order to measure quantities of the computation:
DOF sensor, position sensor, angle sensor, distance sensor, de�ec-
tion sensor, multiple sensor

Add GeomElement Add a geometric element to a body (preferably to rigid bodies):
mesh, mesh imported from STL �le, cylinder, sphere, cube

Add Set Add a set of nodes or elements

For further information, refer to section 2.4 or sections 3.2�3.10 in the reference manual.

2.3.5.4 Edit

Undo Undo the last add, delete or edit command

Edit Element, Load, Material,...
Edit the properties of the already added objects

For further information, refer to section 2.4 or sections 3.2�3.10 in the reference manual.

2.3.5.5 Delete

Delete Element, Load, Material,...
Delete an already added object

2.3.5.6 System

Show System Properties
Show some of the properties of the actual multibody system (num-
ber of elements, number of coordinates, constraints, etc.)

Verify System Check some of the system properties such as if all element, con-
straint, sensor and geometric element references are valid. Check if
constraints and sensors are only attached to valid bodies, etc.

Show global variables Access and edit all parameters de�ned in the model data �le

Run Macro (Add variable)
You can load a (small) txt �le in order to enter anything available
in the script language. This can be used to add global variables.

70 CHAPTER 2. HOTINT USER MANUAL

2.3.5.7 Computation

Edit Solver Options Access and edit all solver options (such as for time integration, the
static solver, the non-linear Newton solver or eigensolver, and set-
tings concerning the in- and output of solution �les, sensor data and
parameter �les. See subsection 2.5.8 or section 3.13 in the reference
manual for details.

Save Solver Options Save the solver options to a con�guration �le

Reset Simulation The call to this function is necessary to reset the system to its
initial state when it was built. This function is called every time an
element is added, removed or changed. The function includes:
• Restore to initial vector stored in elements
• Reset starting time to t=0
• Remove all output from data manager
• Assemble the system
• Fit the model onto the screen

Start Simulation Run the simulation from the starting time till the end time using
the settings de�ned in the solver options

Stop Simulation Terminate the simulation

Pause Pause the computation which can be continued later

Load Initial Vector Load a solution vector, which de�nes the initial conditions of the
system, from a �le. This vector can be smaller than the actual vector
of initial unknowns, e.g. only initial positions can be loaded, while
the initial velocities are used from the initial conditions de�ned in
the elements.

Store Solution Vector Store the solution at the current time instance in a �le

Print CPU Statistics Prints the approximate usage of CPU power for single parts of the
multibody simulation (mass matrix, elastic forces, residual, linear
solver, Jacobian, etc.)

2.3.5.8 Results

PlotToolDialog Open the dialog for the plot tool which o�ers creating, editing,
scaling, labeling, and exporting plots from one or several sensor
signals of the actual simulation or imported from a solution �le.
See section 2.7 for details.

Plot Sensor Plot the output data of a sensor versus time

Plot 2 Sensors XY Create an XY-Plot from two individually chosen sensor signals

Sensor Watch Open a small window that shows the actual value of a sensor

2.3. HOTINT WINDOWS USER INTERFACE 71

Enable Output Enable output written into the output window. The output can
be deactivated in order to reduce the computation time for writing
into the edit window. This might be especially advantageous for
very long simulations.

Show Static Output Show the output in a separate window which does not update and
can be used to analyze or copy the output during the computation.

2.3.5.9 �?"

About Shows the �About"-dialog with some basic information about HOTINT

Help Opens the �Help"-contents

72 CHAPTER 2. HOTINT USER MANUAL

2.4 Creating your model in HOTINT

2.4.1 Introduction

Clearly, when working with multibody simulation tools, the subject of model setup and con�g-
uration is of central importance. In HOTINT, there are two possibilities to create a multibody
system:

• creating a model �le using the HOTINT script language (recommended)

• building a system via the graphical user interface (GUI) (not recommended)

Both options shall be illustrated brie�y in the following subsections.

2.4.2 Model setup via the script language

2.4.2.1 Script language

The HOTINT script language is a versatile tool which supports a variety of commands for (au-
tomatized) generation of multibody system components, such as bodies, loads, or constraints,
along with the de�nition of initial conditions and material parameters. Moreover, variables
and, in future versions, certain programming structures (e.g. loops or conditionals), can be
used together with a set of mathematical operations similarly to other programming languages.
Furthermore, just like the user-de�ned variables, also any HOTINT option or parameter may
be speci�ed via an input �le (cf. 2.5.1). Details on the handling of variables and some gen-
eral remarks with respect to the syntax of the script language are given below; for further
information on the HOTINT �le and folder structure see section 2.8.

Parser

The Parser used in HOTINT allows to use basic mathematical operations in the model �les.
Furthermore it is possible to copy parts of the data structure and work with previously de�ned
variables. More details are provided in the following.

Data structure

All assignments in the model �le of the form �left-hand side = right-hand side" where the left-
hand side names the variable or object that is assigned a value (identi�er), and the right-hand
side is a number, vector or an evaluable expression (value). Between identi�ers and values there
may be as many spaces or tabs as desired by the user. However, line breaks need to be set
according to the speci�cation.
A valid right hand side entry - or variable name - may include alphanumeric characters and
underscores, but no interpunctuation characters; comments start with the % character.

For example, the syntax for the de�nition of a �oating point variable with the identi�er �a"
and the value 3.0 ist simply

a = 3.0

After this de�nition, �a" can be used and referred to at any point below in the script, for instance
in the de�nition of another variable �b" combined with a basic mathematical operation

b = a

2.4. CREATING YOUR MODEL IN HOTINT 73

Optionally, the data entries can be arranged in named tree-structured containers which can be
de�ned using curly braces. Such containers may hold any set of data entries, and, moreover,
can be nested, i.e. can contain other containers as well. Access to each level and entry in
these data structures is possible using the �."-operator, similar to the access to (nested) class
members in Java or C++. See the following example for clari�cation:
Assume we want to describe a material � let us call it �m1" � using its elastic modulus �E" and
Poisson ratio �nu", we could create a container named �m1" via

m1

{

E = 1E11

nu = 0.45

}

and access the parameters then via

m1.E

or

m1.nu

at any point in the �le. Note that, within �m1", i.e., within one level in a container, the
parameters speci�ed there also may be referred to �directly", e.g. m1 E = 1E11 nu = 0.45
temp = 2*E
Now, if we had several materials �m1",�m2",�m3"..., as the one above, we could also de�ne a
nested structure �materials" � again a container � holding any of these material containers, for
instance

materials

{

m1

{

E = 1E11

nu = 0.45

}

m2

{

E = 1.5E11

nu = 0.47

}

m3

{

E = 2E11

nu = 0.46

}

}

where the access works analogously, e.g.

... = materials.m2.E

In summary, the entries on the right-hand side in an assignment can be of the following types,
depending on the type of the left-hand side:

74 CHAPTER 2. HOTINT USER MANUAL

bool = yes % boolean can be 'yes' or 'no'

integer = 1 % integer number

float = 0.628e1 % floating point number

string = "text" % string variable

vector = [1.,2.,3.,4.] % vector, with ',' as separator

matrix = [1.1,2.1;1.2,2.2] % matrix, with ',' and ';' as separators

Container = other_Container % entire tree

Constants and variables

As shown exemplarily above, it is possible to assign existing variables to new names. The
variables on the left-hand side can be accessed by their name and/or location in the data
structure. The Parser itself also includes intrinsic constants like pi.

a = 1

b = 2

SubContainer

{

b = 12

c = 13

}

roota = a % assign the content of variable a to roota

rootb = b % assign the content of variable b to rootb

subb = SubContainer.b % assign the content of variable b in the

% SubContainer to subb

Operations

It is also possible to perform simple mathematical operations like adding, multiplying and
accessing components on the right-hand side. These features only work on previously assigned
variables of the same type.

a = 2

b = 3

vec = [1,2,3]

mat = [1,2;3,4]

% VALID OPERATIONS:

c = a+b % adding two numbers

d = a*b % multiplying the numbers

vec2 = vec + vec % adding two vectors

two = vec[2] % access to component of a vector

three = vec[b] % access in succession

four = mat[2,2] % access to component of a vector

vec[2] = 7 % access in right hand side expression

% NOT WORKING:

vec3 = 3*vec % type mismatch

scalar = vec*vec % not implemented as operator

mat_succ = mat[mat[1,1], mat[1,2]]

% not implemented succession with multiple ','

2.4. CREATING YOUR MODEL IN HOTINT 75

Built-in functions

Several mathematical functions are implemented in the Parser and can be used in right-hand
side expressions. This feature includes

• power

a = sqr(3) % square

b = sqrt(a) % square root

c = 2\^3 % power

• exponential and logarithm

h1 = exp(5) % exponential

h2 = ln(h1) % logarithm base e

h3 = log(1000) % logarithm base e

h4 = log10(1000) % logarithm base 10

• trigonometric

e1 = sin(pi/2) % sinus function

f1 = cos(pi/2) % cosinus function

g1 = tan(pi/2) % tangens function

e2 = asin(1)

f2 = acos(1)

g2 = atan(1)

e3 = sinh(pi/2)

f3 = cosh(pi/2)

g3 = tanh(pi/2)

• unitarian operators and functions

b = -a % change sign

c = fact(10) % factorial

i1 = abs(-273.15) % absolute value

i2 = fabs(b) % absolute value

d1 = round(1.61803399) % round to nearest integer

d2 = floor(1.61803399) % next interger lower or equal

d3 = ceil(1.61803399) % next integer larger od equal

tam = transpose(mat) % transpose a matrix

h = heaviside(a) % heaviside function

• vectors

v = [1, 2] % vector v = [v1, v2, ...]

d4 = vabs(v) % sqrt((v1\^2+v2\^2+...))

d5 = varg(v) % atan2(v2, v1)

76 CHAPTER 2. HOTINT USER MANUAL

2.4.2.2 Model setup

Any consistent �le written in the script language (�HOTINT data input �le", with �.hid" �le-
name extension; cf. section 2.8) can be loaded and used in HOTINT. In short, it can contain any
setting of options for HOTINT itself (see section 2.5 or 3.13 for details), and fully describe the
multibody system. On the other hand, if a model is loaded and edited, or created completely
via the GUI (see the following subsection 2.4.3), and then saved to a �le, the output again
will be in terms of the script language. For a detailed description of all supported commands,
as well as corresponding example code fragments for illustration, please refer to the reference
manual under section 3.12. Sections 3.2�3.10, on the other hand, contain detailed information
about all multibody system components available in HOTINT, i.e. various types of elements
such as rigid bodies or structural �nite elements such as ANCF beam elements, connectors,
loads, sensors, and geometrical elements.

Concludingly, it should be pointed out that the best way to get to know how the whole thing
works probably is � as already mentioned � to start and experiment with ready-to-use example
�les (see also 2.2.2), which are located in the folder documentation/examples in your HOTINT
directory and for download at the homepage. See also the the minimal examples in the reference
manual.

2.4.3 Model setup via the graphical user interface

The generation and setup of a multibody system via the GUI is more or less self-explanatory:
Use the main menu entries �Edit" (cf. 2.3.5.4) and �Add Object" (cf. 2.3.5.3) to edit existing
or add new components to the system, specify parameters, and de�ne initial conditoins. The
model can be saved � as model �le in HOTINT script language � at any time. Before an object
is added or edited via the GUI, the model is saved automatically. The resulting �le is located
in the application path and named model_asv.hmc.
However, note that the full functionality and �exibility is only accessible via the direct use of
the script language.
For details concerning the settings for parameters of single multibody system components please
refer to the HOTINT reference manual, sections 3.2�3.10.

2.5. OPTIONS DIALOGS 77

2.5 Options Dialogs

2.5.1 Introduction

Via the Windows user interface a wide range of options can be speci�ed to customize HOTINT,
concerning, for instance, the graphics, solver or in- and output. The corresponding option
dialogs are documented in the following; for a full and detailed listing of all available options
refer to the reference manual, section 3.13.

Note that any of these options can be set just like any variable in a script language model �le
(cf. also subsection 2.4.2) by using its full data name (category + data name according to the
options reference). For example, if you would like to specify a maximum time step of 5 ms
within the model �le, you would just add the line (cf. �TimeInt" in the SolverOptions 3.13.1)

SolverOptions.Timeint.max_step_size = 0.005

In case of several settings within SolverOptions � or at any other level (such as �Timeint") for
that matter � you may use the syntax as with the nested �data containers" described in the
subsection 2.4.2. See the following example for illustration:

SolverOptions

{

end_time = 1 %1 second simulated time

Timeint

{

max_step_size = 1e-5 %max. step size for time integration

min_step_size = 1e-3*max_step_size %min. step size for time integration

}

Newton.max_modified_newton_steps = 20 %max. number of modified Newton steps

}

which would be equivalent to

SolverOptions.end_time = 1

SolverOptions.Timeint = max_step_size = 1e-5

SolverOptions.Timeint = min_step_size = 1e-3*max_step_size

SolverOptions.Newton.max_modified_newton_steps = 20

2.5.2 Hotint Options

Access: View → Edit Hotint Options

78 CHAPTER 2. HOTINT USER MANUAL

2.5.2.1 LoggingOptions

LoggingOptions Specify which, how detailed, and in what intervals information con-
cerning the model initialization and solution procedure should be
written to the Output-Window and Log-File, respectively

Solver Special con�gurations for log information concerning the solution
procedure

EDCParser Special con�gurations for log information concerning during the
parsing of the model data �le

2.5.2.2 GeneralOptions

Application A set of general options concerning the application itself. See �Ap-
plication" under 3.13.3 in the reference manual for details

Paths Access and set paths of the executable, for the input of input data,
and for video/single frame/image/PlotTool image exports

ModelFile See �ModelFile" under 3.13.3 in the reference manual for details

Measurement Choose units for angles and the legend and values of the contour
plot

OutputWindow Limit the maximum number of characters in the output window

SavedViewingOptions De�ne the �le names where viewing options shall be stored to when
clicking one of the buttons '1', '2' or '3'

2.5. OPTIONS DIALOGS 79

2.5.2.3 ViewingOptions

Animation Settings specifying how the animation via the Data Manager should
be performed

Misc Various settings concerning the redraw frequency during the simu-
lation, and the thickness or size of points and lines

GeomElements Settings concerning the GeomElements, e.g. line thickness

Origin Choose if and how the origin of the coordinate system should be
displayed

Grid Specify and show a background coordinate grid

CuttingPlane Detailed options for the con�guration of up to two cutting planes

StandardView De�ne standard views of the system via speci�cation of rotation
axes and corresponding angles

Bodies Options specifying how bodies in general, and rigid bodies and parti-
cles in particular, should be drawn and tagged; also includes settings
for velocity vectors

FiniteElements Settings concerning the drawing and coloring of the contour plot,
and of �nite elements and corresponding meshes and nodes

Connectors Options specifying if and how constraints should be displayed

Loads De�ne if and how loads should be displayed

Sensors De�ne if and how sensors should be displayed

OpenGL Settings for lighting, light sources, transparency, shininess, and color
intensity.

ApplicationWindow Size and position of main window of HOTINT

DataManager Settings concerning the data manager, e.g. how often the solution
is stored.

OutputWindow Settings concerning the output window (left of main window).

View3D De�ne the perspective and sensitivity of mouse movements.

2.5.2.4 PlotToolOptions

PlotToolOptions General setting for the Plot Tool (cf. also section 2.7), concerning
redrawing, scaling, and some size factors for labeling and axis/tick
styles

DataPoints Settings for marking of data points

View Con�guration of size and position of the plot window and the plot
itself

80 CHAPTER 2. HOTINT USER MANUAL

Watches Initial size of sensor watch windows

Axis Settings for ticks and labels for both x- and y-axis of the plots

Grid Speci�cation of line types for background coordinate grids in the
plots

Legend Speci�cation if and where a legend should be shown

SavePictures Options concerning the export of image �les from a plot

2.5.3 Viewing Options

Access: View → Viewing Options

Viewing options allow changing some of the parameters for visualizing the multibody model:

redraw Change the time between subsequent redraws of the model during
the simulation in order to speed up the simulation

draw origin Draw the origin (0,0,0) and the orientation of the global coordinate
system

origin size Length of the drawn axis of the origin

show contact points If checked, contact points are shown

2.5. OPTIONS DIALOGS 81

draw texts in front of bodies
This option will draw texts much closer to the viewer such that they
are visible even if they are hidden in reality by an object. However,
due to distortion, the texts might appear at slightly di�erent posi-
tions.

animation Your animation will run faster if you draw e.g. only every 10 or 50
frames of the stored computation steps

animate from beginning
Pressing the animation button will always move to the beginning of
the simulation

OpenGL window size For screen shots and animation, this lets you adjust the size of the
visualization screen in pixels. Best results are obtained if you chose
standard resolutions such as 640x480, 800x600, etc.

show startup banner If checked, the startup banner is shown

grid Chose a grid type (orientation), the grid size (length = width),
grid step and a grid reference point in order to show a grid for
determining positions of the selected model

standard views The selection of these parameters allows you to de�ne a standard
rotation with respect to the global axis 1, 2 and 3 (= x,y,z) by
certain angles. The standard view is x-horizontal and y-vertical, z
points out of the x/y plane.

cutting plane De�ne a cutting plane by its normal vector and distance from the
origin in the direction of the normal; any part of the system lying
beyond that plane (in direction of the normal) is cut, i.e. not dis-
played. A second cutting plane and additional con�gurations can
be de�ned and accessed via the menu View → Edit Hotint Options
→ ViewingOptions → CuttingPlane.

2.5.4 OpenGL Drawing Options

Access: View → OpenGL Drawing Options

82 CHAPTER 2. HOTINT USER MANUAL

The OpenGL graphics includes some settings in order to customize the drawing. Yet it is not
possible to choose the surface property of a single body, but the material is set for all bodies
to the same values, like shininess, transparency, specular color. Sometimes a speci�c lighting
model improves the visibility of an object or the understanding of its geometric complexity.
Otherwise the default values can be kept.
There are two independent light sources included, it is possible to activate only one or both
lights.

enable light Enable the light source

include light position Include light position in the computation of the intensity. If not
checked, objects that are farther away from the light will have the
same lighting conditions as near objects

ambient Percentage of ambient light, the intensity of the light is independent
of the direction of the light

di�use Percentage of di�use light, the brightness is dependent on the posi-
tion and orientation of the surface with respect to the light source

specular light Percentage of specular light, creates highlight on surfaces like pol-
ished metal or mirror-like surfaces.

position Position of the light source

transparency The percentage de�nes the transparency of the material where 0% is
not transparent and 100% is fully transparent. Note that the trans-
parency is dependent on the order of the objects which are currently

2.5. OPTIONS DIALOGS 83

not sorted in HOTINT. This can cause strange transparency e�ects
in meshed objects.

shininess This factor de�nes the radius of shininess of the specular light,
100%=small radius, 0%= very large radius

specular color intensity
De�nes the amount of specular color re�ected by the material

immediate apply If this is activated, all changes in the dialog are immediately applied
to the graphics window

smooth shade model Use this to activate smooth shading, which improves the drawing of
round surfaces. Otherwise, �at shading is activated (piecewise �at
polygons)

enable lighting If not activated, the brightness is not depending on the position of
the light with respect to the surface

2.5.5 Finite Element Drawing Options

Access: View → FE Drawing Options

2.5.5.1 Contour plot options

Maximum value If activated, the maximum value of the contour plot is limited to
the speci�ed value (in the speci�ed units)

Minimum value If activated, the minimum value of the contour plot is limited to the
speci�ed value (in the speci�ed units)

Adjust range Auto-adjust the range of the contour plot

84 CHAPTER 2. HOTINT USER MANUAL

auto If activated, the minimum and/or maximum value of the contour
plot is chosen automatically, unless it is explicitly speci�ed in the
Minimum/Maximum value setting.

color tiling The number of di�erent colors in the contour iso-plot. The max-
imum is 32 di�erent colors, a larger value leads to a continuous
color

invert colors The color bar is inverted

grey mode Only black to white colors are used

nonlinear scale A nonlinear scale of colors is used. This can be interesting for Mises
comparison plots e.g. with edge singularities

Shrinking factor The size of the �nite elements is multiplied with this factor. Use a
value of 1 for displaying the original size and e.g. 0.9 in order to
display a reduced view of the elements

Deformation scale factor
A factor by which all deformations are magni�ed in the graphic
representation. For better visualization of small deformations you
may use a large scale factor

Show variable The �eld variable chosen from this list is diplayed in the contour
plot.

Components If a non-scalar �eld variable has been chosen, here the absolute
value (magnitude) or component of the �eld variable which should
be displayed in the contour plot can be chosen.

Units Select units for the chosen �eld variable.

plot interpolated If activated, �eld variables de�ned on a �nite element mesh are
plotted interpolated in the contour plot

animate scaling factor In order to view eigenmodes or static deformation, the scaling factor
can be animated

scale rigid body displacements
If activated, all rigid body displacements are scaled by the factor
speci�ed in the �eld �Deformation scale factor� (in the graphic rep-
resentation)

2.5.5.2 Finite element drawing

show mesh Shows the mesh outlines

show modes If checked, modes are shown via Chladni isolines

show solution Shows the mesh surface

draw �at elements If checked, draw plate elements as �at polygons, otherwise draw
plate elements with speci�ed thickness

2.5. OPTIONS DIALOGS 85

show nodes Shows the nodes of the mesh

show node numbers Displays the numbers corresponding to the nodes

draw surface elements only
If checked, only �nite elements on the surface of a mesh are drawn

elem line thickness Line thickness for element outline

node size Size of nodes

axis tiling Tiling speci�es the number of quadrangles to draw a curved beam
or plate element in axial direction

axis resolution Resolution speci�es the number of quadrangles used to draw the
contour solution of a beam or plate element in axial direction

cross-section resolution
Resolution speci�es the number of quadrangles used to draw the
contour solution of a beam or plate element within the transverse
direction (discretization of the cross-section)

solid FE resolution Resolution (tiling) used to approximate one solid �nite element (tri-
angle, quadrangle, hexahedral, tetrahedral, etc.)

2.5.6 Body / Joint Options

Access: View → Body/Joint Options

86 CHAPTER 2. HOTINT USER MANUAL

2.5.6.1 General

use degrees instead of rad.
Checked = use degrees (0� - 360�) instead of radiant (0 - 2π) for
the input of angles and angular velocities. The stored values are
always in radiant.

rotation input Select input mode for spatial rotations: Euler angles = rotation
about Z-X-Z, RotationXYZ = rotation about X-Y-Z, Euler param-
eters = direct input of 4 Euler parameters

show loads If activated, all loads in the multibody system are shown

load draw size Speci�cation of the size of the displayed loads

2.5.6.2 Rigid Bodies

show body numbers Checked = display element number of the body

show body local frame Checked = draw local frame of body

local frame size Drawing size of local body frame

bodies transparent Checked = draw bodies transparent with factor de�ned in OpenGL
options

draw bodies smooth Interpolate GeomElement meshes with increased smoothness

show body outline Checked = draw the outline (edges) of a body or GeomElement

show body faces Checked = draw the surface of a body or GeomElement→ if �show
body outline� and �show body faces� is unchecked, the bodies are
not drawn

2.5.6.3 Connectors

show connectors Checked = draw connectors

connectors transparent
Checked = draw connectors transparent with a factor de�ned in
OpenGL options

show connector numbers
Checked = display element number of the connectors

show control objects Checked = control objects are drawn.

2.5.6.4 Sensors

show senors Checked = show sensors

sensors transparent Checked = draw sensors transparent with factor de�ned in OpenGL
options

sensor size Size of sensor local axes

2.5. OPTIONS DIALOGS 87

2.5.7 Data Manager

Access: View → Show Data Manager

The Data Manager is used to draw the solution at certain time instants where the data has been
stored internally. The data is stored either in internal memory or written to the hard disk in the
output directory, depending on what was speci�ed for the option Solver Options → Solution
→ store_data_to_�les. Make sure to activate this option in cases where the simulation data
would exceed the available main memory. The sliding bar can be used to view certain stored
data units and analyze the solution, which is possible even during computation. It is preferable
to set the redraw time of the model view very high (→ Viewing options → Redraw) in order
to be able to smoothly animate the solution during a long computation. The analysis of the
solution during the computation can help to detect model input or convergence errors at an
early stage or allows you to run your simulation in�nitely (set end time e.g. to 1e6) and to stop
the simulation at the point of your consideration.
The button �Run animation� starts the animation either from the beginning (data unit 1) if
Display Options → Animate from beginning is set, or otherwise from the current position of
the slider bar.
There are two data formats: The .txt format which stores data in pure text (space-separated
data):
line 1: Version identi�er
line 2: checksums, �rst value = size of data, second value = checksum
line 3: number of available data units
line 4: �rst line of data unit: time, size of data, number1, number2,
The .dat format uses windows serialize functions and can not be edited.

Data unit Actual data unit drawn

time Actual time instant drawn

delay Delay used between frames when running animations

Run animation Start animation

Load from a �le Load a stored solution for animation. Note that only the stored
solution that belongs to the same multibody model can be loaded.

Save to a �le Save the data units into a �le. You can choose to save in .txt format
which saves the data of each time point in one line (row), or in .dat
format. The dat format is considerably faster and smaller in size.

88 CHAPTER 2. HOTINT USER MANUAL

Save special Save selected data units into a �le: specify �rst data unit, last data
unit and the increment between stored data units. The data can
be stored in .txt, .dat and also as .sol �le. Choosing the same
number for the �rst and last data unit allows to use this solution as
a .sol solution which can be used as an initial vector for a further
computation.

2.5.8 Solver Options

Access: Computation → Edit Solver Options

2.5.8.1 SolverOptions

SolverOptions Set start and end time, and choose between dynamic and static
computation

Timeint Settings concerning the time integration, such as minimum and
maximum step size, the maximum index of the di�erential algebraic
equations, or the time integration scheme

2.5. OPTIONS DIALOGS 89

Static Settings of the static solver, e.g. concerning load increments

Newton Parameters which specify the accuracy goal of the Newton solver,
and other options regarding the latter (e.g. settings for numeri-
cal di�erentiation, maximum number of modi�ed or full Newton
steps,...)

Eigensolver Settings concerning the modal (eigensystem) analysis, such as num-
ber of eigenvalues and maximum iterations, the accuracy goal, etc.

Linalg Specify whether to use s sparse solver for the solution of the linear
systems in the Newton procedure

Discontinuous Settings regarding discontinuous systems (e.g. due to friction, con-
tact, etc.)

Solution A set of options de�ning how, in which intervals, and where the
solution data and data of the parameter variation procedure should
be stored

Element Specify whether to store intermediate �nite element matrices, and
to compute the Jacobians elementwise

ParameterVariation Settings concerning the parameter variation procedure: (de)activate,
inital and �nal value, arithmetic or geometric step size, and the path
and variable name of the parameter to be varied in the model data
input �le

Optimization Settings regarding the optimization procedure: (de)activate, choice
of method, settings for the respective parameters

Sensitivity Specify if and how the sensitivity of sensor values with respect to
certain parameters should be analysed

Misc Various settings regarding, for instance, a default model data �le,
or multithreading in the computation

90 CHAPTER 2. HOTINT USER MANUAL

2.6 Data visualization and graphics export

2.7 Visualization Tool

In HOTINT it is possible to visualize the simulation data with an integrated tool.
The Visualization Tool consists of two windows, one containing the most important control
elements and a separate window for the plot itself. Both Windows can be blinded out if
required.
One can display the data directly from the current simulation run or from a �le from a previous
simulation. The data can be displayed as y(t) using a single data set and also as y(x) when
two datasets are combined. The main advantages of using an integrated tool are that we are
able to display the data on the �y and create serviceable graphs automatically.
As in most visualization tools each data line can be assigned a color, linestyle and a marker
shape. Together with title, labels, positions and other options the graphs' layout information
may be stored for later use. As mentioned above a dialog provides access to the frequently used
options. To keep the dialog slim, for both windows an additional context menu is implemented
and some hardly ever used options are only available via the full options menu.
The tool is intended for visualization only, so we do not intend to include curve �tting routines
to it. Still it is possible to create a consistent dataset for mathematical functions and add those
to the graph. For a deep analysis of the result like curve �tting an external program must be
used.
The model itself can be programmed such that for selected sensor values a visualization window
is automatically created when the model is loaded. For simulations with multiple cycles it is
possible to generate graphs with identical properties for comparison.

Figure 2.2: PlotToolDialog

2.7.0.2 Data Sources

The top section of the Dialog is dedicated to the selection of the data source. The left side
allows to pick either the Sensors of the current model or an external (solution) �le, most likely
a soulition �le from an other computation. The right part displays the available datasets. With
the Buttons any highlighted item in the left list can be added to the right list of drawn lines.
It is possible to plot a line over time (T/Y), but also combining two sensors for a (X/Y) graph.
In this case exactly two lines must be selected in the list.

2.7. VISUALIZATION TOOL 91

2.7.0.3 Graph Window

The middle section of the Dialog controls the content of the graph window, on the left side the
caption and axis labels as well as the range of the plotted data can be chosen. On the right
hand side the proberties of an individual line can be changed. Note: the line style can only be
changed for thin lines (restriction from Windows Draw function). The general options control
the redraw intervals and whether the range is adapted to the full range during a computation.

Figure 2.3: PlotToolGraph. Displays a datasets over time

2.7.0.4 Export

It is possible to export the content of the graph window to a �le. Destination folder and
�lename can be de�ned in the textboxes. The resolution and all formats for the output can
also be chosen.

2.7.0.5 Other Buttons

The remaining individual Buttons in the Dialog have the following e�ect:

Button description

Show Graph reactivates the Graph Window
Hide hides the control dialog (reactivate in the Status Bar of the Graph Window)
Scale Graph computes the range of the full dataset and rescales the axes accordingly
Redraw performs a redraw operation manually (considers auto-rescale �ag)
Axis Equal forces equal scaling of both axes (mostly used for X-Y-Plots)
Print Graph print dialog for the Graph Window
Update Options Applies changes made in the HOTINT Options Dialog

The options available in control part of the dialog are only a selection the entire set. Many
more are available in the HOTINT Options Dialog, in the subtree PlotToolOptions.

92 CHAPTER 2. HOTINT USER MANUAL

Figure 2.4: PlotToolOptions. In this Dialog many settings for the Graph can be done here, e.g.
sizes, grid, ...

2.7.1 How to record a video

In order to create a video of your simulation perform the following steps:

• Run the simulation

• Be sure that enough data is stored in data manager

• Create a folder where the image �les shall be stored

• Viewing options: set resolution to the desired value (e.g. 1024x768)

• Set all drawing options (with or without mesh, sensors, loads, etc.)

• Remove (drag+drop) all windows (data-manager, options-dialog, etc.) from the main win-
dow

• Click on the video�camera button (cf. subsection 2.3.4) to open the �Record frames"-dialog

• Once you have activated the image recorder, images are written at every update of the
drawing window, even when the simulation has been stopped and you just resize or move
the window

• When you are setting the path where the images will be stored, be sure that the folder already
exists and that your path ends with a backslash (e.g. D:\images\ and not D:\images)

2.7. VISUALIZATION TOOL 93

• Choose the desired image �le format (JPEG, BMP, or PNG)

• Click �Run animation� in the data manager

• Image �les are now stored in the speci�ed folder

• Use VideoMach, VirtualDub or comparable software to create a video from the single video
frames

Additional hints:

• For video frames export, it is recommended to turn o� any screen-saver, start your simulation
(or load it from the database) and do not touch it until it has been �nished.

• Usually it is preferable to run the simulation �rst and then use the stored data for the export
of images. The whole procedure normally takes a several minutes, which, of course, depends
on the complexity of the scene (e.g. number of elements) and the number of video frames.

• Clicking on the button left from the video�camera button lets you store single images into
the directory speci�ed above (see also subsection 2.3.4).

• If you are using Windows 7 you have to switch o� �aero-design".

94 CHAPTER 2. HOTINT USER MANUAL

2.8 HOTINT File and Folder Structure

In this chapter, the �le structure for saving multibody system models is described. The multi-
body system can be de�ned in an editable (�.hid�) format which allows the editing and creation
of such �les manually or automatically with external programs. However, one needs to be
cautious when creating such �les, because errors might lead to unexpected results!

The best way to get to know the �le structure is to open an existing example �le. Details on
the HOTINT script language used in those �les are provided in section 2.4.2.1.

2.8.1 Input Files

The new version of a text-�le containing script language is called Hotint Input Data �le - with
�le extension (�.hid�). The �le can be opened via the menu with �Open MBS�. The �lename is
then stored in the variable
�GeneralOptions.ModelFile.hotint_data_�lename�. Using the button �Reload MBS� it is pos-
sible to open this model again, which allows the user to edit the model in an editor and check
the correct implementation with just one click. Alternatively, the Hotint Input Data �le can
be committed to �hotint.exe� by the drag & drop function of the mouse. If the �letype (�.hid�)
is linked with the application �hotint.exe�, the Hotint Input Data �le can be opened also by
doubleclick of the mouse. A third variant to commit the Hotint Input Data �le to HOTINT is
to commit the Hotint Input Data �le in the DOS-command line e.g. �hotint.exe �lename.hid�.
In all three cases, the directory and �lename is stored in the previously described Hotint Op-
tions1. The input �le has to contain the variable �HOTINT_data_�le_version� before the �rst
command. HOTINT uses this variable to check, if the (old) input �le still can be used with
the current (new) version of HOTINT.

2.8.2 Folder Structure

The paths are collected in the Options �GeneralOptions.Paths�. Most of them are located in
the dialog �Edit Hotint Options�:

• Application path: path of the application (�hotint.exe�).

• Record frames path: path for storage of single frames for creating animations (modify in
dialog �Video frames recording/Path to the image�).

• Hotint input data path: path of the Hotint Data Input �le (�.hid�).

• Sensor output path: path of the solution �les from sensors (in dialog �Edit Solver Options�).

1Note: the Include-command of the script language searches a �le with absolute paths and afterwards relative
to the previously described path of the Hotint Data Input �le.

Chapter 3

HOTINT Reference Manual

3.1 Preface

In this reference manual all available objects and options are described.

3.1.1 Examples

If there is provided a short example for an object, keep in mind that the examples may not
have any physical meaning. The examples just show how to add the object to the system.

3.1.2 Data objects

The description of each object contains a table called Data objects. These are the variables,
that can be changed in the GUI or set in the script language. Variables marked with R are
readonly and can not be changed by the user.

3.1.3 Observable FieldVariables

If an object provides �eld variables, they are listed in the documentation of the object. How
to measure these variables with a FVElementSensor is described in section 3.9.1.

3.1.4 Observable special values

If an object provides special (internal) values, they are listed in the documentation of the object.
How to measure these variables with a ElementSensor is described in section 3.9.2.

3.1.5 Controllable special values

If an object provides special (internal) values, that can be changed during runtime, they are
listed in the documentation of the object. How to change these variables with a IOElement-
DataModi�er is described in section 3.4.16.

95

96 CHAPTER 3. HOTINT REFERENCE MANUAL

3.2 Element

These elements are available:

• Mass1D, 3.2.1

• Rotor1D, 3.2.2

• Mass2D, 3.2.3

• Rigid2D, 3.2.4

• Mass3D, 3.2.5

• NodalDiskMass3D, 3.2.6

• Rigid3D, 3.2.7

• Rigid3DKardan, 3.2.8

• Rigid3DMinCoord, 3.2.9

• LinearBeam3D, 3.2.10

• RotorBeamXAxis, 3.2.11

• ANCFBeamShear3DLinear, 3.2.12

• ANCFBeamShear3DQuadratic, 3.2.13

• ANCFBeam3DTorsion, 3.2.14

Note:
In HOTINT several classes are treated as 'elements'. Connectors and control elements are also
'elements', and can therefore be edited and deleted in the GUI with the menu items of the
elements.
In the script language the command AddElement is just available for the elements in the list
above, but not for connectors or control elements.

3.2.1 Mass1D

Short description

A point mass in one dimensions with 1 position coordinate. The computation of the dynamics
of the point mass is extremely simple. The Mass1D can be used for a lot of applications which
can be represented by the same type of equations. If you interpret the 'mass' to be 'moment
of inertia' and the 'position' to be 'angle', then you can realize a 1D rotatory element as well.

Degrees of freedom

1 degree of freedom: the position in x-direction

3.2. ELEMENT 97

Geometry

The global position pglob of a local point p is computed as

pglob = p0 + A

 x
0
0

+ p

 (3.1)

with the reference_position p0 and the rotation_matrix A.

Equations

mẍ = F (3.2)

with the mass m and the force F .

Limitations

The mass has no rotations, thus external moments can not be applied. The transformation of
local to global coordinates is based on a translation, e.g. the global mass position is added to
the local coordinates.

Figure 3.1: Mass1D

Data objects of Mass1D:

Data name type R default description

element_type string "Mass1D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Mass1D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty

98 CHAPTER 3. HOTINT REFERENCE MANUAL

Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.drawing_tiling integer 8 tiling of circle/sphere to represent Mass1D; the

drawing_tiling should be set small in order to im-
prove e�ciency, but large for nice graphical rep-
resenations

Graphics.radius double 0.1 drawing radius of mass
Graphics.
reference_position

vector [0, 0, 0] Reference point for transformation of 1D objects
to 3D; p = [X, Y, Z]

Graphics.rotation_matrix matrix [1, 0, 0; 0, 1, 0;
0, 0, 1] Rotation matrix for transformation of 1D objects

to 3D
Initialization
Initialization.
initial_position

vector [0] initial values for position [x]

Initialization.
initial_velocity

vector [0] initial values for velocity [v]

Physics
Physics.mass double 0 total mass of point mass

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, magnitude
displacement x, magnitude
velocity x, magnitude
acceleration x, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-2
Internal.second_order_variable second order variables of the element. range: 1-1
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-1

3.2. ELEMENT 99

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCoordConstraint, 3.3.4,
FrictionConstraint, 3.3.8, Contact1D, 3.3.9,

Example

see �le Mass1D.txt

force

{

load_type = "GCLoad"

load_value= 1

}

nLoad=AddLoad(force)

Element1

{

element_type= "Mass1D"

loads= [nLoad]

Physics.mass= 1

}

nElement = AddElement(Element1)

senspos

{

sensor_type= "FVElementSensor"

element_number= nElement

field_variable= "position"

component= "x"

}

AddSensor(senspos)

3.2.2 Rotor1D

Short description

A rotor with 1 degree of freedom (the rotation). Mathematically implemented like Mass1D but
di�erent geometric representation.

Degrees of freedom

1 degree of freedom: the rotation

Geometry

The global position pglob of a local point p is computed as

pglob = p0 + A0Ap (3.3)

100 CHAPTER 3. HOTINT REFERENCE MANUAL

with the reference_position p0, the constant rotation_matrix A0 and the non-constant rotation
matrix

A =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 (3.4)

Equations

Iϕ̈ = M (3.5)

with the moment of inertia I and the torque M .

Figure 3.2: Rotor1D is represented as rotating disc.

Data objects of Rotor1D:

Data name type R default description

element_type string "Rotor1D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rotor1D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

3.2. ELEMENT 101

Graphics.show_element bool 1 Flag to draw element
Graphics.
reference_position

vector [0, 0, 0] Reference point for transformation of 1D objects
to 3D; p = [X, Y, Z]

Graphics.rotation_matrix matrix [1, 0, 0; 0, 1, 0;
0, 0, 1] Rotation matrix for transformation of 1D objects

to 3D
Graphics.radius double 0.1 radius of rotor
Graphics.length double 0.2 length of rotor
Initialization
Initialization.
initial_rotation

vector [0] initial value for rotation

Initialization.
initial_angular_velocity

vector [0] initial value for angular velocity

Physics
Physics.
moment_of_inertia

double 0 mass moment of inertia in kg*m*m

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

bryant_angle x, magnitude
angular_velocity x, magnitude
angular_acceleration x, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-2
Internal.second_order_variable second order variables of the element. range: 1-1
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-1

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCoordConstraint, 3.3.4,
FrictionConstraint, 3.3.8, Contact1D, 3.3.9,

102 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le Rotor1D.txt

force

{

load_type = "GCLoad"

load_value= 1

}

nLoad=AddLoad(force)

Element1

{

element_type= "Rotor1D"

loads= [nLoad]

Physics.moment_of_inertia= 1

}

nElement = AddElement(Element1)

senspos

{

sensor_type= "FVElementSensor"

element_number= nElement

field_variable= "bryant_angle"

component= "x"

}

AddSensor(senspos)

3.2.3 Mass2D

Short description

A point mass in two dimensions with 2 position coordinates. The computation of the dynamics
of the point mass is extremely simple, thus the Mass2D can be used for many body simulations
(e.g. particles).

Degrees of freedom

2 degrees of freedom: the position in 2 coordinates

Equations

mẍ = F (3.6)

Limitations

The mass has no rotations, thus external moments can not be applied. The transformation of
local to global coordinates is based on a translation, i.e., the global mass position is added to
the local coordinates.

3.2. ELEMENT 103

Figure 3.3: Mass2D

Data objects of Mass2D:

Data name type R default description

element_type string "Mass2D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Mass2D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.
reference_position

vector [0, 0, 0] Reference point for transformation of planar ob-
jects to 3D; p = [X, Y, Z]

Graphics.rotation_matrix matrix [1, 0, 0; 0, 1, 0;
0, 0, 1] Rotation matrix for transformation of planar ob-

jects to 3D
Graphics.drawing_tiling integer 8 tiling of circle/sphere to represent Mass2D; the

drawing_tiling should be set small in order to im-
prove e�ciency, but large for nice graphical rep-
resentations

Graphics.radius double 0.1 drawing radius of mass
Initialization
Initialization.
initial_position

vector [0, 0] initial values for position [x,y]

Initialization.
initial_velocity

vector [0, 0] initial values for velocity [vx,vy]

104 CHAPTER 3. HOTINT REFERENCE MANUAL

Physics
Physics.mass double 0 total mass of point mass

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, magnitude
displacement x, y, magnitude
velocity x, y, magnitude
acceleration x, y, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-4
Internal.second_order_variable second order variables of the element. range: 1-2
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-2

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCoordConstraint, 3.3.4,
FrictionConstraint, 3.3.8, Contact1D, 3.3.9, SpringDamperActuator2D, 3.3.19, PointJoint2D,
3.3.20,

Example

see �le mass2D.txt

Load1

{

load_type= "GCLoad" % generalized force (here: actual force)

generalized_coordinate= 2 % corresponding generalized coordinate

% (here: y-direction)

load_value= -0.02

}

nLoad = AddLoad(Load1)

3.2. ELEMENT 105

Element1

{

element_type= "Mass2D"

loads= [nLoad]

Initialization.initial_position= [0, 1]

Physics.mass= 1

}

nElement = AddElement(Element1)

Sensor1

{

name= "global y-position"

sensor_type= "FVElementSensor"

element_number= nElement

field_variable= "position"

component= "y"

}

AddSensor(Sensor1)

3.2.4 Rigid2D

Short description

A rigid body in 2D.

Degrees of freedom

The �rst 2 degrees of freedom are those describing the position in the xy-plane. The rotation
around the local z-axis is parameterized with the third degree of freedom.

Geometry

The center of gravity, S, is de�ned by the vector initial_position, which is in global coordinates.
The rotation of the body-�xed local coordinate system w.r.t. the global coordiante system is
de�ned by the variable initial_rotation.
In order to de�ne the position of a point P of the element, e.g. for connectors or sensors, the
local coordinate system is used. The reference point is the center of mass, S, so the values of
the local coordinates can be positive or negative.

106 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.4: Rigid2D

Data objects of Rigid2D:

Data name type R default description

element_type string "Rigid2D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid2D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.
reference_position

vector [0, 0, 0] Reference point for transformation of planar ob-
jects to 3D; p = [X, Y, Z]

Graphics.rotation_matrix matrix [1, 0, 0; 0, 1, 0;
0, 0, 1] Rotation matrix for transformation of planar ob-

jects to 3D
Graphics.
body_dimensions

vector [0.1, 0.1, 0.01]
Dimensions of a regular cube [L_x, L_y, (L_z)]

Physics
Physics.
moment_of_inertia

double 1.67e-007 [I_ZZ]

Physics.mass double 0.0001 mass of the body in kg
Initialization
Initialization.
initial_position

vector [0, 0] [X, Y]

Initialization.
initial_velocity

vector [0, 0] [vX, vY]

Initialization.
initial_rotation

vector [0] rotation in rad

3.2. ELEMENT 107

Initialization.
initial_angular_velocity

vector [0] Angular velocity in rad/s

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, magnitude
displacement x, y, magnitude
velocity x, y, magnitude
bryant_angle x, magnitude
angular_velocity x, magnitude
acceleration x, y, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-6
Internal.second_order_variable second order variables of the element. range: 1-3
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-3

Suitable Connectors:

The following connectors can be used to constrain the element:
CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCoordConstraint, 3.3.4,
FrictionConstraint, 3.3.8, Contact1D, 3.3.9, SpringDamperActuator2D, 3.3.19, PointJoint2D,
3.3.20,

Example

see �le Rigid2D.txt

L_x = 0.10 % length

L_y = 0.20 % width

L_z = 0.01 % height (for drawing and computation of mass)

density= 7850

myRigid2D % add rigid body

108 CHAPTER 3. HOTINT REFERENCE MANUAL

{

element_type= "Rigid2D" %specification of element type.

name= "my first two-dimensional rigid body" %name of the element

Graphics.body_dimensions = [L_x, L_y, 0]

Physics

{

mass= density*L_x*L_y*L_z

moment_of_inertia= 1.0/12.0*mass*(L_x^2+L_y^2)

}

Initialization

{

initial_position= [0, 0] %[X, Y]

initial_rotation= [0.0] % rot1_Z in rad

initial_velocity= [0, 0] %[X, Y]

initial_angular_velocity= [pi*0.5] %rad/s

}

}

nElement = AddElement(myRigid2D)

3.2.5 Mass3D

Short description

A point mass in three dimensions with 3 position coordinates. The computation of the dynamics
of the point mass is extremely simple, thus the Mass3D can be used for many body simulations
(e.g. particles).

Degrees of freedom

3 degrees of freedom: the position in 3 coordinates

Limitations

The mass has no rotations, thus external moments can not be applied. The transformation of
local to global coordinates is based on a translation, e.g. the global mass position is added to
the local coordinates.

Data objects of Mass3D:

Data name type R default description

element_type string "Mass3D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Mass3D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

3.2. ELEMENT 109

Graphics.show_element bool 1 Flag to draw element
Graphics.drawing_tiling integer 6 tiling of circle/sphere to represent Sphere
Graphics.radius double 0.1 drawing radius of mass
Initialization
Initialization.
initial_position

vector [0, 0, 0] coordinates for initial position of mass [X Y Z]

Initialization.
initial_velocity

vector [0, 0, 0] coordinates for initial velocity of mass [X Y Z]

Physics
Physics.mass double 0 total mass of point mass

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
velocity x, y, z, magnitude
acceleration x, y, z, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-6
Internal.second_order_variable second order variables of the element. range: 1-3
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-3

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, Rope3D, 3.3.7, FrictionConstraint, 3.3.8, Con-
tact1D, 3.3.9, SpringDamperActuator, 3.3.16, RigidLink, 3.3.17,

Example

see �le AddElement.txt

emptyMass3D

110 CHAPTER 3. HOTINT REFERENCE MANUAL

{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement(emptyMass3D)

3.2.6 NodalDiskMass3D

Short description

This is a disk mass for the purpose of rotordynamics applications and should be used together
with the RotorBeamXAxis element.

Nodes

The DOF of the disk element are stored in a node. To create a new disk element the user has
to de�ne a 'Node3DR123' node. This node type has 6 DOF. The �rst 3 DOF describe the node
displacement (x, y, z) w.r.t local rotor element coordinate system, the last 3 DOF are angles of
rotation (φx, φy, φz) w.r.t local rotor element coordinate system. The rotation about the local
x-axis is considered as large, the rotations about the local y and z-axes are considered as small
(linearized angles).

Figure 3.5: NodalDiskMass3D

Data objects of NodalDiskMass3D:

Data name type R default description

element_type string "NodalDiskMass3D"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "NodalDiskMass3D"
name of the element

element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty

3.2. ELEMENT 111

Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.drawing_tiling integer 6 tiling of circle/sphere to represent Sphere
Graphics.thickness double 0.1 drawing thickness of disk mass
Graphics.radius double 0 drawing radius of disk mass
Physics
Physics.
full_mass_matrix

bool 1 set to 1 if in�uence of tilted mass should be con-
sidered in the mass matrix

Physics.
moment_of_inertia

vector [1, 1, 1] moments of inertia of the disk

Physics.mass double 0 total mass of disk
node_number integer 1 node number to which the mass refers

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
velocity x, y, z, magnitude
acceleration x, y, z, magnitude
angular_velocity x, y, z, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-12
Internal.second_order_variable second order variables of the element. range: 1-6
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-6

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, Multi-
CoordConstraint, 3.3.4, Rope3D, 3.3.7, FrictionConstraint, 3.3.8, Contact1D, 3.3.9, Gener-
icBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, PrismaticJoint, 3.3.12, RigidJoint, 3.3.14, Cylindri-
calJoint, 3.3.15, SpringDamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperAc-
tuator, 3.3.18,

112 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le NodalDiskMass3D.txt

% define a node

node

{

node_type = "Node3DR123"

Geometry

{

reference_position = [0,0,0]

reference_rot_angles = [0,0,0]

}

}

n = AddNode(node)

disk

{

element_type= "NodalDiskMass3D"

Graphics.radius= 0.2 %radius

Physics

{

moment_of_inertia= [1, 1, 1] %moments of inertia

mass= 1 %total mass

}

node_number= n %node number to which the mass refers

}

nDisk = AddElement(disk)

3.2.7 Rigid3D

Short description

A rigid body in 3D.

Degrees of freedom

The �rst 3 degrees of freedom are those describing the position. The rotation is parameterized
with 4 degrees of freedom and one additional algebraic equation.

Geometry

The center of gravity, S, is de�ned by the vector initial_position, which is in global coordi-
nates, see �gure 3.7. The rotation of the body-�xed local coordinate system w.r.t. the global
coordiante system is de�ned by the Matrix initial_rotation.
In order to de�ne the position of a point P of the element, e.g. for connectors or sensors, the
local coordinate system is used. The reference point is the center of mass, S, so the values of
the local coordinates can be positive or negative.

3.2. ELEMENT 113

Figure 3.6: Rigid3D

Figure 3.7: local and global coordinate system for a Rigid3D

Data objects of Rigid3D:

Data name type R default description

element_type string "Rigid3D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid3D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty

114 CHAPTER 3. HOTINT REFERENCE MANUAL

Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.
body_dimensions

vector [1, 1, 1] Dimensions of a regular cube [L_x, L_y, L_z] in
m

Physics
Physics.
moment_of_inertia

matrix [0.167, 0, 0; 0,
0.167, 0; 0, 0,
0.167]

[I_XX,I_XY,I_XZ; ...]

Physics.volume double 1 volume of the body in m*m*m
Physics.mass double 1 mass of the body in kg
Initialization
Initialization.
initial_position

vector [0, 0, 0] [X, Y, Z]

Initialization.
initial_velocity

vector [0, 0, 0] [X, Y, Z]

Initialization.
initial_rotation

vector [0, 0, 0] 3 consecutive rotations (global rotation axes):
[rot3_X, rot2_Y, rot1_Z] in rad

Initialization.
initial_angular_velocity

vector [0, 0, 0] Angular velocity vector in global coordinates:
[ang_X, ang_Y, ang_Z] in rad/s

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
velocity x, y, z, magnitude
bryant_angle x, y, z, magnitude
angular_velocity x, y, z, magnitude
angular_velocity_local_basis x, y, z, magnitude
acceleration x, y, z, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-15
Internal.second_order_variable second order variables of the element. range: 1-7
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-7
Internal.algebraic_variable algebraic variables of the element. range: 1-1

3.2. ELEMENT 115

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, SlidingPrismaticJoint, 3.3.6, Rope3D, 3.3.7, Fric-
tionConstraint, 3.3.8, Contact1D, 3.3.9, GenericBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, Pris-
maticJoint, 3.3.12, UniversalJoint, 3.3.13, RigidJoint, 3.3.14, CylindricalJoint, 3.3.15, Spring-
DamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperActuator, 3.3.18,

Example

see �le Rigid3D.txt

dimension = [1, 0.1, 0.1] %Dimensions of a regular cube [L_x, L_y, L_z] in m

my_data % compute inertia values

{

density = 7850

Cube.body_dimensions = dimension

}

inertia_values = ComputeInertia(my_data)

myRigid % add rigid body

{

element_type= "Rigid3D" %specification of element type.

name= "my first rigid" %name of the element

Graphics.body_dimensions= dimension

Physics

{

moment_of_inertia= inertia_values.moment_of_inertia

volume= inertia_values.volume

mass= inertia_values.mass

}

Initialization

{

initial_position= [0, 0, 0] %[X, Y, Z]

initial_rotation= [0, pi/2, 0] %[rot3_X, rot2_Y, rot1_Z] in rad

}

}

nElement = AddElement(myRigid)

3.2.8 Rigid3DKardan

Short description

A rigid body in 3D, implemented with bryant angles (also called Tait Bryan or Cardan angles).

Degrees of freedom

The �rst 3 degrees of freedom are those describing the position. The rotation is parameterized
with 3 bryant angles with the sequence x-y-z. If you use this element for dynamic simulation
of a fast rotating rigid body, it is adviced to use the global x-axis as rotation axis.

116 CHAPTER 3. HOTINT REFERENCE MANUAL

Geometry

The center of gravity, S, is de�ned by the vector initial_position, which is in global coordi-
nates, see �gure 3.7. The rotation of the body-�xed local coordinate system w.r.t. the global
coordiante system is de�ned by the Matrix initial_rotation.
In order to de�ne the position of a point P of the element, e.g. for connectors or sensors, the
local coordinate system is used. The reference point is the center of mass, S, so the values of
the local coordinates can be positive or negative.

Figure 3.8: Rigid3DKardan

Data objects of Rigid3DKardan:

Data name type R default description

element_type string "Rigid3DKardan" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid3DKardan" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.
body_dimensions

vector [1, 1, 1] Dimensions of a regular cube [L_x, L_y, L_z] in
m

Physics
Physics.
moment_of_inertia

matrix [0.167, 0, 0; 0,
0.167, 0; 0, 0,
0.167]

[I_XX,I_XY,I_XZ; ...]

3.2. ELEMENT 117

Physics.volume double 1 volume of the body in m*m*m
Physics.mass double 1 mass of the body in kg
Physics.
rotations_sequence

string "xyz" rotations sequence, can be xyz, zxy or zxz

Initialization
Initialization.
initial_position

vector [0, 0, 0] [X, Y, Z]

Initialization.
initial_velocity

vector [0, 0, 0] [X, Y, Z]

Initialization.
initial_rotation

vector [0, 0, 0] 3 consecutive rotations (global rotation axes):
[rot3_X, rot2_Y, rot1_Z] in rad

Initialization.
initial_angular_velocity

vector [0, 0, 0] Angular velocity vector in global coordinates:
[ang_X, ang_Y, ang_Z] in rad/s

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
velocity x, y, z, magnitude
bryant_angle x, y, z, magnitude
angular_velocity x, y, z, magnitude
angular_velocity_local_basis x, y, z, magnitude
acceleration x, y, z, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-12
Internal.second_order_variable second order variables of the element. range: 1-6
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-6

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, SlidingPrismaticJoint, 3.3.6, Rope3D, 3.3.7, Fric-
tionConstraint, 3.3.8, Contact1D, 3.3.9, GenericBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, Pris-

118 CHAPTER 3. HOTINT REFERENCE MANUAL

maticJoint, 3.3.12, UniversalJoint, 3.3.13, RigidJoint, 3.3.14, CylindricalJoint, 3.3.15, Spring-
DamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperActuator, 3.3.18,

Example

see �le Rigid3DKardan.txt

dimension = [1, 0.1, 0.1] %Dimensions of a regular cube [L_x, L_y, L_z] in m

my_data % compute inertia values

{

density = 7850

Cube.body_dimensions = dimension

}

inertia_values = ComputeInertia(my_data)

myRigid % add rigid body

{

element_type= "Rigid3DKardan" %specification of element type.

name= "my first rigid with kardan angles" %name of the element

Graphics.body_dimensions= dimension

Physics

{

moment_of_inertia= inertia_values.moment_of_inertia

volume= inertia_values.volume

mass= inertia_values.mass

}

Initialization

{

initial_position= [0, 0, 0] %[X, Y, Z]

initial_rotation= [0, pi/2, 0] %[rot3_X, rot2_Y, rot1_Z] in rad

}

}

nElement = AddElement(myRigid)

3.2.9 Rigid3DMinCoord

Short description

A rigid body with just one degree of freedom. E�cient formulation for robotic applications are
possible with this body.

Degrees of freedom

The body just has 1 (own) degree of freedom (d.o.f.). Depending on the type of joint it is a
translational or rotational one, see �gure 3.9 and �gure 3.10, which rotates or translates with
respect to the i-th coordinate system around or along the Z-axis (additionally to the initial
parameters θ and respectively d in �gure 3.11). If you look at the i-th body in a chain of such
bodies, then the i-th body seems to have i d.o.f.s. In fact it also just adds 1 d.o.f. to the system.
If you are using connectors or loads which use a d.o.f. directly (e.g. GCLoad or Coordinate-
Constraint) you have to be carefull with the settings. In these cases the i-th d.o.f. of the i-th
body is the correct one.

3.2. ELEMENT 119

Geometry

The reference frame of the body is de�ned with Denavit-Hartenberg parameters, see �gure
3.11, and an (optional) additional rotation matrix. The local reference frame is shown with the
following colors: x in green, y in blue and z in red. See �gure 3.9 and �gure 3.10.

Equations

The implementation is based on the so-called 'Projection Equation' by Bremer. For details see
[13].

Limitations

The �rst body of a chain of such Rigid3DMinCoord bodies has to be �xed to ground. It is not
possible yet to connect a robot built up with these elements to e.g. a Rigid3D.
The implementation of the translational degree of freedom is up to now just tested for the case,
that there is just one transl. d.o.f. and that this joint is the �rst one in the kinematic chain
(=�xed to ground).

Figure 3.9: Rigid3DMinCoord with rotational degree of freedom

Figure 3.10: Rigid3DMinCoord with translational degree of freedom

120 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.11: De�nition of the geometry with Denavit�Hartenberg parameters [14]

Data objects of Rigid3DMinCoord:

Data name type R default description

element_type string "Rigid3DMinCoord"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rigid3DMinCoord"
name of the element

element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Graphics.position_o�set vector [0, 0, 0] reference position, global vector to reference

frame of �rst body. Only di�erent from zero for
�rst body!

Geometry
Geometry.prev_body integer 0 element number of previous body in chain
Geometry.link_type integer 1 1...rotation of body i around origin of local body-

�xed frame (joint), 2...sliding joint

3.2. ELEMENT 121

Geometry.
next_link_position

vector R [1, 0, 0] 1r12 vector from origin of local frame (= joint) to
end of body. [X Y Z] in �rst body �xed coordinate
system.

Geometry.
joint_local_frame

vector [0, 0, 0] Euler angles between global coordinate system
to �rst body or between next_link_rotation and
local coordinate system: 3 consecutive rotations
(local rotation axes): [rot3_X, rot2_Y, rot1_Z]
in rad

Geometry.
DH_parameters

vector [0, 0, 1, 0] Denavit-Hartenberg Parameters: [theta (rad), d
(m), a (m), alpha (rad)]

Physics
Physics.mass double 1 mass of the body in kg
Physics.
center_of_gravity

vector [0.5, 0, 0] vector from link to center of gravity in local
frame. Measured in �rst body �xed coordinate
system.

Physics.
moment_of_inertia

matrix [0, 0, 0; 0,
0.0833, 0; 0, 0,
0.0833]

[I XX,I XY,I XZ; ...] w.r.t. center of gravity,
de�ned in body �xed coordinate system.

Physics.
moment_of_inertia_add

double 0 additional relative inertia moment (e.g. inertia of
drive at link side)

Initialization
Initialization.
initial_position

vector [0] in m or rad, depending on link_type

Initialization.
initial_velocity

vector [0] in m/s or rad/s, depending on link_type

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
velocity x, y, z, magnitude

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-2
Internal.second_order_variable second order variables of the element. range: 1-1
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-1

122 CHAPTER 3. HOTINT REFERENCE MANUAL

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, Multi-
CoordConstraint, 3.3.4, Rope3D, 3.3.7, FrictionConstraint, 3.3.8, Contact1D, 3.3.9, Spring-
DamperActuator, 3.3.16, RigidLink, 3.3.17,

Example

see �le Rigid3DMinCoordDoublePendulum.txt

grav.load_type= "Gravity"

grav.direction= 2 %global direction of the gravity

grav.gravity_constant= -9.81 %use negative sign if necessary

nLoad = AddLoad(grav)

pendulum

{

element_type= "Rigid3DMinCoord"

loads= [nLoad]

Geometry

{

prev_body= 0 % 0 is constraint to ground = first body in chain

link_type= 1 % 1...rotational degree of freedom

DH_parameters= [0, 0, 1, 0] % Denavit-Hartenberg Parameters: [theta (rad), d (m), a (m), alpha (rad)]

}

Physics

{

mass= 0.1 % mass of the body in kg

center_of_gravity= [0.5, 0, 0] %vector to center of gravity

moment_of_inertia= [0, 0, 0

0, 0.008354166666666666, 0

0, 0, 0.008354166666666666] %[I XX,I XY,I XZ; ...]

}

}

AddElement(pendulum)

% add second pendulum with same geometry and orientation to end of first pendulum

pendulum.Geometry.prev_body= 1 % element number of previous body in chain

AddElement(pendulum)

3.2.10 LinearBeam3D

Short description

The Beam3D element is a three dimensional elastic beam element which is aligned along the lo-
cal x axis. It provides a decoupled calculation of bending in y and z direction, axial deformation
in x direction and torsion about the x axis. Shear deformation is not considered. The decoupled
calculation is a simpli�cation of the real, nonlinear problem, but for small deformations the
results coincidence highly with the exact solution.

3.2. ELEMENT 123

Degrees of freedom

Bending is described by 4 DOF, the number of DOF for axial deformation as well as torsion is
2. These 12 DOF are stored in two nodes i and j. The DOF vector of the LinearBeam3D read
as follows

q(i) = [q(i),q(j)] = [x(i), y(i), z(i), φ(i)
x , φ

(i)
y , φ

(i)
z , x

(j), y(j), z(j), φ(j)
x , φ(j)

y , φ(j)
z]T . (3.7)

Nodes

To create a new beam element the user has to de�ne two 'Node3DRxyz' nodes i and j. Every
node of this type has 6 DOF. The �rst 3 DOF describe the node displacement (x, y, z) w.r.t
global coordinate system, the last 3 DOF are angles of rotation (φx, φy, φz) w.r.t global coor-
dinate system. All angles are considered as small (linearized angles). The reference positions
of the nodes de�ne the beam ends at initial con�guration and so the length of the beam. The
beam orientation is de�ned due to reference rot angles of node i. The advantage of using nodes
with global DOF is the possibility to discretize a beam element into small beams easily without
needing complicated constraint conditions. The beam elements do not even have to be aligned
along a straight line. If using the same node number for the boundary point of the adjoint
beams, beam elements are constrained automatically, see �gure 3.13.

Geometry

The beam geometry is fully de�ned by 2 'Node3DRxyz' nodes and a 'Beam3DProperties' mate-
rial element. Beam length and orientation is speci�ed due to node positions and the orientation
of the �rst node. The beam cross section size is de�ned due to the material. See �gure 3.12 for
more details. In order to de�ne the position of point P of the element, e.g. for connectors or
sensors, the local coordinate system is used. The origin of the local coordinate system is the
center of gravity of the beam, p0 is the vector to the center of gravity.

Limitations

Shear deformation is not considered. The decoupled calculation is a simpli�cation of the real,
nonlinear problem, but for small deformations the results coincidence highly with the exact
solution.

124 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.12: LinearBeam3D - Geometry

Figure 3.13: LinearBeam3D - Nodes

Data objects of LinearBeam3D:

Data name type R default description

element_type string "LinearBeam3D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "LinearBeam3D" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Geometry
Geometry.node_1 integer 1 number of Node 1
Geometry.node_2 integer 2 number of Node 2
Physics

3.2. ELEMENT 125

Physics.
axial_deformation

bool 1 include e�ect of axial deformation

Physics.material_number integer 1 material number which contains the main mate-
rial properties of the beam

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
velocity x, y, z, magnitude
beam_torsion
beam_force_axial
beam_force_transversal y, z
beam_moment_torsional
beam_moment_bending y, z
acceleration x, y, z, magnitude
bryant_angle x, y, z, magnitude
angular_velocity x, y, z, magnitude
angular_velocity_local_basis x, y, z, magnitude
stress xx, xy, xz, yy, yz, zz, magnitude
stress_mises

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-24
Internal.second_order_variable second order variables of the element. range: 1-12
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-12
Internal.acceleration accelerations of the element. range: 1-12

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, SlidingPrismaticJoint, 3.3.6, Rope3D, 3.3.7, Fric-
tionConstraint, 3.3.8, Contact1D, 3.3.9, GenericBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, Pris-
maticJoint, 3.3.12, UniversalJoint, 3.3.13, RigidJoint, 3.3.14, CylindricalJoint, 3.3.15, Spring-

126 CHAPTER 3. HOTINT REFERENCE MANUAL

DamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperActuator, 3.3.18,

Example

see �le LinearBeam3D.txt

%==

% define a material

beam_material

{

material_type = "Beam3DProperties"

cross_section_type = 1 % rectangular cross section

cross_section_size = [0.1,0.1]

density = 1

EA = 1

EIy = 1

EIz = 1

GAky = 1

GAkz = 1

GJkx = 1

RhoA = 1

RhoIx = 1

RhoIy = 1

RhoIz = 1

}

nBeamMaterial = AddBeamProperties(beam_material)

%==

% define two nodes

node1

{

node_type = "Node3DRxyz"

Geometry

{

reference_position = [0,0,0]

reference_rot_angles = [0,0,0]

}

}

n1 = AddNode(node1)

node2

{

node_type = "Node3DRxyz"

Geometry

{

reference_position = [1,0,0]

reference_rot_angles = [0,0,0]

}

}

n2 = AddNode(node2)

3.2. ELEMENT 127

beam

{

element_type= "LinearBeam3D"

Physics

{

material_number = nBeamMaterial

}

Geometry.node_1 = n1

Geometry.node_2 = n2

}

nBeam = AddElement(beam)

3.2.11 RotorBeamXAxis

Short description

The RotorBeamXAxis element is a three dimensional elastic rotor beam element. It has exact
the same characteristics and properties as the LinearBeam3D element except two di�erences.
The �rst di�erence is that for a rotor element it is necessary to enable big rotation about the
rotor axis instead of the small rotation of the LinearBeam3D. The second di�erence is that all
element DOF are stored w.r.t. local beam coordinate system.

Degrees of freedom

Bending is described by 4 DOF, the number of DOF for axial deformation as well as torsion is
2. These 12 DOF are stored in two nodes i and j. The DOF vector of the LinearBeam3D read
as follows

q(i) = [q(i),q(j)] = [x(i), y(i), z(i), φ(i)
x , φ

(i)
y , φ

(i)
z , x

(j), y(j), z(j), φ(j)
x , φ(j)

y , φ(j)
z]T . (3.8)

Nodes

To create a new rotor beam element the user has to de�ne two 'Node3DR123' nodes i and j.
Every node of this type has 6 DOF. The �rst 3 DOF describe the node displacement (x, y, z)
w.r.t local rotor element coordinate system, the last 3 DOF are angles of rotation (φx, φy, φz)
w.r.t local rotor element coordinate system. The rotation about the local x-axis is considered
as large, the rotations about the local y and z-axes are considered as small (linearized angles).
The reference positions of the nodes de�ne the beam ends at initial con�guration and so the
length of the beam. The beam orientation is de�ned due to reference rot angles of node i.

Geometry

The rotor beam geometry is fully de�ned by 2 'Node3DR123' nodes and a 'Beam3DProperties'
material element. Beam length and orientation is speci�ed due to node positions and the beam
cross section size due to the material. The rotor beam has a circular cross section.

128 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.14: RotorBeamXAxis

Data objects of RotorBeamXAxis:

Data name type R default description

element_type string "RotorBeamXAxis"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RotorBeamXAxis"
name of the element

element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Geometry
Geometry.node_1 integer 1 number of Node 1
Geometry.node_2 integer 2 number of Node 2
Physics
Physics.
axial_deformation

bool 1 include e�ect of axial deformation

Physics.material_number integer 1 material number which contains the main mate-
rial properties of the beam

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

3.2. ELEMENT 129

position x, y, z, magnitude
displacement x, y, z, magnitude
velocity x, y, z, magnitude
beam_torsion
beam_force_axial
beam_force_transversal y, z
beam_moment_torsional
beam_moment_bending y, z
acceleration x, y, z, magnitude
bryant_angle x, y, z, magnitude
angular_velocity x, y, z, magnitude
angular_velocity_local_basis x, y, z, magnitude
stress xx, xy, xz, yy, yz, zz, magnitude
stress_mises

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-24
Internal.second_order_variable second order variables of the element. range: 1-12
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-12
Internal.acceleration accelerations of the element. range: 1-12

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, SlidingPrismaticJoint, 3.3.6, Rope3D, 3.3.7, Fric-
tionConstraint, 3.3.8, Contact1D, 3.3.9, GenericBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, Pris-
maticJoint, 3.3.12, UniversalJoint, 3.3.13, RigidJoint, 3.3.14, CylindricalJoint, 3.3.15, Spring-
DamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperActuator, 3.3.18,

Example

see �le RotorBeamXAxis.txt

%==

% define a material

beam_material

{

material_type = "Beam3DProperties"

cross_section_type = 2 % circular cross section

cross_section_size = [0.1]

density = 1

EA = 1

130 CHAPTER 3. HOTINT REFERENCE MANUAL

EIy = 1

EIz = 1

GAky = 1

GAkz = 1

GJkx = 1

RhoA = 1

RhoIx = 1

RhoIy = 1

RhoIz = 1

}

nBeamMaterial = AddBeamProperties(beam_material)

%==

% define two nodes

node1

{

node_type = "Node3DR123"

Geometry

{

reference_position = [0,0,0]

reference_rot_angles = [0,0,0]

}

}

n1 = AddNode(node1)

node2

{

node_type = "Node3DR123"

Geometry

{

reference_position = [1,0,0]

reference_rot_angles = [0,0,0]

}

}

n2 = AddNode(node2)

rotor_beam

{

element_type= "RotorBeamXAxis"

Physics

{

material_number = nBeamMaterial

}

Geometry.node_1 = n1

Geometry.node_2 = n2

}

nRotorBeam = AddElement(rotor_beam)

3.2. ELEMENT 131

3.2.12 ANCFBeamShear3DLinear

Short description

ANCFBeamShear3DLinear is an ANCF beam �nite element for multibody dynamics systems
which is capable of large deformations and can be used for static as well as dynamic investiga-
tions. The beam �nite element can reproduce axial, bending, shear and torsional deformation.
A linear interpolation for the geometry and the displacement along the beam axis is chosen.
The de�nition of the beam �nite element is based on the absolute nodal coordinate formula-
tion (ANCF), which uses slope vectors for the parameterization of the orientation of the cross
section instead of rotational parameters. Two di�erent formulations for the elastic forces of the
beam elements are presented:
(1) A structural mechanics based formulation of the elastic forces based on Reissner's nonlinear
rod theory including generalized strain measures. A term accounting for thickness and cross
section deformation is included and shear locking is prevented.
(2) A continuum mechanics based formulation of the elastic forces for a St.Venant Kirchho�
material which avoids the Poisson and shear locking phenomenon.

Degrees of freedom

The degrees of freedom of the i-th node are the nodal displacements and change of slope vectors
and read as follows

q(i) = [u(i)T u(i)T
,η u

(i)T
,ζ]T . (3.9)

Hence, nine degrees of freedom are speci�ed in each node, therefore the two-noded linear beam
element has 18 degrees of freedom.

Nodes

The element needs 2 nodes of type 'Node3DS2S3'. The element is described by two nodes at
the end points of the beam (node 1 = left node, node 2 = right node). See Fig. 3.15 for a
sketch of the two-noded linear beam element and the degrees of freedom per node.

Geometry

The deformed geometry of the ANCF beam �nite elements is de�ned by position and two
slope vectors in each node, see Fig. 3.15. The slope vectors r

(i)
,η and r

(i)
,ζ are no unit vectors,

therefor a cross section deformation is not prohibited. The displacement along the beam axis is
interpolated with linear shape functions, while the orientation of the cross section is interpolated
linearly. The slope vectors are the derivative vectors with respect to the coordinate system of
the scaled straight reference element, see Fig. 3.16.

Description of the di�erent modi

132 CHAPTER 3. HOTINT REFERENCE MANUAL

CMF The de�nition of the elastic forces is based on a con-
tinuum mechanics based formulation for a St.Venant
Kirchho� material using the relation between the
nonlinear Green-Lagrange strain tensor and the sec-
ond Piola-Kirchho� stress tensor. The beam is de-
�ned as any other solid �nite element and the vol-
ume integration can be chosen via the variables or-
der_axial and order_crosssectional in this modus.
Using the parameter perform_reduced_integration,
the standard integration order is reduced, in order to
reduce sti�ening e�ects or computation time.

SMF The de�nition of the elastic forces is based on a
structural mechanics based formulation based on
Reissner's nonlinear rod theory including generalized
strain measures, namely the axial strain, the shear
strains, the torsional strain, and the bending strains.
The integration along the beam axis is performed
as follows: two Lobatto integration points are used
for the integration of the elastic forces covering cross
section deformation and one Gauss point is used for
the integration of the terms accounting for axial de-
formation, bending, shear and torsion.

Additional notes

In general: For further details on the de�nition of the elastic forces, the strain measures or the
cross section deformation see reference [15].
Cross section deformation: In order to penalize a possible cross section deformation of the beam,
an additional term is added to the classical strain energy and can be varied by the penalization
factors named penalty. See reference [15] for more details.Examples: Find static and linearized
dynamic applications of the beam element as well as nonlinear dynamic examples and buckling
tests in reference [16].

3.2. ELEMENT 133

Figure 3.15: The geometric description of the elements is based on a position vector r(i) and
two slope vectors r

(i)
,η and r

(i)
,ζ in the i-th node. These vectors are de�ned on a scaled and

straight reference element, given in coordinates (ξ, η, ζ).

Figure 3.16: Di�erent con�gurations of the �nite beam element: (a) scaled straight reference
element and (b) the reference element depicted in the global coordinate system.

Data objects of ANCFBeamShear3DLinear:

Data name type R default description

134 CHAPTER 3. HOTINT REFERENCE MANUAL

element_type string "ANCFBeamShear3DLinear"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Element" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
ShearBeam
ShearBeam.
straight_beam

bool 0 is straight beam in reference con�guration

ShearBeam.
reduced_integration

bool 0 reduced integration in cont. mech. formulation
(CMF)

ShearBeam.
beamformulation

integer 4 2 = CMF, 4 = SMF

ShearBeam.calc_linear bool 0 linearized strain computation in cont. mech. for-
mulation (CMF)

ShearBeam.nnodes integer R 2 number of nodes
ShearBeam.
integration_order_axial

integer 4 axial integration order

ShearBeam.integra-
tion_order_cross_section

integer 2 cross section integration order, taks e�ect only in
cont. mech. formulation (CMF)

ShearBeam.
penalty_kappa

vector [1, 1, 1] penalty term for kappa [kappa1,kappa2,kappa3]

ShearBeam.
penalty_gamma

vector [1, 1, 1] penalty term for gamma
[gamma1,gamma2,gamma3]

ShearBeam.penalty_E vector [1, 1, 1] penalty term for green lagrange strains (E)
[Eyy,Ezz,Eyz]

Geometry
Geometry.
body_dimensions

vector [1, 0.1, 0.1] dimensions of the beam. [L_x (length), L_y
(width), L_z (height)]

Geometry.node_number1 integer 1 global number of node 1 (left), node must already
exist

Geometry.node_number2 integer 2 global number of node 2 (right), node must al-
ready exist

Physics
Physics.material_number integer 1 material number which contains the main mate-

rial properties of the beam
Initialization
Initialization.
node1_reference_position

vector [0, 0, 0] position of node 1 (left) in reference con�guration.

Initialization.
node1_reference_slope_2

vector [0, 0, 0] slope vector 2 of node 1 (left) in reference con�g-
uration.

Initialization.
node1_reference_slope_3

vector [0, 0, 0] slope vector 3 of node 1 (left) in reference con�g-
uration.

Initialization.
node2_reference_position

vector [0, 0, 0] position of node 2 (right) in reference con�gura-
tion.

Initialization.
node2_reference_slope_2

vector [0, 0, 0] slope vector 2 of node 2 (right) in reference con-
�guration.

3.2. ELEMENT 135

Initialization.
node2_reference_slope_3

vector [0, 0, 0] slope vector 3 of node 2 (right) in reference con-
�guration.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
bryant_angle x, y, z, magnitude
rotations_312 x, y, z, magnitude
velocity x, y, z, magnitude
angular_velocity x, y, z, magnitude
beam_curvature x, y, z, magnitude
beam_torsion
beam_moment_bending x, y, z, magnitude
beam_moment_torsional
beam_shear x, y, z, magnitude
beam_axial_extension
beam_force_transversal x, y, z, magnitude
beam_force_axial

Observable special values:

For more information see section 3.1

value name description
Internal.kinetic_energy force in the rope
Internal.potential_energy length of the rope

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, SlidingPrismaticJoint, 3.3.6, Rope3D, 3.3.7, Fric-
tionConstraint, 3.3.8, Contact1D, 3.3.9, GenericBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, Pris-
maticJoint, 3.3.12, UniversalJoint, 3.3.13, RigidJoint, 3.3.14, CylindricalJoint, 3.3.15, Spring-
DamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperActuator, 3.3.18,

Example

see �le ANCFBeamShear3DLinear.txt

136 CHAPTER 3. HOTINT REFERENCE MANUAL

my_material

{

material_type= "Beam3DProperties"

cross_section_type= 1

cross_section_size= [0.1, 0.1]

EA= 20000

EIy= 16.66666666666667

EIz= 16.66666666666667

GAky= 7692.307692307694

GAkz= 7692.307692307694

GJkx= 10.81538461538462

RhoA= 72

RhoIx= 0.12

RhoIy= 0.06

RhoIz= 0.06

density= 7200

}

nMaterial = AddBeamProperties(my_material)

node

{

node_type = "Node3DS2S3"

Geometry.reference_position = [0,0,0]

Geometry.reference_slope2 = [0,1,0]

Geometry.reference_slope3 = [0,0,1]

}

nNode1 = AddNode(node)

node.Geometry.reference_position = [1,0,0]

nNode2 = AddNode(node)

my_beam

{

element_type = "ANCFBeamShear3DLinear"

Physics.material_number = nMaterial

ShearBeam.beamformulation = 4

Geometry.node_number1 = nNode1

Geometry.node_number2 = nNode2

}

nElement = AddElement(my_beam)

ViewingOptions.FiniteElements.Nodes.show = 1

ViewingOptions.FiniteElements.Nodes.node_size = 0.05

3.2.13 ANCFBeamShear3DQuadratic

Short description

ANCFBeamShear3DQuadratic is an ANCF beam �nite element for multibody dynamics sys-
tems which is capable of large deformations and can be used for static as well as dynamic
investigations. The beam �nite element can reproduce axial, bending, shear and torsional de-
formation. A quadratic interpolation for the geometry and the displacement along the beam

3.2. ELEMENT 137

axis is chosen.
The de�nition of the beam �nite element is based on the absolute nodal coordinate formula-
tion (ANCF), which uses slope vectors for the parameterization of the orientation of the cross
section instead of rotational parameters. Two di�erent formulations for the elastic forces of the
beam elements are presented:
(1) A structural mechanics based formulation of the elastic forces based on Reissner's nonlinear
rod theory including generalized strain measures. A term accounting for thickness and cross
section deformation is included and shear locking is prevented.
(2) A continuum mechanics based formulation of the elastic forces for a St.Venant Kirchho�
material which avoids the Poisson and shear locking phenomenon.

Degrees of freedom

The degrees of freedom of the i-th node are the nodal displacements and change of slope vectors
and read as follows

q(i) = [u(i)T u(i)T
,η u

(i)T
,ζ]T . (3.10)

Hence, nine degrees of freedom are speci�ed in each node, therefore the three-noded quadratic
beam element has 27 degrees of freedom.

Nodes

The element needs 3 nodes of type 'Node3DS2S3'. The element is described by three nodes: at
the end points and the mid point of the beam (node 1 = left node, node 2 = right node, node
3 = mid point). See Fig. 3.15 for a sketch of the three-noded quadratic beam element and the
degrees of freedom per node.

Geometry

The deformed geometry of the ANCF beam �nite elements is de�ned by position and two
slope vectors in each node, see Fig. 3.15. The slope vectors r

(i)
,η and r

(i)
,ζ are no unit vectors,

therefor a cross section deformation is not prohibited. The displacement along the beam axis
is interpolated with quadratic shape functions, while the orientation of the cross section is
interpolated linearly. The slope vectors are the derivative vectors with respect to the coordinate
system of the scaled straight reference element, see Fig. 3.16.

Description of the di�erent modi

CMF The de�nition of the elastic forces is based on a con-
tinuum mechanics based formulation for a St.Venant
Kirchho� material using the relation between the
nonlinear Green-Lagrange strain tensor and the sec-
ond Piola-Kirchho� stress tensor. The beam is de-
�ned as any other solid �nite element and the vol-
ume integration can be chosen via the variables or-
der_axial and order_crosssectional in this modus.
Using the parameter perform_reduced_integration,
the standard integration order is reduced, in order to
reduce sti�ening e�ects or computation time.

138 CHAPTER 3. HOTINT REFERENCE MANUAL

SMF The de�nition of the elastic forces is based on a
structural mechanics based formulation based on
Reissner's nonlinear rod theory including generalized
strain measures, namely the axial strain, the shear
strains, the torsional strain, and the bending strains.
The integration along the beam axis is performed
as follows: two Lobatto integration points are used
for the integration of the elastic forces covering cross
section deformation and one Gauss point is used for
the integration of the terms accounting for axial de-
formation, bending, shear and torsion.

Additional notes

In general: For further details on the de�nition of the elastic forces, the strain measures or the
cross section deformation see reference [15].
Cross section deformation: In order to penalize a possible cross section deformation of the
beam, an additional term is added to the classical strain energy and can be varied by the
penalization factors named penalty. See reference [15] for more details.
Examples: Find static and linearized dynamic applications of the beam element as well as
nonlinear dynamic examples and buckling tests in reference [16].

Figure 3.17: The geometric description of the elements is based on a position vector r(i) and
two slope vectors r

(i)
,η and r

(i)
,ζ in the i-th node. These vectors are de�ned on a scaled and

straight reference element, given in coordinates (ξ, η, ζ).

3.2. ELEMENT 139

Figure 3.18: Di�erent con�gurations of the �nite beam element: (a) scaled straight reference
element and (b) the reference element depicted in the global coordinate system.

Data objects of ANCFBeamShear3DQuadratic:

Data name type R default description

element_type string "ANCFBeamShear3DQuadratic"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Element" name of the element
element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-

omelem1, geomelem2, ...' or empty
Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
ShearBeam
ShearBeam.
straight_beam

bool 0 is straight beam in reference con�guration

ShearBeam.
reduced_integration

bool 0 reduced integration in cont. mech. formulation
(CMF)

ShearBeam.
beamformulation

integer 4 2 = CMF, 4 = SMF

ShearBeam.calc_linear bool 0 linearized strain computation in cont. mech. for-
mulation (CMF)

ShearBeam.nnodes integer R 3 number of nodes

140 CHAPTER 3. HOTINT REFERENCE MANUAL

ShearBeam.
integration_order_axial

integer 4 axial integration order

ShearBeam.integra-
tion_order_cross_section

integer 2 cross section integration order, taks e�ect only in
cont. mech. formulation (CMF)

ShearBeam.
penalty_kappa

vector [1, 1, 1] penalty term for kappa [kappa1,kappa2,kappa3]

ShearBeam.
penalty_gamma

vector [1, 1, 1] penalty term for gamma
[gamma1,gamma2,gamma3]

ShearBeam.penalty_E vector [1, 1, 1] penalty term for green lagrange strains (E)
[Eyy,Ezz,Eyz]

Geometry
Geometry.
body_dimensions

vector [1, 0.1, 0.1] dimensions of the beam. [L_x (length), L_y
(width), L_z (height)]

Geometry.node_number1 integer 1 global number of node 1 (left), node must already
exist

Geometry.node_number2 integer 2 global number of node 2 (right), node must al-
ready exist

Geometry.node_number3 integer 3 global number of node 3 (middle), node must al-
ready exist

Physics
Physics.material_number integer 1 material number which contains the main mate-

rial properties of the beam
Initialization
Initialization.
node1_reference_position

vector [0, 0, 0] position of node 1 (left) in reference con�guration.

Initialization.
node1_reference_slope_2

vector [0, 0, 0] slope vector 2 of node 1 (left) in reference con�g-
uration.

Initialization.
node1_reference_slope_3

vector [0, 0, 0] slope vector 3 of node 1 (left) in reference con�g-
uration.

Initialization.
node2_reference_position

vector [0, 0, 0] position of node 2 (right) in reference con�gura-
tion.

Initialization.
node2_reference_slope_2

vector [0, 0, 0] slope vector 2 of node 2 (right) in reference con-
�guration.

Initialization.
node2_reference_slope_3

vector [0, 0, 0] slope vector 3 of node 2 (right) in reference con-
�guration.

Initialization.
node3_reference_position

vector [0, 0, 0] position of node 3 (middle) in reference con�gu-
ration.

Initialization.
node3_reference_slope_2

vector [0, 0, 0] slope vector 2 of node 3 (middle) in reference con-
�guration.

Initialization.
node3_reference_slope_3

vector [0, 0, 0] slope vector 3 of node 3 (middle) in reference con-
�guration.

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
bryant_angle x, y, z, magnitude
rotations_312 x, y, z, magnitude

3.2. ELEMENT 141

velocity x, y, z, magnitude
angular_velocity x, y, z, magnitude
beam_curvature x, y, z, magnitude
beam_torsion
beam_moment_bending x, y, z, magnitude
beam_moment_torsional
beam_shear x, y, z, magnitude
beam_axial_extension
beam_force_transversal x, y, z, magnitude
beam_force_axial

Observable special values:

For more information see section 3.1

value name description
Internal.kinetic_energy force in the rope
Internal.potential_energy length of the rope

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, MultiCo-
ordConstraint, 3.3.4, SlidingPointJoint, 3.3.5, SlidingPrismaticJoint, 3.3.6, Rope3D, 3.3.7, Fric-
tionConstraint, 3.3.8, Contact1D, 3.3.9, GenericBodyJoint, 3.3.10, RevoluteJoint, 3.3.11, Pris-
maticJoint, 3.3.12, UniversalJoint, 3.3.13, RigidJoint, 3.3.14, CylindricalJoint, 3.3.15, Spring-
DamperActuator, 3.3.16, RigidLink, 3.3.17, RotatorySpringDamperActuator, 3.3.18,

Example

see �le ANCFBeamShear3DQuadratic.txt

my_material

{

material_type= "Beam3DProperties"

cross_section_type= 1

cross_section_size= [0.1, 0.1]

EA= 20000

EIy= 16.66666666666667

EIz= 16.66666666666667

GAky= 7692.307692307694

GAkz= 7692.307692307694

GJkx= 10.81538461538462

RhoA= 72

RhoIx= 0.12

RhoIy= 0.06

RhoIz= 0.06

density= 7200

}

142 CHAPTER 3. HOTINT REFERENCE MANUAL

nMaterial = AddBeamProperties(my_material)

node

{

node_type = "Node3DS2S3"

Geometry.reference_position = [0,0,0]

Geometry.reference_slope2 = [0,1,0]

Geometry.reference_slope3 = [0,0,1]

}

nNode1 = AddNode(node)

node.Geometry.reference_position = [1,0,0]

nNode2 = AddNode(node)

node.Geometry.reference_position = [0.5,0,0]

nNode3 = AddNode(node)

my_beam

{

element_type = "ANCFBeamShear3DQuadratic"

Physics.material_number = nMaterial

ShearBeam.beamformulation = 4

Geometry.node_number1 = nNode1

Geometry.node_number2 = nNode2

Geometry.node_number3 = nNode3

}

nElement = AddElement(my_beam)

ViewingOptions.FiniteElements.Nodes.show = 1

ViewingOptions.FiniteElements.Nodes.node_size = 0.05

3.2.14 ANCFBeam3DTorsion

Short description

ANCFBeam3DTorsion is a Bernoulli-Euler beam �nite element in ANCF (Absolute Nodal
Coordinate Formulation) capable of large axial, bending, and torsional deformations.

Degrees of freedom

The element a�ects 14 degrees of freedom (generalized coordinates) in total, which are 7 degrees
of freedom per node, i.e., at each node we have: the axial displacement u = r− r0, the change
of the axial slope u′ = r′− r′0, and the change of the torsional angle θ− θ0. Each quantity with
index 0 here confers to the reference con�guration. The element wise ordering of the degrees
of freedom is displayed in Fig. 3.20.

Nodes

The element operates with two Nodes of type Node3DS1rot1, each of which are located at either
tip of the beam element. The integer values Geometry.node_number1 and Geometry.node_number2
refer to the index of the nodes in the multibody system. Each of these Nodes is instantiated by
the user with a position and a rotation (kardan angles), and provides a frame (e1, e2, e3) (which

3.2. ELEMENT 143

is measured in the global frame of the multibody system) for the instantiation of the beam
elemtent: At each node, the slope of the beam axis r′ is identical with e1, and the director is
de�ned as e3.

Geometry

The geometry of the element is de�ned by the nodal values for axial position r, the axial slope
vector r′, and the torsional angle θ of the cross section around the beam axis, see Fig. 3.20. This
angle is measured with respect to a reference direction in the global frame (director). Between
the nodal values, the axial position is interpolated cubically, the axial slope is interpolated
quadratically, and the torsional angle of the cross section (around the beam axis) as well as the
director are interpolated linearly.

Equations

Variation of the strain energy:

δΠ =

∫ L/2

−L/2
(EAε δε+GJκ1 δκ1 + EIyκ2 δκ2 + EIzκ3 δκ3) dξ. (3.11)

Considering viscous material damping, we replace ε→ εE and κi → κEi for i ∈ {1, 2, 3} with

εE = ε+ εD, εD = cK ε̇ = cK

(
∂ε

∂q

)T
q̇, (3.12)

κEi = κi + κDi , κDi = cK κ̇i = cK

(
∂κi
∂q

)T
q̇, (3.13)

resulting in

δΠ =

∫ L/2

−L/2
(EA (ε+ cK ε̇) δε+GJ (κ1 + cK κ̇1) δκ1+

+EIy (κ2 + cK κ̇2) δκ2 + EIz (κ3 + cK κ̇3) δκ3) dξ. (3.14)

Additional notes

For details on the element, such as the de�nition of the elastic forces and the kinetic terms, see
[17, 18].

144 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.19: The geometry of the element is de�ned by nodal values for (a) the axial position,
(b) the axial slope vector, and (c) the torsional angle of the cross section around the beam
axis. This angle is measured with respect to a reference direction in the global frame (direc-
tor). Between the nodal values, the axial position is interpolated cubically, the axial slope is
interpolated quadratically, and the torsional angle of the cross section (around the beam axis)
as well as the director are interpolated linearly.

Figure 3.20: Ordering of the generalized coordinates.

Data objects of ANCFBeam3DTorsion:

Data name type R default description

element_type string "ANCFBeam3DTorsion"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "ANCFBeam3DTorsion"
name of the element

element_number integer R 1 number of the element in the mbs
loads vector [] Set loads attached to this element: 'nr_load1,

nr_load2, ...' or empty
Graphics
Graphics.RGB_color vector [0.1, 0.1, 0.8] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]

3.2. ELEMENT 145

Graphics.geom_elements vector [] Set Geometric elements to represent body 'ge-
omelem1, geomelem2, ...' or empty

Graphics.
use_alternative_shape

bool 0 Graphical representation of element with geom-
objects that are attached to the element

Graphics.show_element bool 1 Flag to draw element
Geometry
Geometry.node_number1 integer 1 global number of node 1 (left), node must already

exist
Geometry.node_number2 integer 2 global number of node 2 (right), node must al-

ready exist
Geometry.
update_directors

bool 0 update directors during calculation

Computation
Computation.kine-
matic_computation_mode

integer 0 0 .. exact kinematic terms + 5th order gaussian
integration (slow), 1 .. exact terms + 1st order
lobatto integration (fast), 2 .. constant mass ma-
trix approximation (fastest)

Computation.IntegrationOrder
Computation.
IntegrationOrder.mass

integer 4 integration order for mass terms

Computation.
IntegrationOrder.
axial_strain

integer 9 integration order for work of axial strain

Computation.
IntegrationOrder.
curvature

integer 5 integration order for work of curvature

Physics
Physics.material_number integer 1 material number which contains the main mate-

rial properties of the beam

Observable FieldVariables:

The following values can be measured with a FieldVariableElementSensor, 3.9.1. The sensor
needs 2 informations: the �eld_variable itself and the component. For more information see
section 3.1

�eld_variable possible components

position x, y, z, magnitude
displacement x, y, z, magnitude
velocity x, y, z, magnitude
beam_axial_extension
beam_force_axial
beam_curvature x, y, z, magnitude
beam_moment x, y, z, magnitude
beam_torsion
beam_moment_torsional

Observable special values:

For more information see section 3.1

146 CHAPTER 3. HOTINT REFERENCE MANUAL

value name description
Internal.kinetic_energy force in the rope
Internal.potential_energy length of the rope

Suitable Connectors:

The following connectors can be used to constrain the element:
PointJoint, 3.3.1, CoordinateConstraint, 3.3.2, VelocityCoordinateConstraint, 3.3.3, Multi-
CoordConstraint, 3.3.4, Rope3D, 3.3.7, FrictionConstraint, 3.3.8, Contact1D, 3.3.9, Generic-
BodyJoint, 3.3.10, RevoluteJoint, 3.3.11, PrismaticJoint, 3.3.12, UniversalJoint, 3.3.13, Rigid-
Joint, 3.3.14, CylindricalJoint, 3.3.15, SpringDamperActuator, 3.3.16, RigidLink, 3.3.17,

Example

see �le ANCFBeam3DTorsion.txt

node

{

node_type= "Node3DS1rot1"

Geometry

{

reference_position= [0, 0, 0]

reference_rot_angles= [0, 0, 0]

}

}

nNode1 = AddNode(node)

node.Geometry.reference_position = [1,0,0]

nNode2 = AddNode(node)

beamproperties

{

material_type= "Beam3DProperties"

cross_section_type= 1

cross_section_size= [0.1, 0.1]

EA= 2100000000

EIy= 1750000

EIz= 1750000

GJkx= 2692307.692307693

}

nBeamProperties = AddBeamProperties(beamproperties)

element

{

element_type= "ANCFBeam3DTorsion"

loads= [1]

Physics

{

material_number= nBeamProperties

}

3.2. ELEMENT 147

Geometry

{

node_number1= nNode1

node_number2= nNode2

}

}

AddElement(element)

148 CHAPTER 3. HOTINT REFERENCE MANUAL

3.3 Connector

These connectors are available:

• PointJoint, 3.3.1

• CoordinateConstraint, 3.3.2

• VelocityCoordinateConstraint, 3.3.3

• MultiCoordConstraint, 3.3.4

• SlidingPointJoint, 3.3.5

• SlidingPrismaticJoint, 3.3.6

• Rope3D, 3.3.7

• FrictionConstraint, 3.3.8

• Contact1D, 3.3.9

• GenericBodyJoint, 3.3.10

• RevoluteJoint, 3.3.11

• PrismaticJoint, 3.3.12

• UniversalJoint, 3.3.13

• RigidJoint, 3.3.14

• CylindricalJoint, 3.3.15

• SpringDamperActuator, 3.3.16

• RigidLink, 3.3.17

• RotatorySpringDamperActuator, 3.3.18

• SpringDamperActuator2D, 3.3.19

• PointJoint2D, 3.3.20

Note:
In HOTINT several classes are treated as 'elements'. Connectors and control elements are also
'elements', and can therefore be edited and deleted in the GUI with the menu items of the
elements.
In the script language the command AddConnector has to be used for the connectors in the list
above and also for control elements.

3.3. CONNECTOR 149

3.3.1 PointJoint

Short description

The PointJoint constrains two elements at a local position or node each. If only one element
is speci�ed (second element 0), a ground PointJoint is realized. It is possible to constrain just
some of the directions. If the �rst body is a rigid body then the constraint forces are applied
as follows:

Connecting element to element:
The constraint forces are applied on both bodies at the position of the connection point of the
second body.

Connecting element to ground:
The constraint forces are applied on the body

• at the position of the connection point on ground if the formulation is penalty and use_local_coordinate_system=1
and

• at the position of the connection point of the element otherwise.

If the �rst element is a �exible body or a point mass the forces are applied di�erently. See
Limitations.

Equations

Lagrange formulation:
The constraint equations are

C = AT (x1 − x2) = 0

or on velocity level
C = ȦT (x1 − x2) + AT (v1 − v2) = 0

where each equation corresponds to a constrained direction.
The meaning of the variables is as follows:

x1 position of connection point on body 1 in global coordinates
x2 position of connection point on body 2 in global coordinates,

or if constraint connects element to ground then connection point
of ground in global coordinates

v1 time derivative of x1

v2 time derivative of x2

A rotation matrix from local joint coordinates to global coordinates.
If Geometry.use_local_coordinate_system = 1 and
Geometry.use_joint_local_frame = 1, then A = QJ.
If Geometry.use_local_coordinate_system = 1 and
Geometry.use_joint_local_frame = 0, then A = Q.
If Geometry.use_local_coordinate_system = 0 and
Geometry.use_joint_local_frame = 1, then A = J.
If Geometry.use_local_coordinate_system = 0 and
Geometry.use_joint_local_frame = 0, then A = I.

Q rotation matrix from local coordinate system of body 1 to global coordinates
J joint local frame

150 CHAPTER 3. HOTINT REFERENCE MANUAL

Penalty formulation:
The spring force is given by

fs = A

 kx 0 0
0 ky 0
0 0 kz

AT · (x2 − x1)

and the damper force by
fd = d · (v2 − v1) .

The resulting constraint force is then given by

f = fs + fd.

Where

fs constraint force due to sti�ness
fd constraint force due to damping,
f constraint force
kx sti�ness in (local or global) x-direction
ky sti�ness in (local or global) y-direction
kz sti�ness in (local or global) z-direction
d damping coe�cient

Limitations

In general the constraint forces act on the �rst body not at the position of the connection point
of the �rst body.
If the �rst body is a rigid body, then the force acting on body 1 is shifted to the connection
point of the �rst body. The moment induced by shifting the force is compensated by a moment
in the opposite direction.
If the �rst body is a point mass, we cannot apply a force outside it's position.
If the �rst body is a �exible body, applying a force outside the connection point is at least very
questionable.
Hence the PointJoint has the following limitations:

• It is not possible to use the PointJoint in Lagrangian formulation if not all directions are
constrained and the �rst body is a point mass or a �exible body.

• When using the PointJoint in penalty formulation with body 1 being a point joint or a �exible
body, the constraint force acting on body 1 is applied at the position of the connection point
of body 1. If the constraint forces are not collinear to connection points, e.g. if the sti�ness
is unisotropic or if a damping is set, then the shifting the force induces a moment. This
moment is not compensated and thus the law of angular momentum is broken. Therefore
a PointJoint in penalty formulation should only be used with a point masses or a �exible
bodies being the �rst element, if you expect small displacements or the constraint forces to
be (nearly) collinear to the connection points.

Another limitations, which applies for all kinds of bodies, is that it is not possible in Lagrange
formulation to constraint just some global directions.

3.3. CONNECTOR 151

Description of the di�erent modi

152 CHAPTER 3. HOTINT REFERENCE MANUAL

element to ground Position2.element_number AND Posi-
tion2.node_number have to be equal to 0

element to element Position2.element_number and/or Posi-
tion2.node_number must not be equal to 0

Lagrange If Physics.use_penalty_formulation = 0, then no
sti�ness and no damping parameters are used.

first body

second body

x1

x2

f ik

f jkf id

f jd

f ik

f id v

Figure 3.21: The penalty forces acting on the �rst body (dotted) act on the position of x2.
The forces acting on the �rst body are shifted to x1 (dashed) and a moment (dashed) is applied
to compensate the induced moment.

Data objects of PointJoint:

Data name type R default description

element_type string "PointJoint" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PointJoint" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double -1 drawing dimensions of constraint. If set to -1,

then global_draw_scalar_size is used.
Graphics.
draw_size_joint_local_frame

double 0 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

Geometry
Geometry.
use_joint_local_frame

bool 0 Use a special joint local frame

Geometry.
joint_local_frame

matrix [0, 0, 0; 0, 0, 0;
0, 0, 0] Rotates the local or global coordinate system.

Just used if use_joint_local_frame == 1
Geometry.
use_local_coordinate_system

bool 0 0=use global coordinates, 1=use local coordinate
system of Body 1

Physics

3.3. CONNECTOR 153

Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.
spring_sti�ness

double 0 general or penalty sti�ness parameter

Physics.Penalty.
spring_sti�ness_vector

vector [0, 0, 0] penalty sti�ness parameter [kx,ky,kz]. Just
used if scalar spring_sti�ness == 0, otherwise
kx=ky=kz=spring_sti�ness

Physics.Penalty.damping double 0 damping coe�cient for viscous damping (F =
d*v), applied in all constrained directions

Physics.Lagrange
Physics.Lagrange.
constrained_directions

vector [1, 1, 1] [x,y,z]...(1 = constrained, 0 = free), can be de�ned
as local or global directions (see Geometry)

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position1.node_number integer 0 local or global (if element_number == 0) node

number.
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Position2.node_number integer 0 local or global (if element_number == 0) node
number.

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-3
Internal.algebraic_variable algebraic variables of the element. range: 1-3
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Example

see �le PointJointShort.txt

l = 1 % m

g = 9.81 % m/s^2

gravLoad

{

load_type = "Gravity"

direction = 3 % z - direction

154 CHAPTER 3. HOTINT REFERENCE MANUAL

gravity_constant = g

}

nLoad = AddLoad(gravLoad)

rigidBody

{

element_type= "Rigid3D"

loads= [nLoad]

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

pointJoint

{

element_type= "PointJoint"

Position1

{

element_number= nRigid %number of constrained element

position= [-l/2, 0, 0] %local position

}

Position2.position= [-l/2, 0, 0]

}

AddConnector(pointJoint)

3.3.2 CoordinateConstraint

Short description

The CoordinateConstraint constrains two elements by constraining a single coordinate of each
element, e.g. the x-displacement of two di�erent elements. If the second element number is zero,
a groundjoint can be realized. The CoordinateConstraint uses the lagrange multiplier formula-
tion by default, which means that there is no constraint violation at all. For static problems,
the lagrange multiplier constraint formulation is applied directly, by adding the kinematical
conditions to the nonlinear system equations. In dynamic (time dependent) simulations, the
constraint is solved on the position (displacement) levelwith index 3 solvers and on the velocity
level with index 2 solvers. Alternatively, the penalty formulation can be used, which means
that a certain (very high) spring sti�ness is used instead of lagrange multipliers. Thus, no
additional equation is added, however, the systemequations may become unsolvable sti� (ill
conditioned) in case of static problems; for dynamical problems, the very high sti�ness might
lead to high-frequency oscillations, inaccurate solutions or no convergence.

Equations

Lagrange formulation:

position constraint (index 3 solver)
2 elements (coordinate to coordinate): C = k

(
qel1i − qel1i,0

)
−
(
qel2j − qel2j,0

)
− d = 0

1 element (coordinate to ground): C = k
(
qel1i − qel1i,0

)
− d = 0

velocity constraint - index reduction (index 2 solver)
2 elements (coordinate to coordinate): C = k q̇el1i − q̇el2j = 0,

3.3. CONNECTOR 155

1 element (coordinate to ground): C = q̇el1i = 0

Langrange multiplier
∂C
∂qel1

T
= [0 0 , k , 0 ... 0] ... with k at index i

∂C
∂qel2

T
= [0 ... 0 ,−1 , 0 0] ... with −1 at index j

Penalty formulation:

2 elements (coordinate to coordinate): f = SP
(
k
(
qel1i − qel1i,0

)
−
(
qel2j − qel2j,0

)
− d
)
+DP

(
k q̇el1i − q̇el2j

)
1 element (coordinate to ground): f = SP

(
k
(
qel1i − qel1i,0

)
)− d

)
+DP k q̇

el1
i

Description:
k ... coordinate gain factor
d ... coordinate o�set (for index 2 solvers not used)
qel1i ... ith coordinate of element 1
qel1i,0 = qel1i (t = 0) ... ith coordinate of element 1 at initialization
qel2j ... jth coordinate of element 2
qel2j,0 = qel2j (t = 0) ... jth coordinate of element 2 at initialization
SP ... spring sti�ness
DP ... damping
C ... Lagrange equation
f ... force vector (penalty formulation)

Description of the di�erent modi

coordinate to ground Coordinate2.element_number AND Coordi-
nate2.local_coordinate have to be equal to 0

coordinate to coordinate Coordinate2.element_number and/or Coordi-
nate2.local_coordinate must not be equal to
0

Lagrange For Physics.use_penalty_formulation = 0 no sti�-
ness parameter is used.

relative or absolute to initial values Only important for max index 3 solvers.
If relative_to_inital_values is set to 1: Equation
above is used.
If set to 0: Simpli�ed equation is used (qel1i,0 = qel2j,0 =
0).

Data objects of CoordinateConstraint:

Data name type R default description

element_type string "CoordinateConstraint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "CoordinateConstraint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics

156 CHAPTER 3. HOTINT REFERENCE MANUAL

Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,
use default color:[-1,-1,-1]

Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double 0.1 General drawing size of constraint
Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.damping double 0 damping coe�cient Dp for viscous damping
Physics.Penalty.
spring_sti�ness

double 0 general or penalty sti�ness parameter Sp

coord_o�set double 0 coordinate o�set d, see documentation section
equation

coord_gain_factor double 1 coordinate gain factor k, see documentation sec-
tion equation

relative_to_inital_values bool 1 �ag == 1: full equation is used, see documenta-
tion; �ag == 0: the init state values qi0 and qj0
are neglected.

Coordinate1
Coordinate1.
element_number

integer 0 element number for coordinate 1

Coordinate1.
local_coordinate

integer 0 Local coordinate of element 1 to be constrained

Coordinate2
Coordinate2.
element_number

integer 0 element number for coordinate 2; for ground
joint, set element number to zero

Coordinate2.
local_coordinate

integer 0 Local coordinate of element 2 to be constrained

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-1
Connector.CoordinateConstraint.generalized_force force acting on the generalized coordinates
Connector.CoordinateConstraint.coordinate_di�erencedi�erence between the coordinates
Connector.CoordinateConstraint.coordinate_o�set coordiante o�set for CoordinateConstraint (w.r.t.

ground or between two element coordinates); o�set
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain_factor coordiante gain factor for CoordinateConstraint

Controllable special values:

For more information see section 3.1

value name description

3.3. CONNECTOR 157

Connector.CoordinateConstraint.coordinate_o�set coordiante o�set for CoordinateConstraint (w.r.t.
ground or between two element coordinates); o�set
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain_factor coordiante gain factor for CoordinateConstraint

Example

see �le CoordinateConstraint.txt

l = 1 % m

rigidBody

{

element_type= "Rigid3D"

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

coordinateConstraint

{

element_type= "CoordinateConstraint"

Coordinate1

{

element_number= nRigid %element number for coordinate 1

local_coordinate= 1 %local coordinate of element 1

}

}

AddConnector(coordinateConstraint)

3.3.3 VelocityCoordinateConstraint

Short description

Similar to CoordinateConstraint. Lagrangian constraint implemented for index 3 and index 2
solvers. A penalty formulation is also implemented.

Equations

Lagrange formulation:

velocity constraint (index 2 and 3 solvers)
2 elements (coordinate to coordinate): C = k

(
q̇el1i − q̇el1i,0

)
−
(
q̇el2j − q̇el2j,0

)
− d = 0,

1 element (coordinate to ground): C = k
(
q̇el1i − q̇el1i,0

)
− d = 0

Langrange multiplier
∂C
∂q̇el1

T
= [0 0 , k , 0 ... 0] ... with k at index i

∂C
∂q̇el2

T
= [0 ... 0 ,−1 , 0 0] ... with −1 at index j

Penalty formulation:

158 CHAPTER 3. HOTINT REFERENCE MANUAL

2 elements (coordinate to coordinate): f = SP
(
k
(
q̇el1i − q̇el1i,0

)
−
(
q̇el2j − q̇el2j,0

)
− d
)

1 element (coordinate to ground): f = SP
(
k
(
q̇el1i − q̇el1i,0

)
)− d

)
Description:
k ... coordinate velocity gain factor
d ... coordinate velocity o�set
q̇el1i ... ith coordinate velocity of element 1
q̇el1i,0 = q̇el1i (t = 0) ... ith coordinate velocity of element 1 at initialization
q̇el2j ... jth coordinate velocity of element 2
q̇el2j,0 = q̇el2j (t = 0) ... jth coordinate velocity of element 2 at initialization
SP ... spring sti�ness
C ... Lagrange equation
f ... force vector (penalty formulation)

Description of the di�erent modi

coordinate to ground Coordinate2.element_number AND Coordi-
nate2.local_coordinate have to be equal to 0

coordinate to coordinate Coordinate2.element_number and/or Coordi-
nate2.local_coordinate must not be equal to
0

relative or absolute to initial values If relative_to_inital_values is set to 1: Equation
above is used.
If set to 0: Simpli�ed equation is used (q̇el1i,0 = q̇el2j,0 =
0).

Data objects of VelocityCoordinateConstraint:

Data name type R default description

element_type string "VelocityCoordinateConstraint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "VelocityCoordinateConstraint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double 0.1 General drawing size of constraint
Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.
spring_sti�ness

double 0 general or penalty sti�ness parameter Sp

coord_o�set double 0 coordinate o�set d, see documentation section
equation

coord_gain_factor double 1 coordinate gain factor k, see documentation sec-
tion equation

3.3. CONNECTOR 159

relative_to_inital_values bool 1 �ag == 1: full equation is used, see documen-
tation; �ag == 0: the init state derivatives
d(qi0)/dt and d(qj0)/dt are neglected.

Coordinate1
Coordinate1.
element_number

integer 0 element number for coordinate 1

Coordinate1.
local_coordinate

integer 0 Local coordinate of element 1 to be constrained

Coordinate2
Coordinate2.
element_number

integer 0 element number for coordinate 2; for ground
joint, set element number to zero

Coordinate2.
local_coordinate

integer 0 Local coordinate of element 2 to be constrained

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-1
Connector.CoordinateConstraint.generalized_force force acting on the generalized coordinates
Connector.CoordinateConstraint.coordinate_di�erencedi�erence between the coordinates
Connector.CoordinateConstraint.coordinate_o�set coordiante o�set for CoordinateConstraint (w.r.t.

ground or between two element coordinates); o�set
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain_factor coordiante gain factor for CoordinateConstraint

Controllable special values:

For more information see section 3.1

value name description
Connector.CoordinateConstraint.coordinate_o�set coordiante o�set for CoordinateConstraint (w.r.t.

ground or between two element coordinates); o�set
is ignored for Index 2 (setting of time integration)
velocity level constraint

Connector.CoordinateConstraint.gain_factor coordiante gain factor for CoordinateConstraint

Example

see �le VelocityCoordinateConstraint.txt

l = 1 % m

rigidBody

{

160 CHAPTER 3. HOTINT REFERENCE MANUAL

element_type= "Rigid3D"

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

coordinateConstraint

{

element_type= "VelocityCoordinateConstraint"

Coordinate1

{

element_number= nRigid %element number for coordinate 1

local_coordinate= 1 %local coordinate of element 1

}

}

AddConnector(coordinateConstraint)

3.3.4 MultiCoordConstraint

Short description

The MultiCoordConstraint is an extension of CoordinateConstraint and constrains more than
two elements.Only the lagrange multiplier formulation is implemented and no penalty formu-
lation.

Equations

position constraint (index 3 solver)
C = k1

(
qel1c1 − qel1c1,0

)
− k2

(
qel2c2 − qel2c2,0

)
− k3...− d = 0

velocity constraint - index reduction (index 2 solver)
C = k1 q̇

el1
c1 − k2q̇el2c2 − k3... = 0

Langrange multiplier
�rst element:
∂C
∂qel1

T
= [0 0, k1 , 0 ... 0] ... with k1 at index c1

i-th element:
∂C
∂qeli

T
= [0 ... 0 ,−ki , 0 0] ... with −ki at index ci

Description:
k1, k2, ..., ki ... coordinate gain factors
d ... coordinate o�set (for index 2 solvers not used)
qeljci ... cith coordinate of element j
qeljci,0 = qeljci (t = 0) ... cith coordinate of element j at initialization
C ... Lagrange equation

Description of the di�erent modi

3.3. CONNECTOR 161

relative or absolute to initial values Only important for max index 3 solvers.
If relative_to_inital_values is set to 1: Equation
above is used.
If set to 0: Simpli�ed equation is used (qel1c1,0 = qel2c2,0 =
... = 0).

Figure 3.22: 3 point masses are constrained to each other with MultiCoordConstraints to
obtain the same behaviour as a rigid body, see the provided example code.

Data objects of MultiCoordConstraint:

Data name type R default description

element_type string "MultiCoordConstraint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "MultiCoordConstraint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double 0.1 General drawing size of constraint
element_numbers vector [] element numbers to constrain
local_coordinates vector [] local coordinates of elements to be constrained
coord_gain_factors vector [] coordinate gain factor k for each element, see doc-

umentation section equation
coord_o�set double 0 coordinate o�set d, see documentation section

equation
relative_to_inital_values bool 1 �ag == 1: full equation is used, see documenta-

tion; �ag == 0: the init state values qi0 and qj0
are neglected.

Observable special values:

For more information see section 3.1

162 CHAPTER 3. HOTINT REFERENCE MANUAL

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-1

Example

see �le MultiCoordinateConstraint.txt

r = 0.1 % [m] distance between point masses

m_center = 2 % [kg] mass of point mass in the center

m_outer = 0.5 % [kg] mass of point mass at the outer edges

Force.load_type= "ForceVector2D"

Force.force_vector= [0,1]

Force.position= [0, 0]

nLoad = AddLoad(Force)

PointMass.element_type= "Mass2D"

PointMass.loads= [] % no load at left mass

PointMass.Graphics.radius= r/10

PointMass.Initialization.initial_position= [0, 0]

PointMass.Physics.mass= m_outer

nE_mLeft=AddElement(PointMass)

PointMass.loads= [nLoad] % force vector acting on right mass

PointMass.Initialization.initial_position= [2*r, 0]

nE_mRight=AddElement(PointMass)

PointMass.loads= [] % no load at the center mass

PointMass.Initialization.initial_position= [r, 0]

PointMass.Physics.mass= m_center

nE_mCenter=AddElement(PointMass)

MultiCC

{

element_type= "MultiCoordConstraint"

Graphics.draw_size = r/10

element_numbers= [nE_mCenter,nE_mLeft,nE_mRight]

local_coordinates= [1,1,1] % constrain x-directions

coord_gain_factors= [1,0.5,0.5] % x of center mass is average of outer masses

}

AddConnector(MultiCC)

MultiCC.local_coordinates= [2,2,2] % constrain y-directions

AddConnector(MultiCC)

ConstLength

{

element_type= "SpringDamperActuator2D"

3.3. CONNECTOR 163

Graphics.show_connector = 0

Physics.spring_length= r % keep the distance constant

Physics.Linear.spring_stiffness= 1000 % high stiffness

Physics.Linear.damping= 10 % sufficient damping

Position1.element_number= nE_mCenter % center - left

Position2.element_number= nE_mLeft

}

AddConnector(ConstLength)

ConstLength.Position2.element_number= nE_mRight % center - right

AddConnector(ConstLength)

% compare with rigid body formulation (reference solution) ================

Force.name= "Load for Rigid"

Force.position= [r, 0] % local position of load is different

nLoadRigid = AddLoad(Force)

RigidBody.element_type= "Rigid2D"

RigidBody.loads= [nLoadRigid]

RigidBody.Graphics.body_dimensions= [2*r, r/10, r/10]

RigidBody.Graphics.RGB_color = [0.1,0.8,0.8]

RigidBody.Physics.moment_of_inertia= 2*m_outer*r*r % [I_ZZ]

RigidBody.Physics.mass= 2*m_outer+m_center % total mass of the body in kg

RigidBody.Initialization.initial_position= [r, 0]

AddElement(RigidBody)

3.3.5 SlidingPointJoint

Short description

This joint enables sliding of a �xed point of a body i along the x - axis of another body j. Both
body i and body j can be �exible or rigid. Body j can contain more than one elements. No
rotations are constrained at all. Only a Lagrangian formulation is implemented, the penalty
formulation is not implemented yet. A MaxIndex 2 and 3 formulation exists.

Degrees of freedom

The vector of the DOF contains the sliding parameter s, its time derivative ṡ and the vector of
the Lagrangian parameters λ = [λ1λ2λ3]

T. The Lagrange parameters λ1 to λ3 are representing
the sliding forces in the global coordinate system.

q =
[
s ṡ λ1 λ2 λ3

]T (3.15)

Equations

positions:

xi =
[
xi1 xi2 xi3

]T (3.16)

xj =
[
xj1 = s xj2 xj3

]T
(3.17)

164 CHAPTER 3. HOTINT REFERENCE MANUAL

constraint equation - position level

C =

 ri (xi)− rj (xj)

∂rj(xj)
∂xj1

λ

 = 0 (3.18)

The �rst three constraints restrict the motion of the sliding point on body i and j. The fourth
constraint equation ensures, that there is no force in the sliding direction.

constraint equation - velocity level:

C =


∂ri(xi)
∂t
− rj(xj)

∂t
− rj(xj)

∂xj1
ṡ

∂rj(xj)
∂xj1

λ

 = 0 (3.19)

To obtain the constraints for velocity level, the �rst three equations are di�erentiated with
respect to time. The sliding parameter s is also a function of time. The fourth constraint
equation is equal to the position level equation.

Description of the di�erent modi

sliding along a single body The vector Geomety.element_numbers is equal to
[en1, en2]. Index Geomety.elemind must be 1.

sliding along more than one body Geomety.element_numbers has to be set to
[en1, en21, en22, ..., en2n]. Geomety.elemind is the
body j index of the element in inital con�guration,
e.g. for en22 the elemind is 2.

Figure 3.23: SlidingPointJoint

Data objects of SlidingPointJoint:

Data name type R default description

3.3. CONNECTOR 165

element_type string "SlidingPointJoint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SlidingPointJoint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double -1 Drawing dimensions of constraint. If set to -1,

then global_draw_scalar_size is used.
Geometry
Geometry.elemind integer 1 Index of the initial sliding body.
Geometry.position_1 vector [0, 0, 0] Vector from the center of body number 1 (en1) to

the sliding point in the local body 1 coordinate
system.

Geometry.position_2 vector [0, 0, 0] Vector from the center of the �rst body of en2
array to the sliding point in the local body 2 co-
ordinate system.

Geometry.
element_numbers

vector [1, 2] Element numbers: [en1,en2_1,en2_2,...,en2_n].

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-5
Internal.�rst_order_variable �rst order variables of the element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-4
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3 corresponds to force in global
x-y-z direction

Example

see �le SlidingPointJoint.txt

l = 1 %m

k = 0.02 %nominal value k=1; decreased stiffness for demonstration!

load % define the load

{

load_type = "ForceVector3D"

position = [l/2,0,0]

force_vector = [0,0,1000] % magnitude and direction

}

nLoad=AddLoad(load)

166 CHAPTER 3. HOTINT REFERENCE MANUAL

material

{

material_type = "Beam3DProperties"

cross_section_type = 1 % rectangular cross section

cross_section_size = [0.05,0.1]

density = 7850 %kg/m^3

EA = 2100000000*k %N

EIy = 1750000*k %Nm^2

EIz = 1750000*k %Nm^2

GAky = 800000000*k %N

GAkz = 800000000*k %N

GJkx = 500000000*k %N*m^2

RhoA = 78.5 %kg/m^2

RhoIx = 0.1 %kg*m

RhoIy = 0.1 %kg*m

RhoIz = 0.1 %kg*m

}

nMaterial = AddBeamProperties(material)

node

{

node_type = "Node3DRxyz"

}

n1 = AddNode(node)

node.Geometry.reference_position = [l/2,0,0]

n2 = AddNode(node)

node.Geometry.reference_position = [l,0,0]

n3 = AddNode(node)

node.Geometry.reference_position = [3*l/4,0,0]

node.Geometry.reference_rot_angles = [0,-Pi/2,0] %bryant angles

n4 = AddNode(node)

node.Geometry.reference_position = [3*l/4,0,l]

n5 = AddNode(node)

beam

{

element_type= "LinearBeam3D"

Physics.material_number = nMaterial

Geometry.node_1 = n1

Geometry.node_2 = n2

}

nBeam12 = AddElement(beam)

beam.Geometry.node_1 = n2

beam.Geometry.node_2 = n3

nBeam23 = AddElement(beam)

3.3. CONNECTOR 167

beam.loads = [nLoad]

beam.Geometry.node_1 = n4

beam.Geometry.node_2 = n5

nBeam45 = AddElement(beam)

slidingJoint

{

element_type = "SlidingPointJoint"

Geometry

{

elemind = 2 %number of the initial sliding body (2nd body).

position_1 = [-l/2, 0, 0]

%vector from the center of body number 1 (en1) to the sliding point

%in the local body 1 coordinate system.

position_2 = [l/2, 0, 0] %vector from the center of the first body

%of en2 array to the sliding point in the local body 2 coordinate system.

element_numbers = [nBeam45, nBeam12,nBeam23]

%Element numbers: [en1, en2_1,en2_2].

}

}

AddConnector(slidingJoint)

rigidJoint

{

element_type= "RigidJoint"

Position1

{

element_number= nBeam12 %constrained element

position= [-l/4, 0, 0] %local position.

}

}

AddConnector(rigidJoint)

3.3.6 SlidingPrismaticJoint

Short description

This joint enables sliding of a �xed point of a body i along the x - axis of another body j.
Both body i and body j can be �exible or rigid. Body j can contain more than one element.
The di�erence to the SlidingPointJoint is that the relative rotation between the bodies is
also constrained. A Lagrangian formulation is used for both sti� and springy constrained
rotation. For the position constraint only a sti� formulation exists. A penalty formulation is
not implemented yet. There is a MaxIndex 2 and 3 formulation implemented.

Degrees of freedom

The vector of the DOF contains the sliding parameter s, its time derivative ṡ and the vector of
the Lagrangian parameters λ = [λ1λ2λ3]

T. The Lagrange parameters λ1 to λ3 are representing
the sliding forces in the global coordinate system. The three Lagrangian parameters λ4 to λ6
are the sliding moments about the global coordinate system axes.

q =
[
s ṡ λ1 λ2 λ3 λ4 λ5 λ6

]T (3.20)

168 CHAPTER 3. HOTINT REFERENCE MANUAL

Equations

At initialization the unit vectors of the global coordinate system are transformed to the local
coordinate system of each body and the vectors vi1, vi2 and vi3 for body i and vj1, vj2 and vj3
for body j are obtained. The vectors are �xed in the body coordinate system. The position
vectors are the same as for the SlidingPointJoint.

constraint equation - position level (sti� connection)

C =



ri (xi)− rj (xj)

∂rj(xj)
∂xj1

λ

vj2v
i
3

vj3v
i
1

vj2v
i
1


= 0 (3.21)

constraint equation - position level (springy connection)

C =



ri (xi)− rj (xj)

∂rj(xj)
∂xj1

λ

vj2v
i
3k1 +

(
v̇j2v

i
3 + vj2v̇

i
3

)
d1 + λ4

vj3v
i
1k1 +

(
v̇j3v

i
1 + vj3v̇

i
1

)
d2 + λ5

−vj2v
i
1k1 −

(
v̇j2v

i
1 + vj2v̇

i
1

)
d3 + λ6


= 0 , (3.22)

constraint equation - velocity level (sti� connection)

C =



∂ri(xi)
∂t
− rj(xj)

∂t
− rj(xj)

∂xj1
ṡ

∂rj(xj)
∂xj1

λ

v̇j2v
i
3 + vj2v̇

i
3

v̇j3v
i
1 + vj3v̇

i
1

v̇j2v
i
1 + vj2v̇

i
1


= 0 (3.23)

constraint equation - velocity level (springy connection)

C =



∂ri(xi)
∂t
− rj(xj)

∂t
− rj(xj)

∂xj1
ṡ

∂rj(xj)
∂xj1

λ

vj2v
i
3k1 +

(
v̇j2v

i
3 + vj2v̇

i
3

)
d1 + λ4

vj3v
i
1k1 +

(
v̇j3v

i
1 + vj3v̇

i
1

)
d2 + λ5

−vj2v
i
1k1 −

(
v̇j2v

i
1 + vj2v̇

i
1

)
d3 + λ6


= 0 (3.24)

Description of the di�erent modi

3.3. CONNECTOR 169

sliding along a single body The vector Geomety.element_numbers is equal to
[en1, en2]. Index Geomety.elemind must be 1.

sliding along more than one body Geomety.element_numbers has to be set to
[en1, en21, en22, ..., en2n]. Geomety.elemind is the
body j index of the element in inital con�guration,
e.g. for en22 the elemind is 2.

sti� constrained rotation Physics.use_penalty_formulation is set to 0.
springy constrained rotation Physics.use_penalty_formulation is set to 1. The

values for sti�ness and damping must be set in
Physics.Penalty folder.

Data objects of SlidingPrismaticJoint:

Data name type R default description

element_type string "SlidingPrismaticJoint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SlidingPrismaticJoint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double -1 Drawing dimensions of constraint. If set to -1,

then global_draw_scalar_size is used.
Geometry
Geometry.position_1 vector [0, 0, 0] Vector from the center of body number 1 (en1) to

the sliding point in the local body 1 coordinate
system.

Geometry.position_2 vector [0, 0, 0] Vector from the center of the �rst body of en2
array to the sliding point in the local body 2 co-
ordinate system.

Geometry.
element_numbers

vector [1, 2] Element numbers: [en1,en2_1,en2_2,...,en2_n].

Geometry.elemind integer 1 Index of the initial sliding body.
Physics
Physics.
use_penalty_formulation

bool 1 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.k1 double 1e+005 Sti�ness for rotation about global x - axis.
Physics.Penalty.k2 double 1e+005 Sti�ness for rotation about global y - axis.
Physics.Penalty.k3 double 1e+005 Sti�ness for rotation about global z - axis.
Physics.Penalty.d1 double 100 Damping of rotation about global x - axis.
Physics.Penalty.d2 double 100 Damping of rotation about global x - axis.
Physics.Penalty.d3 double 100 Damping of rotation about global x - axis.

Observable special values:

For more information see section 3.1

170 CHAPTER 3. HOTINT REFERENCE MANUAL

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-8
Internal.�rst_order_variable �rst order variables of the element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-7
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.SlidingPrismaticJoint.sliding_parameter internal sliding parameter s
Connector.SlidingPrismaticJoint.sliding_parameter_p internal time derivative of sliding parameter s

Example

see �le SlidingPrismaticJoint.txt

... copy this part from "SlidingPointJoint" example

slidingJoint

{

element_type = "SlidingPrismaticJoint"

Geometry

{

elemind = 2 %number of the initial sliding body (2nd body).

position_1 = [-l/2, 0, 0]

%vector from the center of body number 1 (en1) to the sliding point

%in the local body 1 coordinate system.

position_2 = [l/2, 0, 0] %vector from the center of the first body

%of en2 array to the sliding point in the local body 2 coordinate system.

element_numbers = [nBeam45, nBeam12,nBeam23]

%Element numbers: [en1, en2_1,en2_2].

}

}

AddConnector(slidingJoint)

... copy this part from "SlidingPointJoint" example

3.3.7 Rope3D

Short description

Elastic rope that is always under tension and can be �xed to multiple bodies and ground. There
are 2 di�erent kinds of suspensions points. Suspension points �xed on the ground are de�ned
with the element number 0 and the global position. Suspension points on bodies are de�ned
with the element number and the corresponding local position.

Limitations

The rope is assumed to be straight between 2 suspension points. No negative forces can be
transmitted by a rope. The computation of the time derivative of the length of the rope is just
an approximation. Therefore the damping of the rope may be represented slightly incorrect.

3.3. CONNECTOR 171

Figure 3.24: Point mass with rope

Data objects of Rope3D:

Data name type R default description

element_type string "Rope3D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Rope3D" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double -1 drawing dimensions of constraint. If set to -1,

then global_draw_scalar_size is used.
Geometry
Geometry.rope_length double R 1 initial length l0 of rope (computed automatically)
Geometry.
element_numbers

vector [0, 0] element numbers of the suspension points

Geometry.positions matrix [0, 0, 0; 1, 0, 0]
(local) positions of the suspension points

Physics
Physics.Penalty
Physics.Penalty.damping double 0 damping coe�cient for viscous damping (F =

d*v), applied in all constrained directions
Physics.Penalty.
rope_sti�ness

double 0 [N] sti�ness parameter c of the rope, F = c * (l-
l0)/l0

Physics.Penalty.
spring_sti�ness

double R 0 total sti�ness c1 of the rope F = c1 * (l-l0)

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-3

172 CHAPTER 3. HOTINT REFERENCE MANUAL

Connector.Rope.coiled_length (additional) length of the rope that is provided by a
coil. length = rope_length + coiled_length

Connector.Rope.force force in the rope
Connector.Rope.rope_length length of the rope

Controllable special values:

For more information see section 3.1

value name description
Connector.Rope.coiled_length (additional) length of the rope that is provided by a

coil. length = rope_length + coiled_length

Example

see �le Rope3D.txt

Mass

{

element_type= "Mass3D"

Physics.mass= 1

Initialization.initial_position= [0.5, 0.8, 0]

}

nMass = AddElement(Mass)

rope

{

element_type= "Rope3D"

name= "Rope3D" %name of the element

Graphics.draw_size = 0.03

Physics

{

Penalty

{

rope_stiffness= 1e3

damping= 10

}

}

Geometry

{

element_numbers= [0, 0, nMass, 0] %element numbers of the suspension points

positions= [0, 0.5, 0; 0, 1, 0; 0,0,0; 1,1,0]

}

}

nRope = AddConnector(rope)

3.3. CONNECTOR 173

3.3.8 FrictionConstraint

Short description

The FrictionConstraint is acting on an arbitraty coordinate, including rotations. It can be
used to connect two elements to each other or one element to ground. Up to a speci�ed
threshold of the force, the constraint is sticking, which is either realized by a spring-damper
formulation (penalty formulation) or with an algebraic equation (lagrange formulation). Above
this threshold, a constant friction force is applied during the sliding phase. Alternatively
sticking can be switched o� and a coulomb friction force, with a transition region for very small
velocities, can be applied.

Equations

Lagrange formulation:

sticking:
position constraint (index 3 solver)
2 elements (coordinate to coordinate): C = qel1i − qel2j − x0 = 0
1 element (coordinate to ground): C = qel1i − x0 = 0
velocity constraint - index reduction (index 2 solver)
2 elements (coordinate to coordinate): C = q̇el1i − q̇el2j = 0,
1 element (coordinate to ground): C = q̇el1i = 0

sliding: C = λ− µkinFn = 0

Penalty formulation:

sticking:
2 elements (coordinate to coordinate):Fst = c

(
qel1i − qel2j − x0

)
+ d

(
q̇el1i − q̇el2j

)
1 element (coordinate to ground):Fst = c

(
qel1i − x0

)
+ dq̇el1i

sliding: Fsl = µkinFn

Description:
qel1i ... ith coordinate of element 1
qel2j ... jth coordinate of element 2
x0 ... last sticking position (updated at every slide-stick transition)

Description of the di�erent modi

sticking During sticking phase, the constraint is implemented
as spring-damper, with the force Fst, the spring sti�-
ness c and the damping coe�cient d or alternatively
with one algebraic equation in lagrange mode.

sliding During sliding phase, a constant friction force Fsl is
applied. Fsl depends on the normal force Fn.If the
�ag keep_sliding is active, then a transition region
for small velocities is used.

174 CHAPTER 3. HOTINT REFERENCE MANUAL

Additional notes

The switching from sticking phase to sliding phase is done automatically, as soon as Fst > µstFn.
The switching to sticking phase is performed when the absolute value of the velocity v is smaller
than the speci�ed velocity_tolerance.
If the solver does not converge close to the switching points, set the solver option SolverOp-
tions.Discontinuous.ignore_max_iterations = 1.
If you are using index 2 solver it is advised to use RadauIIA and not LobattoIIIA. LobattoIIIA
may lead to oscillations of the friction force and therefore unwanted stick-slip transistions.
If you are using the FrictionConstraint in order to constrain rotations, problems may occur
when the change of the angle is discontinous, e.g. if it exceeds pi/2.

Figure 3.25: FrictionConstraint with friction forces Fst and Fsl, with sticking (left �gure,
keep_sliding = 0) and without sticking (right �gure, keep_sliding = 1).

Data objects of FrictionConstraint:

Data name type R default description

element_type string "FrictionConstraint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "FrictionConstraint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double -1 Drawing dimensions of constraint. If set to -1,

then global_draw_scalar_size is used.
Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.normal_force double 0 constant normal force Fn
Physics.
velocity_tolerance

double 1e-005 If velocity is below this value, sticking starts, or
if 'keep sliding' is active, the transition region is
used.

Physics.fr_coe�_st double 0.15 static friction coe�cient, used to determine the
threshold when sliding starts.

Physics.fr_coe�_kin double 0.1 kinematic friction coe�cient, used to calculate
the constant force during sliding phase.

Physics.keep_sliding bool 0 The constraint will never go to modus 'stick'.
Physics.Penalty

3.3. CONNECTOR 175

Physics.Penalty.
spring_sti�ness

double 0 spring sti�ness c, only used during sticking phase!

Physics.Penalty.damping double 0 damping coe�cient d for viscous damping, only
used during sticking phase!

Initialization
Initialization.
initial_sliding_velocity

double 0 Initial (relative) sliding velocity between the two
kinematic pairs. If absolute value is smaller than
'velocity tolerance' then the constraint starts with
'sticking'.

Coordinate1
Coordinate1.
element_number

integer 0 element number for coordinate 1

Coordinate1.
local_coordinate

integer 1 Local coordinate of element 1 to be constrained

Coordinate2
Coordinate2.
element_number

integer 0 element number for coordinate 2; for ground
joint, set element number to zero

Coordinate2.
local_coordinate

integer 1 Local coordinate of element 2 to be constrained

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-1
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-4

Connector.FrictionConstraint.sticking 1 if sticking, 0 if sliding
Connector.FrictionConstraint.force_forward force, applied to the kinematic pairs due to the con-

straint
Connector.FrictionConstraint.force_forward_abs absolute value of the force, applied to the kinematic

pairs due to the constraint
Connector.FrictionConstraint.force_normal force, applied to the kinematic pairs due to the con-

straint

Controllable special values:

For more information see section 3.1

value name description
Connector.FrictionConstraint.force_normal force, applied to the kinematic pairs due to the con-

straint

176 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le FrictionConstraint.txt

force

{

load_type = "ForceVector3D"

force_vector= [1, 0, 0]

load_function_type= 1 %time dependency of the load: 1..MathFunction

MathFunction

{

piecewise_mode= 1 %modus for piecewise interpolation: 1=linear

piecewise_points= [0,0.08,0.081,0.2] %supporting points

piecewise_values= [0,50,-50,0] %values at supporting points

}

}

nLoad=AddLoad(force)

test_mass

{

element_type = "Mass3D"

Physics.mass = 1

loads=[nLoad]

}

nMass = AddElement(test_mass)

friction

{

element_type= "FrictionConstraint"

name= "FrictionConstraint"

Physics

{

normal_force= 10

fr_coeff_st= 0.15

fr_coeff_kin= 0.1

}

Coordinate1

{

element_number= nMass %element number for coordinate 1

local_coordinate= 1 %Local coordinate of element 1 to be constrained

}

}

nFriction=AddConnector(friction)

sensfriction

{

name= "sticking"

sensor_type= "ElementSensor"

element_number= nFriction

value= "Connector.FrictionConstraint.sticking"

}

AddSensor(sensfriction)

sensfriction.name="friction_force"

3.3. CONNECTOR 177

sensfriction.value= "Connector.FrictionConstraint.force_forward"

nSensFriction = AddSensor(sensfriction)

SolverOptions

{

end_time = 0.2

TimeInt.max_step_size = 1e-5

Newton.relative_accuracy = 1

Newton.use_modified_newton= 1

Linalg.use_sparse_solver = 1

Discontinuous.ignore_max_iterations = 1

}

ViewingOptions.Loads.show_loads=1

3.3.9 Contact1D

Short description

Contact1D realizes a contact formulation between two elements or one element and ground.
Only one coordinate (direction) is considered per element.

Geometry

Figure 3.26 shows the meaning of the values local coordinate and position in the case of a
ground constraint. The only direction which is considered is that de�ned by Coordinate1.local
coordinate. Figure 3.26 shows the case for 2 elements. The value Physics.direction, dir in the
following equations, is used to de�ne how the elements are located w.r.t. each other.
ATTENTION: Be carefull when using coordinates which do not represent a position!

Equations

Some general de�nitions:
pos = coordinate+ localposition (3.25)

u = dir(pos1 − pos2) (3.26)

v = dir(vel1 − vel2) (3.27)

Mode 1:
if u ≥ 0:

F = 0 (3.28)

else:
F = dir(cu+ dv) (3.29)

Description of the di�erent modi

Mode 1 Penalty Formulation with spring and damper. The
bodies will penetrate slightly according to the spring
sti�ness. Results may depend on chosen step size!

Mode 2 Lagrange Formulation (not implemented yet)

178 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.26: Description of the geometry options in the case of a ground constraint.

Figure 3.27: Description of the geometry options in the case of 2 elements.

Data objects of Contact1D:

Data name type R default description

element_type string "Contact1D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "Contact1D" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.draw_size double -1 Drawing dimensions of constraint. If set to -1,

then global_draw_scalar_size is used.
Physics
Physics.direction double 1 Direction of the contact: +1 if the �rst body is

on top, or else -1
Physics.mode integer 1 mode of computation
Physics.Mode1
Physics.Mode1.
spring_sti�ness

double 0 spring sti�ness c

Physics.Mode1.damping double 0 damping coe�cient d for viscous damping
Coordinate1
Coordinate1.
local_coordinate

integer 1 Local coordinate of element 1 to be constrained

Coordinate1.position double 0 Local position at which contact occurs
Coordinate1.
element_number

integer 1 element number for coordinate 1; set to zero if
you use nodal coordinates!

3.3. CONNECTOR 179

Coordinate1.
node_number

integer 0 (just used if element number = 0) node number
for coordinate 1

Coordinate2
Coordinate2.
local_coordinate

integer 1 Local coordinate of element 2 to be constrained
(not used if ground constraint)

Coordinate2.position double 0 Local (or global if ground) position at which con-
tact occurs

Coordinate2.
element_number

integer 0 element number for coordinate 2; for ground joint
or nodal coordinates, set element number to zero

Coordinate2.
node_number

integer 0 (just used if element number = 0) node number
for coordinate 2; for ground joint, set node num-
ber to zero

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-2
Internal.second_order_variable second order variables of the element. range: 1-1
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-1
Connector.Contact.force the force applied to the coordinates due to the con-

tact

Example

see �le Contact1D.txt

load.load_type= "Gravity"

load.gravity_constant= -9.81

nLoad = AddLoad(load)

r = 0.1

mass % define point mass

{

element_type= "Mass2D"

loads= [nLoad]

Initialization.initial_position= [1,0]

Physics.mass= 1

Graphics.radius = r

}

nElem1 = AddElement(mass)

contact % add contact

{

element_type= "Contact1D"

Graphics.draw_size = 0.01

Physics

180 CHAPTER 3. HOTINT REFERENCE MANUAL

{

mode= 1 % mode of computation

Mode1.spring_stiffness= 1e6 % spring stiffness c

Mode1.damping= 5e2 % damping coefficient d for viscous damping

}

Coordinate1

{

local_coordinate= 1 % coord 1 of element 1 is x-direction!

position= -r % offset in x-direction

element_number= nElem1 % element number for coordinate 1

} % ground constraint without offset: no entries for Coordinate 2 needed

}

AddConnector(contact)

SolverOptions.Discontinuous.absolute_accuracy = 0.001

SolverOptions.end_time = 2

3.3.10 GenericBodyJoint

Short description

The GenericBodyJoint constrains two elements at a local position each. If only one element is
speci�ed (second element 0), a ground GenericBodyJoint is realized. A penalty and Lagrange
formulation is available.
The constraint forces and moments are applied as follows:
Connecting element to element:
The constraint forces and moments are applied on both elements at the position of the connec-
tion point of the second element.
Connecting element to ground:
The constraint forces are applied at the position of the connection point of the element.

Equations

Lagrange equations:
The constraint equations for translation are

Ctrans = AT (x1 − x2) = 0

Each equation in Ctrans corresponds to a constrained direction. Hence only those equations
corresponding to the constrained directions are considered. If all directions are constrained,
Ctrans simpli�es to

Ctrans = x1 − x2 = 0

since AT (x1 − x2) = 0 ⇐⇒ x1 − x2 = 0.
If all rotations are constrained, then the constraint equations for rotation are

Crot =

 ejy · eiz
ejx · eiz
ejx · eiy

 =

 0
0
0

 .

If the rotation about the x-axis is not constrained, then

Crot =

(
ejx · eiz
ejx · eiy

)
=

(
0
0

)
.

3.3. CONNECTOR 181

If the rotation about the y-axis is not constrained, then

Crot =

(
ejy · eiz
ejy · eix

)
=

(
0
0

)
.

If the rotation about the z-axis is not constrained, then

Crot =

(
ejz · eiy
ejz · eix

)
=

(
0
0

)
.

Where

x1 position of connection point on body 1 in global coordinates
x2 position of connection point on body 2 in global coordinates,

or if constraint connects element to ground then connection point
of ground in global coordinates

v1 time derivative of x1

v2 time derivative of x2

A rotation matrix from local joint coordinates to global coordinates.
A = QiJ.

B B = QjJ
?

Qi rotation matrix from local coordinate system of body 1 to global coordinates
Qj rotation matrix from local coordinate system of body 2 to global coordinates
J joint local frame
J? J? = QT

j |t=0 Qi |t=0 J
eix, e

i
y, e

i
z

(
eix eiy eiz

)
= A

ejx, e
j
y, e

j
z

(
ejx ejy ejz

)
= B

Penalty equations:
The sti�ness and damping force is given by

f = AKtransA
Tu + ADtransA

Tv

The sti�ness and damping moment is given by

m = Krotϕ+ Drotω

Where

f constraint force due to sti�ness and damping
m constraint moment due to sti�ness and damping
Ktrans sti�ness matrix for translation
Dtrans damping matrix for translation
Krot sti�ness matrix for rotation
Drot damping matrix for rotation
ϕ relative angles between body 1 and body 2 or absolute angles of body 1

if body 1 is connected to ground
ω relative angular velocities between body 1 and body 2 or absolute angular

velocities of body 1 if body 1 is connected to ground.

182 CHAPTER 3. HOTINT REFERENCE MANUAL

If all rotations are constrained, linearized angles

ϕ =

 ϕx
ϕy
ϕz

 =

 −ejy · eiz
ejx · eiz
−ejx · eiy

 .

and linearized angular velocities are used

ω =

 ωx
ωy
ωz

 =

 −ėjy · eiz − ejy · ėiz
ėjx · eiz + ejx · ėiz
−ėjx · eiy − ejx · ėiy


Limitations

It is strongly recommended to prefer the Lagrangian method for free rotation instead of penalty
formulation to avoid simulation problems.
The constraint forces have to act for both bodies at the same position. This means, that
if the constraint is in penalty mode, or if not all directions are constrained, the constraint
forces need to be applied outside the connection point of at least one body. In case of the
GenericBodyJoint, the constraint forces are applied at the connection position of the second
element if two elements are constrained, or if one element is constrained, the constraint forces
are applied at the connection position of the element.
So if connecting two elements with a GenericBodyJoint, the constraint forces have to be applied
outside the �rst bodies connection point. For rigid bodies this is equivalent to applying the
force at the connection point and applying a moment which compensates the moment induced
by the shifting of the force. Applying forces on �exible bodies outside the connection point
gives various problems, like what happens if the force is outside the body, etc.
Therefore �exible bodies are treated like rigid bodies and the force is applied to the connection
point and a moment is applied, also on the position of the connection point, which compensates
the moment induced by shifting the force.
If you need a constraint which allows the sliding of an element on a �exible body please use a
SlidingPointJoint (3.3.5) or a SlidingPrismaticJoint (3.3.6).

Description of the di�erent modi

element to ground Position2.element_number AND Posi-
tion2.node_number have to be equal to 0

element to element Position2.element_number and/or Posi-
tion2.node_number must not be equal to 0

Lagrange Physics.use_penalty_formulation must be set to 0.
Set the vector of constrained directions in
Physics.Lagrange.constrained_directions ([x, y, z], 1
= constrained, 0 = free). The directions are w.r.t
the local body 1 joint coordinate system.
Set the vector of constrained rotations
in Physics.Lagrange.constrained_rotations
([φx, φy, φz], 1 = constrained, 0 = free). The
rotations are about the axes of local body 1 joint
coordinate system.

3.3. CONNECTOR 183

Penalty Physics.use_penalty_formulation must be set to 1.
In Physics.Penalty.sti�ness_matrix and
Physics.Penalty.damping_matrix all parameters
for translational sti�ness and damping w.r.t. local
body 1 coordinate system can be set.
In Physics.Penalty.sti�ness_matrix_rotation and
Physics.Penalty.damping_matrix_rotation all pa-
rameters for rotational sti�ness and damping w.r.t.
local body 1 coordinate system can be set.

Figure 3.28: GenericBodyJoint

first body

second body

x1

x2

f i

f j

f i

f i×(x2−x1)

Figure 3.29: The constraint forces act for both bodies on the position of x2. The force acting
on the �rst body is shifted to x1 (dashed) and a moment is applied to compensate the induced
moment through shifting.

Data objects of GenericBodyJoint:

Data name type R default description

element_type string "GenericBodyJoint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

184 CHAPTER 3. HOTINT REFERENCE MANUAL

name string "GenericBodyJoint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.
draw_size_joint_local_frame

double 0 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw_size double -1 cone size for standard joint drawing
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Geometry
Geometry.
joint_local_frame

matrix R [1, 0, 0; 0, 1, 0;
0, 0, 1]

Geometry.
joint_local_frame_in_bryant_angles

vector [0, 0, 0] Prerotate joint coordinate system w.r.t. local co-
ordinate system of body 1 [phi x, phi y, phi z].
Rot. sequence: JA0i=A(phi z)A(phi y)A(phi x)

Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.
sti�ness_matrix

matrix [0, 0, 0; 0, 0, 0;
0, 0, 0] 3x3 matrix with sti�ness parameters

Physics.Penalty.
damping_matrix

matrix [0, 0, 0; 0, 0, 0;
0, 0, 0] 3x3 matrix with damping parameters

Physics.Penalty.sti�-
ness_matrix_rotation

matrix [0, 0, 0; 0, 0, 0;
0, 0, 0] 3x3 matrix with sti�ness parameters for rotation

Physics.Penalty.damp-
ing_matrix_rotation

matrix [0, 0, 0; 0, 0, 0;
0, 0, 0] 3x3 matrix with damping parameters for rotation

Physics.Lagrange
Physics.Lagrange.
constrained_directions

vector [1, 1, 1] [x,y,z]...(1 = constrained, 0 = free), can be de�ned
as local or global directions (see Geometry)

Physics.Lagrange.
constrained_rotations

vector [1, 1, 1] [angle about x axis,angle about y axis,angle about
z axis]...(1 = constrained, 0 = free), can be de-
�ned as local or global directions (see Geometry)

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-6

3.3. CONNECTOR 185

Internal.algebraic_variable algebraic variables of the element. range: 1-6
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment internal global moment of connector
Connector.force_local internal local force of connector (joint coordinate sys-

tem JAi)
Connector.moment_local internal local moment of connector (joint coordinate

system JAi)
Connector.displacement displacement between the joint coordinate systems

JAi and JAj expressed in coordinate system JAi
Connector.angle bryant angles between the joint coordinate systems

JAi and JAj. All constrained components are zero.

Controllable special values:

For more information see section 3.1

value name description
Connector.joint_bryant_angle prescribe the angles of the joint coordinate system

(for actuation, penalty formulation ONLY!)

Example

see �le GenericBodyJointShort.txt

l = 1 % m

rigidBody

{

element_type= "Rigid3D"

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

genericBodyJoint

{

element_type= "GenericBodyJoint"

Position1

{

element_number= nRigid %number of constrained element

position= [-l/2, 0, 0] %local position

}

Position2.position= [-l/2, 0, 0] %local position

}

AddConnector(genericBodyJoint)

186 CHAPTER 3. HOTINT REFERENCE MANUAL

3.3.11 RevoluteJoint

Short description

The RevoluteJoint constrains all relative degrees of freedom between two bodies except the
rotation about a local rotation axis. A penalty formulation exists, which replaces the exact
lagrange constraint by a approximation with joint sti�ness and damping. This constraint can
be used together with a RotatorySpringDamperActuator (3.3.18).
The RevoluteJoint is equivalent to a GenericBodyJoint (3.3.10) with all directions and rotations
constrained except the rotation about the local x axis. The joint local frame is chosen such that
the local x axis is the rotation axis. Please read also the documentation of GenericBodyJoint
for details and limitations.
The constraint forces and moments are applied as follows:
Connecting element to element:
The constraint forces and moments are applied on both elements at the position of the connec-
tion point of the second element.
Connecting element to ground:
The constraint forces are applied on the position of the connection point of the element.

Limitations

"In penalty formulation the constraints damps the relative velocity of the two connection points
in global coordinates, hence if the penalty sti�ness is low and the forces high, then a damping
of the rotation is possible.

Figure 3.30: RevoluteJoint

Data objects of RevoluteJoint:

Data name type R default description

element_type string "RevoluteJoint" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RevoluteJoint" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.
draw_size_joint_local_frame

double 0 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

3.3. CONNECTOR 187

Graphics.draw_size double -1 cone size for standard joint drawing
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.
standard_joint_drawing

bool 1 �ag for drawing mode; 1 == draw constraint el-
ement; 0 == show constrained directions and ro-
tations;

Graphics.diameter double -1 diameter of the revolute joint (for drawing)
Graphics.axis_length double -1 axis length of the revolute joint (for drawing)
Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.damping double 100 damping parameter used for translation and ro-

tation
Physics.Penalty.sti�ness double 1e+006 sti�ness parameter used for translation and rota-

tion
Physics.Lagrange
Physics.Lagrange.
constrained_directions

vector R [1, 1, 1] constrained directions cannot be changed

Physics.Lagrange.
constrained_rotations

vector R [0, 1, 1] constrained rotations cannot be changed

Physics.rotation_axis vector [1, 0, 0] local rotation axis w.r.t body 1 coordinate system
Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-5
Internal.algebraic_variable algebraic variables of the element. range: 1-5
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment internal global moment of connector
Connector.force_local internal local force of connector (joint coordinate sys-

tem JAi)
Connector.moment_local internal local moment of connector (joint coordinate

system JAi)
Connector.displacement displacement between the joint coordinate systems

JAi and JAj expressed in coordinate system JAi
Connector.angle bryant angles between the joint coordinate systems

JAi and JAj. All constrained components are zero.

188 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le RevoluteJointShort.txt

l = 1 % m

g = 9.81 % m/s^2

gravLoad

{

load_type = "Gravity"

direction = 3 % z - direction

gravity_constant = g

}

nLoad = AddLoad(gravLoad)

rigidBody

{

element_type= "Rigid3D"

loads= [nLoad]

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

revoluteJoint

{

element_type= "RevoluteJoint"

Physics.rotation_axis= [0, 1, 0] %local rotation axis

Position1

{

element_number= nRigid %number of constrained element

position= [-l/2, 0, 0] %local position

}

}

AddConnector(revoluteJoint)

3.3.12 PrismaticJoint

Short description

The PrismaticJoint constrains all relative degrees of freedom between two bodies except the
translation along a local sliding axis. A penalty formulation exists, which replaces the exact
Lagrange constraint by a approximation with joint sti�ness and damping.
The PrismaticJoint is equivalent to a GenericBodyJoint (3.3.10) with all directions and rota-
tions constrained except the translation about the local x axis. The joint local frame is chosen
such that the local x axis is the sliding axis. Please read also the documentation of Generic-
BodyJoint for details and limitations.
If the �rst body is a �exible body, then you might consider using the SlidingPrismaticJoint
(3.3.6).
The constraint forces and moments are applied as follows:
Connecting element to element:

3.3. CONNECTOR 189

The constraint forces and moments are applied on both elements at the position of the connec-
tion point of the second element.
Connecting element to ground:
The constraint forces are applied on the position of the connection point of the element.

Figure 3.31: PrismaticJoint

Data objects of PrismaticJoint:

Data name type R default description

element_type string "PrismaticJoint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PrismaticJoint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.
draw_size_joint_local_frame

double 0 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw_size double -1 cone size for standard joint drawing
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.
standard_joint_drawing

bool 1 �ag for drawing mode; 1 == draw constraint
nicely; 0 == show constrained directions and ro-
tations;

Graphics.rail_length double -1 length of the prismatic joint (for drawing)
Graphics.joint_cube_size vector [-1, -1, -1] cube dimension of prismatic joint (for drawing);

[lx (in sl. dir.),ly (normal to sl. dir.),lz (normal
to sl. dir.)]

Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.damping double 100 damping parameter used for translation and ro-

tation
Physics.Penalty.sti�ness double 1e+006 sti�ness parameter used for translation and rota-

tion
Physics.Lagrange

190 CHAPTER 3. HOTINT REFERENCE MANUAL

Physics.Lagrange.
constrained_directions

vector R [0, 1, 1] constrained directions cannot be changed

Physics.Lagrange.
constrained_rotations

vector R [1, 1, 1] constrained rotations cannot be changed

Physics.sliding_direction vector [1, 0, 0] local sliding direction w.r.t body 1 coordinate sys-
tem

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-5
Internal.algebraic_variable algebraic variables of the element. range: 1-5
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment internal global moment of connector
Connector.force_local internal local force of connector (joint coordinate sys-

tem JAi)
Connector.moment_local internal local moment of connector (joint coordinate

system JAi)
Connector.displacement displacement between the joint coordinate systems

JAi and JAj expressed in coordinate system JAi
Connector.angle bryant angles between the joint coordinate systems

JAi and JAj. All constrained components are zero.

Example

see �le PrismaticJointShort.txt

l = 1 % m

force

{

load_type = "ForceVector3D"

force_vector = [10,10,10]

}

nForce = AddLoad(force)

rigidBody

3.3. CONNECTOR 191

{

element_type= "Rigid3D"

loads= [nForce]

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

prismaticJoint

{

element_type= "PrismaticJoint"

Physics.sliding_direction = [1,0,0]

Position1

{

element_number= nRigid %number of constrained element

position= [-l/2, 0, 0] %local position

}

Position2.position= [-l/2, 0, 0]

}

AddConnector(prismaticJoint)

3.3.13 UniversalJoint

Short description

The UniversalJoint constains the local position of two elements and keeps two axes, one on
each body, perpendicular to each other.

Degrees of freedom

The vector of the DOF contains the Lagrangian parameters λ = [λ1 λ2 λ3 λ4]
T, where λ1, λ2, λ3

are measures for the violation of the displacement condition and λ4 is a measure for the violation
of the orthogonality condition of the two axes.

Geometry

For this constraint one needs to specify the axes of the cross and the directions in which the
hinges are drawn. The direction of the hinge and the axis connected to this hinge have to be
given in the local coordinate system of the respective body. See �gure 3.33

Equations

The positions and axes are given in local coordinates of body 1 respectively body 2. However
the calculations are done internally in global coordinates.
Let

xi =
[
xi1 xi2 xi3

]T
be the position (in global coordinates) where the joint is connected to the �rst body and let

xj =
[
xj1 xj2 xj3

]T
be the position (in global coordinates) where the joint is connected to the second body.
Let

ai =
[
ai1 ai2 ai3

]T

192 CHAPTER 3. HOTINT REFERENCE MANUAL

be the axis (in global coordinates) connected to the �rst body and let

aj =
[
aj1 aj2 aj3

]T
be the axis (in global coordinates) connected to the second body. Then the constraint equations
at position level are

C =

[
xi − xj

ai
T · aj

]
= 0.

The �rst three constraints restrict the position of the connection points of body 1 and 2. The
fourth equation ensures that the two axes of the cross are perpendicular to each other.
The constraint equations at velocity level are

C =

[
∂xi

∂t
− ∂xj

∂t
ai

∂t

T
· aj

∂t

]
= 0.

Limitations

No penalty formulation is available.

Figure 3.32: UniversalJoint

3.3. CONNECTOR 193

Figure 3.33: UniversalJoint

Data objects of UniversalJoint:

Data name type R default description

element_type string "UniversalJoint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "UniversalJoint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] color of the hinge connected to

the �rst body, range = 0..1
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] color of the hinge connected to

the �rst body, range = 0..1
Graphics.color_cross vector [0.2, 0.2, 0.2] [red, green, blue] color of the cross shaft
Graphics.draw_length double -1 length of the universal joint (for drawing)
Graphics.draw_width double -1 width of the universal joint (for drawing)
Graphics.
draw_direction_1

vector [1, 0, 0] direction from body 1 to joint (for drawing)

Graphics.
draw_direction_2

vector [-1, 0, 0] direction from body 2 to joint (for drawing)

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position
Position1.axis vector [0, 1, 0] the axis of the cross connected to body 1 in local

coordinates
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion

Position2.axis vector [0, 0, 1] the axis of the cross connected to body 2 in local
coordinates

194 CHAPTER 3. HOTINT REFERENCE MANUAL

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-4
Internal.algebraic_variable algebraic variables of the element. range: 1-4

Example

see �le UniversalJoint.txt

rotor

{

element_type= "Rigid3D"

name= "rotor1"

Graphics

{

body_dimensions= [1, 0.1, 0.1]

}

Physics

{

moment_of_inertia= [sqr(0.05)*0.5, 0, 0

0, 1/12*(3*sqr(0.05)+1), 0

0, 0, 1/12*(3*sqr(0.05)+1)]

volume= sqr(0.05)*Pi

mass= 1

}

Initialization

{

initial_rotation = [0, 0, 0]

initial_position = [0, 0, 0]

initial_angular_velocity= [0, 0, 0] %Angular velocity vector in global coordinates: [ang_X, ang_Y, ang_Z] in rad/s

}

}

nRotor1 = AddElement(rotor)

rotor.name = "rotor2"

rotor.Initialization.initial_rotation = [0, 0, pi/4]

rotor.Initialization.initial_position = [0.5+0.5*sqrt(0.5), 0.5*sqrt(0.5), 0]

nRotor2 = AddElement(rotor)

universalJoint

{

element_type= "UniversalJoint"

name= "UniversalJoint"

Graphics

{

show_connector= 1

color_body1= [0.3, 0.8, 0.3]

3.3. CONNECTOR 195

color_body2= [0.7, 0.8, 0.3]

color_cross= [0.2, 0.2, 0.2]

draw_length= -1

draw_width= -1

draw_direction_1= [1, 0, 0]

draw_direction_2= [-1, 0, 0]

}

Position1

{

element_number= nRotor1

position= [0.5, 0, 0]

axis= [0, 1, 0]

}

Position2

{

element_number= nRotor2

position= [-0.5, 0, 0]

axis= [0, 0, 1]

}

}

AddConnector(universalJoint)

3.3.14 RigidJoint

Short description

The RigidJoint constrains the position and relative angles of an element at a speci�ed local
position. If only one element is speci�ed, a ground joint is realized. A penalty formulation
exists, which replaces the exact lagrange constraint by an approximation with joint sti�ness
and damping. The RigidJoint is equivalent to a GenericBodyJoint (3.3.10) with all directions
and rotations constrained Please read also the documentation of GenericBodyJoint for details
and limitations.
The constraint forces and moments are applied as follows:
Connecting element to element:
The constraint forces and moments are applied on both elements at the position of the connec-
tion point of the second element.
Connecting element to ground:
The constraint forces are applied on the position of the connection point of the element.

196 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.34: RigidJoint

Data objects of RigidJoint:

Data name type R default description

element_type string "RigidJoint" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RigidJoint" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.
draw_size_joint_local_frame

double 0 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw_size double -1 cone size for standard joint drawing
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.
standard_joint_drawing

bool 1 �ag for drawing mode; 1 == draw constraint el-
ement; 0 == show constrained directions and ro-
tations;

Graphics.cube_length double -1 rigid joint dimension (for drawing)
Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.damping double 100 damping parameter used for translation and ro-

tation
Physics.Penalty.sti�ness double 1e+006
Physics.Lagrange
Physics.Lagrange.
constrained_directions

vector R [1, 1, 1] constrained directions cannot be changed

Physics.Lagrange.
constrained_rotations

vector R [1, 1, 1] constrained rotations cannot be changed

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

3.3. CONNECTOR 197

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-6
Internal.algebraic_variable algebraic variables of the element. range: 1-6
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment internal global moment of connector
Connector.force_local internal local force of connector (joint coordinate sys-

tem JAi)
Connector.moment_local internal local moment of connector (joint coordinate

system JAi)
Connector.displacement displacement between the joint coordinate systems

JAi and JAj expressed in coordinate system JAi
Connector.angle bryant angles between the joint coordinate systems

JAi and JAj. All constrained components are zero.

Example

see �le RigidJointShort.txt

l = 1 % m

g = 9.81 % m/s^2

gravLoad

{

load_type = "Gravity"

direction = 3 % z - direction

gravity_constant = g

}

nLoad = AddLoad(gravLoad)

rigidBody

{

element_type= "Rigid3D"

loads= [nLoad]

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

rigidJoint

{

element_type= "RigidJoint"

Position1

{

element_number= nRigid %number of constrained element

198 CHAPTER 3. HOTINT REFERENCE MANUAL

position= [-l/2, 0, 0] %local position

}

Position2.position= [-l/2, 0, 0]

}

AddConnector(rigidJoint)

3.3.15 CylindricalJoint

Short description

The CylindricalJoint constrains like the RevoluteJoint, but allows additionally translation along
the rotational axis. A penalty formulation exists, which replaces the exact lagrange constraint
by a approximation with joint sti�ness and damping.
The CylindricalJoint is equivalent to a GenericBodyJoint (3.3.10) with all directions and ro-
tations constrained except the translation and rotation about the local x axis. The joint local
frame is chosen such that the local x axis is the rotation and sliding axis. Please read also the
documentation of GenericBodyJoint for details and limitations.
The constraint forces and moments are applied as follows:
Connecting element to element:
The constraint forces and moments are applied on both elements at the position of the connec-
tion point of the second element.
Connecting element to ground:
The constraint forces are applied on the position of the connection point of the element.

Figure 3.35: CylindricalJoint

Data objects of CylindricalJoint:

Data name type R default description

element_type string "CylindricalJoint"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "CylindricalJoint"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.
draw_size_joint_local_frame

double 0 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw_size double -1 cone size for standard joint drawing

3.3. CONNECTOR 199

Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range
= 0..1, use default color:[-1,-1,-1]

Graphics.
standard_joint_drawing

bool 1 �ag for drawing mode; 1 == draw constraint el-
ement; 0 == show constrained directions and ro-
tations;

Graphics.
joint_cylinder_size

vector [-1, -1] cylinder dimension of cylindrical joint (for draw-
ing); [lx (cyl. length, in sl. dir.),d (cylinder di-
ameter)]

Graphics.axis_length double -1 axis length of the revolute joint (for drawing)
Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.damping double 100 damping parameter used for translation and ro-

tation
Physics.Penalty.sti�ness double 1e+006 sti�ness parameter used for translation and rota-

tion
Physics.Lagrange
Physics.Lagrange.
constrained_directions

vector R [0, 1, 1] constrained directions cannot be changed

Physics.Lagrange.
constrained_rotations

vector R [0, 1, 1] constrained rotations cannot be changed

Physics.
rotation_sliding_axis

vector [1, 0, 0] local rotation/sliding axis w.r.t body 1 coordinate
system

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-4
Internal.algebraic_variable algebraic variables of the element. range: 1-4
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment internal global moment of connector
Connector.force_local internal local force of connector (joint coordinate sys-

tem JAi)
Connector.moment_local internal local moment of connector (joint coordinate

system JAi)
Connector.displacement displacement between the joint coordinate systems

JAi and JAj expressed in coordinate system JAi

200 CHAPTER 3. HOTINT REFERENCE MANUAL

Connector.angle bryant angles between the joint coordinate systems
JAi and JAj. All constrained components are zero.

Example

see �le CylindricalJointShort.txt

l = 1 % m

force

{

load_type = "ForceVector3D"

force_vector = [10,10,10]

}

nForce = AddLoad(force)

rigidBody

{

element_type= "Rigid3D"

loads= [nForce]

Graphics.body_dimensions= [l, 0.05, 0.05]

}

nRigid = AddElement(rigidBody)

cylindricalJoint

{

element_type= "CylindricalJoint"

Physics.rotation_sliding_axis = [1,0,0]

Position1

{

element_number= nRigid %number of constrained element

position= [-l/2, 0, 0] %local position

}

Position2.position= [-l/2, 0, 0]

}

AddConnector(cylindricalJoint)

3.3.16 SpringDamperActuator

Short description

The Spring-Damper-Actuator connects two points with a spring, a damper and a actor element,
in which actuator force fa remains constant. The resultant force is applied in the connection
line of these points. There are di�erent modes available, how the spring and damper force is
calculated. It is also possible to change the neutral spring length. This joint is realized in
Penalty formulation only.

Equations

point positions: p(1) =
[
p
(1)
x p

(1)
y p

(1)
z

]T
; p(2) =

[
p
(2)
x p

(2)
y p

(2)
z

]T
.

3.3. CONNECTOR 201

point velocities: ṗ(1) =
[
ṗ
(1)
x ṗ

(1)
y ṗ

(1)
z

]T
; ṗ(2) =

[
ṗ
(2)
x ṗ

(2)
y ṗ

(2)
z

]T
.

spring length: l0

direction vector: dir = p(1)−p(2)√(
p
(1)
x −p

(2)
x

)2
+
(
p
(1)
y −p

(2)
y

)2
+
(
p
(1)
z −p

(2)
z

)2
spring elongation: ∆x = l − l0 =

(
p(1) − p(2)

)T
dir− l0

spring velocity: v =
(
ṗ(1) − ṗ(2)

)T
dir

resultant force (see section forcemode):
forcemode 0: f = k∆x+ d v + fa (a)
forcemode 1: f = k (∆x) ∆x+ d (v) v + fa (b)
forcemode 2: f = fk + fd + fa (c)
forcemode 3: f = fk (∆x) + fd (v) + fa (d)

Limitations

If the 2 end points of the spring are the same point in the initial con�guration, this may lead
to problems! The direction of the spring can not be determined in that case!

Description of the di�erent modi

element to ground Position2.element_number AND Posi-
tion2.node_number have to be equal to 0

element to element Position2.element_number and/or Posi-
tion2.node_number must not be equal to 0

forcemode Physics.forcemode = 0:
Force is computed as (a) with constant sti�ness and
damping factors k and d. The factors can be de�ned
in the two �elds in Physics.Linear.
Physics.forcemode = 1:
2 MathFunctions are used to describe piecewise lin-
ear sti�ness k (∆x) and damping d (v), see formula
(b) and Physics.MathFunction.
Physics.forcemode = 2:
2 IOElementDataModi�ers describe the force (c)
due to sti�ness and damping. You should use this
mode if full nonlinear behavior is required, e.g.
fk = fk (t, l, v, ...) and fd = d (t, l, v, ...).
Physics.forcemode = 3:
2 MathFunctions are used to describe piecewise
linear spring force fk (∆x) and damping force fd (v),
see formula (d) and Physics.MathFunction.

modi�er value names for forcemode == 2:
fk: Connector.SpringDamperActuator.spring_force'
fd: Connector.SpringDamperActuator.damper_force'

202 CHAPTER 3. HOTINT REFERENCE MANUAL

spring length o�set It is possible to change the spring length l0
(neutral length of the spring) during the simula-
tion, e.g. for the usage of the SpringDamper-
Actuator as a linear actuator. In standard
mode the value in the �eld Physics.spring_length
remains constant. This value can be modi-
�ed by a IOElementDataModi�er via 'Connec-
tor.SpringDamperActuator.spring_length_o�set'.

additional actor force In Physics.actor_force a constant o�set force fa can
be added.

Figure 3.36: SpringDamperActuator

Data objects of SpringDamperActuator:

Data name type R default description

element_type string "SpringDamperActuator"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SpringDamperActuator"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint (spring),

range = 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint

(damper), range = 0..1, use default color:[-1,-1,-1]
Graphics.
spring_diameter

double -1 spring diameter used for drawing only.

Graphics.spring_coils double 10 spring coils used for drawing. If set to 0, then a
cylinder with the value 'spring_diameter' as di-
ameter is shown instead of the coils.

Graphics.
damper_diameter

double -1 damper diameter used for drawing only. If set
to 0, then the damper is not shown. It's rec-
ommended to choose the value smaller then the
spring diameter.

Physics
Physics.spring_length double 0 length of the spring in the initial con�guration
Physics.actor_force double 0 constant force acting on the spring

3.3. CONNECTOR 203

Physics.forcemode integer 0 de�nes how the spring and damper force is
computed: 0..constant coe�cient, 1..MathFunc-
tion (sti�ness and damping), 2..spring and
damper force prescribed by IOElementDataMod-
i�er, 3..MathFunction (spring force and damping
force)

Physics.Linear
Physics.Linear.
spring_sti�ness

double 100 sti�ness coe�cient of the linear spring. Only used
if forcemode is 0.

Physics.Linear.damping double 1 damping coe�cient for viscous damping. Only
used if forcemode is 0.

Physics.MathFunction
Physics.MathFunction.MathFunction_k
Physics.MathFunction.
MathFunction_k.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_k.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_k.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_k.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_k.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_k.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Physics.MathFunction.MathFunction_d
Physics.MathFunction.
MathFunction_d.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_d.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_d.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_d.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_d.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_d.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Physics.MathFunction.MathFunction_fk
Physics.MathFunction.
MathFunction_fk.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_fk.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

204 CHAPTER 3. HOTINT REFERENCE MANUAL

Physics.MathFunction.
MathFunction_fk.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_fk.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_fk.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_fk.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Physics.MathFunction.MathFunction_fd
Physics.MathFunction.
MathFunction_fd.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_fd.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_fd.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_fd.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_fd.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_fd.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position1.node_number integer 0 local or global (if element_number == 0) node

number.
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Position2.node_number integer 0 local or global (if element_number == 0) node
number.

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-14
Internal.second_order_variable second order variables of the element. range: 1-7
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-7

3.3. CONNECTOR 205

Connector.force force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.SpringDamperActuator.force internal resultant force of connector
Connector.SpringDamperActuator.spring_length actual spring length
Connector.SpringDamperActuator.spring_elongation elongation of spring
Connector.SpringDamperActuator.spring_velocity spring velocity

Controllable special values:

For more information see section 3.1

value name description
Connector.SpringDamperActuator.spring_length_o�setprescribe the neutral spring length
Connector.SpringDamperActuator.spring_force prescribe the sti�ness force
Connector.SpringDamperActuator.damper_force prescribe the damping force

Example

see �le SpringDamperActuator.txt

l = 0.5 % m

m = 10 % kg

g = 9.81 % m/s^2

gravLoad

{

load_type = "Gravity"

direction = 3 % z - direction

gravity_constant = g

}

nLoad = AddLoad(gravLoad)

mass

{

element_type = "Mass3D" %specification of element type.

loads = [nLoad]

Initialization.initial_position = [0, 0, l] %initial position

Physics.mass = m %total mass

}

nMass = AddElement(mass)

springDamperActuator

{

element_type = "SpringDamperActuator"

Physics.forcemode = 2 % nonlinear spring

Position1.element_number = nMass %number of constrained element

Position2.element_number = 0 %number of constrained element

}

206 CHAPTER 3. HOTINT REFERENCE MANUAL

nSpringDamperActuator = AddConnector(springDamperActuator)

disp

{

sensor_type = "FVElementSensor"

element_number = nMass

field_variable = "displacement"

component = "z"

}

nDisp = AddSensor(disp)

nonlinearStiffnessForce

{

element_type = "IOMathFunction"

Graphics

{

position = [0, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

IOBlock

{

input_element_numbers = [nDisp] %element connected to input

input_element_types = [2] %2=Sensor

input_local_number = [1]

MathFunction

{

piecewise_mode = 1 %modus for piecewise interpolation: 1=linear

piecewise_points = [-0.3,-0.2,-0.15,0,0.15,0.2,0.3] %m, supporting points

piecewise_values = [-5000,-300,-30,0,30,300,5000] %N, values at s. p.

}

}

}

nNonlinearStiffnessForce = AddElement(nonlinearStiffnessForce)

modifier_SDA

{

element_type = "IOElementDataModifier"

Graphics

{

position = [30, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

IOBlock

{

input_element_numbers = [nNonlinearStiffnessForce] %element connected to input

input_element_types = [1]

input_local_number = [1]

mod_variable_name = "Connector.SpringDamperActuator.spring_force" %modified element data

mod_element_number = nSpringDamperActuator %modified constraint

}

}

AddElement(modifier_SDA)

3.3. CONNECTOR 207

3.3.17 RigidLink

Short description

A rigid link is a rigid constraint element that provides a sti� connection between nodes or
positions in the model. In standard mode the distance between the connected points remains
constant. In extended mode it is possible to change the distance as a function of time or input.
There is only a Lagrange formulation implemented.

Equations

point positions: p(1) =
[
p
(1)
x p

(1)
y p

(1)
z

]T
; p(2) =

[
p
(2)
x p

(2)
y p

(2)
z

]T
.

point velocities: ṗ(1) =
[
ṗ
(1)
x ṗ

(1)
y ṗ

(1)
z

]T
; ṗ(2) =

[
ṗ
(2)
x ṗ

(2)
y ṗ

(2)
z

]T
.

link length: l0
time derivative of link length: v (equates l̇0)
direction vector: dir = p(1)−p(2)√(

p
(1)
x −p

(2)
x

)2
+
(
p
(1)
y −p

(2)
y

)2
+
(
p
(1)
z −p

(2)
z

)2
position constraint: C =

(
p(1) − p(2)

)T
dir− l0 = 0 (a)

velocity constraint: Ċ =
(
ṗ(1) − ṗ(2)

)T
dir− v = 0 (b)

∂C
∂q

T
=
(
∂p(1)

∂q
− ∂p(2)

∂q

)T
dir

Limitations

For a position constraint (index 3 solver) with variable distance it is necessary to de�ne the link
length l0 as a function of time. In this case the velocity input v (the derivative of the distance
with respect to time) is not considered, see formula (a).Reverse conditions apply to the velocity
constraint with formula (b).

Description of the di�erent modi

element to ground Position2.element_number AND Posi-
tion2.node_number have to be equal to 0

element to element Position2.element_number and/or Posi-
tion2.node_number must not be equal to 0

distancemode Physics.distancemode = 0:
The distance remains constant. The value can be
de�ned in the �eld Physics.Constant.link_length.
Physics.distancemode = 1:
A MathFunction is used to describe piecewise linear
distance or velocity development over time t, e.g. for
a rigid link actuator. See Physics.MathFunction.
Physics.distancemode = 2:
A IOElementDataModi�er describes the developing
distance or velocity over time t, e.g. for a rigid link
actuator. See section limitations.

208 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.37: RigidLink

Data objects of RigidLink:

Data name type R default description

element_type string "RigidLink" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RigidLink" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.
cylinder1_diameter

double -1 cylinder one diameter (drawing only).

Graphics.
cylinder2_diameter

double 0 cylinder two diameter (drawing only). Only used
if distance not constant = distancemode 1 or 2.

Graphics.
cylinder1_length

double 0 cylinder one length (drawing only). Only used if
distance not constant = distancemode 1 or 2.

Physics
Physics.distancemode integer 0 de�nes the distance: 0..constant distance,

1..MathFunction, 2..IOElementDataModi�er
Physics.Constant
Physics.Constant.
link_length

double 0 constant distance is used, when distancemode =
0

Physics.MathFunction
Physics.MathFunction.MathFunction_l
Physics.MathFunction.
MathFunction_l.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_l.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_l.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_l.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_l.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

3.3. CONNECTOR 209

Physics.MathFunction.
MathFunction_l.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Physics.MathFunction.MathFunction_v
Physics.MathFunction.
MathFunction_v.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_v.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_v.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_v.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_v.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_v.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position1.node_number integer 0 local or global (if element_number == 0) node

number.
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Position2.node_number integer 0 local or global (if element_number == 0) node
number.

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-1
Internal.algebraic_variable algebraic variables of the element. range: 1-1

Controllable special values:

For more information see section 3.1

value name description
Connector.RigidLink.link_length distance between the connected points (l0)
Connector.RigidLink.link_velocity derivative of the distance with respect to time (v)

210 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le RigidLink.txt

l = 0.5 % m

m = 10 % kg

v = 0.1 % m/s

g = 9.81 % m/s^2

gravLoad

{

load_type = "Gravity"

direction = 3 % z - direction

gravity_constant = g

}

nLoad = AddLoad(gravLoad)

mass

{

element_type = "Mass3D"

loads = [nLoad]

Initialization.initial_position = [l, 0, 0] %initial position

Physics.mass = m %total mass of point mass

}

nMass = AddElement(mass)

%link

rigidLink

{

element_type = "RigidLink"

Physics.distancemode = 2 % link length by modifier

Graphics

{

show_connector = 1

cylinder1_diameter = 0.1

cylinder2_diameter = 0.08

cylinder1_length = l/2

}

Position1.element_number = nMass %number of constrained element

Position2.element_number = 0 %number of constrained element

}

nRigidLink = AddConnector(rigidLink)

time

{

element_type = "IOTime"

Graphics

{

position = [-30, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

3.3. CONNECTOR 211

}

nTime = AddElement(time)

vel

{

element_type = "IOMathFunction"

IOBlock

{

input_element_numbers = [nTime] %element connected to input

input_element_types = [1] %1=IOElement

input_local_number = [1] %i-th number of output of previous IOelement

MathFunction

{

piecewise_mode = 1 %modus for piecewise interpolation: 1=linear

piecewise_points = [0,1,2,3] %supporting points

piecewise_values = [l,l,2*l,2*l] %values at supporting points

}

}

}

nVel = AddElement(vel)

modifier

{

element_type = "IOElementDataModifier"

Graphics

{

position = [30, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

IOBlock

{

input_element_numbers = [nVel] %element connected to input

input_element_types = [1] %1=IOElement

input_local_number = [1] %i-th number of output connected to this element

mod_variable_name = "Connector.RigidLink.link_length" %variable name

mod_element_number = nRigidLink %element number

}

}

AddElement(modifier)

3.3.18 RotatorySpringDamperActuator

Short description

The RotatorySpringDamperActuator connects two elements with rotatory spring, damper and
a constant actuator moment ma. Positive rotation around rotation axis according to right hand
rule. There are di�erent modes available, how the spring and damper moment is calculated. It
is also possible to change the neutral spring angle. This joint is realized in Penalty formulation
only.

212 CHAPTER 3. HOTINT REFERENCE MANUAL

Equations

spring angular de�ection ∆φ = φ− φ0

spring angular velocity ω

resultant moment (see section forcemode):
forcemode 0: m = k∆φ+ dω +ma (a)
forcemode 1: m = k (∆φ) ∆φ+ d (ω)ω +ma (b)
forcemode 2: m = mk +md +ma (c)

Limitations

The RotatorySpringDamperActuator should be used together with a RevoluteJoint to avoid
useless simulation results. It is important to ensure that the relative angle of rotation between
the two bodies must never be greater than ±π. This has to be taken into accout when using
an o�set angle φ0.

Description of the di�erent modi

element to ground Position2.element_number AND Posi-
tion2.node_number have to be equal to 0

element to element Position2.element_number and/or Posi-
tion2.node_number must not be equal to 0

forcemode Physics.forcemode = 0:
Moment is computed as (a) with constant sti�ness
and damping factors k and d. The factors can be
de�ned in the two �elds in Physics.Linear.
Physics.forcemode = 1:
A MathFunction is used to describe piecewise linear
sti�ness k (∆φ) and damping d (ω), see formula (b)
and Physics.MathFunction.
Physics.forcemode = 2:
2 IOElementDataModi�ers describe the moment (c)
due to sti�ness and damping. You should use this
mode if full nonlinear behavior is required, e.g. mk =
mk (t, φ, ω, ...) and md = d (t, φ, ω, ...).

spring angle o�set It is possible to change the spring angle φ0 (neutral
angle of the spring) during the simulation, e.g. for
the usage of the RotatorySpringDamperActuator as
a rotational actuator. In standard mode the o�set
remains constant. The value can be de�ned in the
�eld Physics.spring_angle_o�set. This o�set can be
modi�ed by a IOElementDataModi�er via 'Connec-
tor.RotatorySpringDamperActuator.angle_o�set'.

additional actuator moment In Physics.actuator_torque a constant o�set mo-
ment ma can be added.

3.3. CONNECTOR 213

Figure 3.38: RotatorySpringDamperActuator

Data objects of RotatorySpringDamperActuator:

Data name type R default description

element_type string "RotatorySpringDamperActuator"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "RotatorySpringDamperActuator"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.spring_size double -1 radius of torsional spring. This parameter is used

for drawing only.
Graphics.windings double 10 number of windings of torsional spring. This pa-

rameter is used for drawing only.
Graphics.axis_radius double -1 radius of torsional spring axis (cylinder). This

parameter is used for drawing only.
Physics
Physics.
spring_angle_o�set

double 0 spring angle o�set is used if con-
stant_spring_angle_o�set is enabled. A
positive o�set equates a positve angle about the
rotation axis.

Physics.actuator_torque double 0 constant torque of an actuator. A positive torque
is acting about the rotation axis in a positive
sense.

Physics.rotation_axis vector [0, 0, 0] local axis of rotation w.r.t. body 1 coordinate
system in inital con�guration

Physics.forcemode integer 0 de�nes how the spring and damper moment is
computed: 0..constant coe�cient, 1..MathFunc-
tion, 2..IOElementDataModi�er

Physics.Linear
Physics.Linear.
spring_sti�ness

double 100 sti�ness parameter of the rotatory spring. Only
used if forcemode is 0.

Physics.Linear.damping double 1 damping coe�cient for viscous damping. Only
used if forcemode is 0.

Physics.MathFunction
Physics.MathFunction.MathFunction_k
Physics.MathFunction.
MathFunction_k.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

214 CHAPTER 3. HOTINT REFERENCE MANUAL

Physics.MathFunction.
MathFunction_k.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_k.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_k.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_k.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_k.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Physics.MathFunction.MathFunction_d
Physics.MathFunction.
MathFunction_d.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_d.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_d.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_d.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_d.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_d.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0, 0] local position. Only used if node_number == 0!
Position2
Position2.
element_number

integer 0 Number of constrained element

Position2.position vector [0, 0, 0] local or global (if element_number == 0) posi-
tion. Only used if node_number == 0!

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-14
Internal.second_order_variable second order variables of the element. range: 1-7
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-7

3.3. CONNECTOR 215

Connector.force force applied to the kinematic pairs due to the con-
nector. range: 1-3, corresponds to force in global
x-y-z direction

Connector.moment internal global moment of connector
Connector.force_local internal local force of connector (joint coordinate sys-

tem JAi)
Connector.moment_local internal local moment of connector (joint coordinate

system JAi)
Connector.displacement displacement between the joint coordinate systems

JAi and JAj expressed in coordinate system JAi
Connector.angle bryant angles between the joint coordinate systems

JAi and JAj. All constrained components are zero.
Connector.RotatorySpringDamperActuator.moment internal moment of connector

Controllable special values:

For more information see section 3.1

value name description
Connector.RotatorySpringDamperActuator.angle_o�setprescribe the angle o�set
Connector.RotatorySpringDamperActuator.spring_momentprescribe the sti�ness moment
Connector.RotatorySpringDamperActuator.damper_momentprescribe the damping moment

Example

see �le RotationalSpringDamperActuator.txt

l = 0.5 % m

r = 0.05

m = 10 % kg

Ix = m*r*r/2 % kg*m^2

Iy = m*l*l/3 % kg*m^2

Iz = Iy

force

{

load_type = "ForceVector3D"

force_vector = [0,-100,0]

position = [l/2,0,0]

local_force = 1

}

nForce = AddLoad(force)

body

{

element_type = "Rigid3D"

loads = [nForce]

Physics

{

216 CHAPTER 3. HOTINT REFERENCE MANUAL

mass = m

moment_of_inertia = [Ix,0.,0.;0.,Iy,0.;0.,0.,Iz]

}

Graphics

{

RGB_color= [0., 0., 1.] %[red, green, blue]

show_element = 1 %Flag to draw element

body_dimensions = [l,r,r]

}

Initialization.initial_position = [l/2,0,0]

}

nBody = AddElement(body)

revoluteJoint

{

element_type = "RevoluteJoint"

Physics.rotation_axis = [0,0,1]

Graphics.show_connector = 0

Position1.element_number = nBody %number of constrained element

Position1.position = [-l/2,0,0] %local position

Position2.element_number = 0 %number of constrained element

}

nRevoluteJoint = AddConnector(revoluteJoint)

rotSpringDamperActuator

{

element_type = "RotatorySpringDamperActuator"

Physics

{

forcemode = 2 % force by nonlinear spring

rotation_axis = [0,0,1]

}

Graphics

{

show_connector = 1

}

Position1.element_number = nBody %number of constrained element

Position1.position = [-l/2,0,0] %local position

Position2.element_number = 0 %number of constrained element

}

nRotSpringDamperActuator = AddConnector(rotSpringDamperActuator)

phi

{

sensor_type = "ElementSensor"

element_number = nRevoluteJoint

value = "Connector.angle[1]" %about x-axis (joint coordinate system)

}

nPhi = AddSensor(phi)

nonlinearStiffnessMoment

3.3. CONNECTOR 217

{

element_type = "IOMathFunction"

Graphics

{

position = [0, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

IOBlock

{

input_element_numbers = [nPhi] %element connected to input

input_element_types = [2] %2=Sensor

input_local_number = [1] %i-th number of output

MathFunction

{

piecewise_mode = 1 %1=linear

piecewise_points = [-1.2,-0.8,-0.5,0,0.5,0.8,1.2] %m, supporting points

piecewise_values = [200,100,10,0,-10,-100,-200] %N, values at s. p.

}

}

}

nNonlinearStiffnessMoment = AddElement(nonlinearStiffnessMoment)

modifier

{

element_type = "IOElementDataModifier"

Graphics

{

position = [30, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

IOBlock

{

input_element_numbers = [nNonlinearStiffnessMoment] %element connected to input

input_element_types = [1] %1=IOElement

input_local_number = [1] %i-th number of output

mod_variable_name = "Connector.RotatorySpringDamperActuator.spring_moment" %variable name

mod_element_number = nRotSpringDamperActuator %element number

}

}

AddElement(modifier)

3.3.19 SpringDamperActuator2D

Short description

The SpringDamperActuator2D is a simpli�ed version of the SpringDamperActuator for 2D
elements. Nodes are not supported in the 2D version. Apart from that the constraint has the
same functionality as the 3D version. See the SpringDamperActuator documentation for more
information.

Description of the di�erent modi

218 CHAPTER 3. HOTINT REFERENCE MANUAL

element to ground Position2.element_number has to be equal to 0
element to element Position2.element_number must not be equal to 0
Lagrange If Physics.use_penalty_formulation = 0, then no

sti�ness and no damping parameters are used.

Data objects of SpringDamperActuator2D:

Data name type R default description

element_type string "SpringDamperActuator2D"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "SpringDamperActuator2D"
name of the element

element_number integer R 2 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.color_body1 vector [0.3, 0.8, 0.3] [red, green, blue] �rst color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.color_body2 vector [0.7, 0.8, 0.3] [red, green, blue] second color of constraint, range

= 0..1, use default color:[-1,-1,-1]
Graphics.
spring_diameter

double -1 spring diameter used for drawing only.

Graphics.spring_coils double 10 spring coils used for drawing. If set to 0, then a
cylinder with the value 'spring_diameter' as di-
ameter is shown instead of the coils.

Graphics.
damper_diameter

double -1 damper diameter used for drawing only. If set
to 0, then the damper is not shown. It's rec-
ommended to choose the value smaller then the
spring diameter.

Physics
Physics.spring_length double 0 length of the spring in the initial con�guration
Physics.actor_force double 0 constant force acting on the spring
Physics.forcemode integer 0 de�nes how the spring and damper force is com-

puted: 0..constant coe�cient, 1..MathFunction,
2..IOElementDataModi�er

Physics.Linear
Physics.Linear.
spring_sti�ness

double 100 sti�ness coe�cient of the linear spring. Only used
if forcemode is 0.

Physics.Linear.damping double 1 damping coe�cient for viscous damping. Only
used if forcemode is 0.

Physics.MathFunction
Physics.MathFunction.MathFunction_k
Physics.MathFunction.
MathFunction_k.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_k.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_k.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_k.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

3.3. CONNECTOR 219

Physics.MathFunction.
MathFunction_k.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_k.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Physics.MathFunction.MathFunction_d
Physics.MathFunction.
MathFunction_d.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

Physics.MathFunction.
MathFunction_d.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

Physics.MathFunction.
MathFunction_d.
piecewise_values

vector [] values at supporting points

Physics.MathFunction.
MathFunction_d.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

Physics.MathFunction.
MathFunction_d.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

Physics.MathFunction.
MathFunction_d.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0] local position 1
Position2
Position2.
element_number

integer 0 Number of constrained element (0 if ground joint)

Position2.position vector [0, 0] local or global position 2

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-14
Internal.second_order_variable second order variables of the element. range: 1-7
Internal.second_order_variable_velocity velocities of second order variables of the element.

range: 1-7
Connector.SpringDamperActuator.force resultant force of connector
Connector.force force applied to the kinematic pairs due to the con-

nector. range: 1-2, corresponds to force in global x-y
direction

Connector.SpringDamperActuator.spring_length actual spring length
Connector.SpringDamperActuator.spring_elongation elongation of spring
Connector.SpringDamperActuator.spring_velocity magnitude of spring velocity

220 CHAPTER 3. HOTINT REFERENCE MANUAL

Controllable special values:

For more information see section 3.1

value name description
Connector.SpringDamperActuator.spring_length_o�setprescribe the neutral spring length
Connector.SpringDamperActuator.spring_force prescribe the sti�ness force
Connector.SpringDamperActuator.damper_force prescribe the damping force

Example

see �le SpringDamperActuator2D.txt

mass

{

element_type= "Mass2D" %specification of element type.

Initialization.initial_position= [1, 0.5] %initial position [x,y]

Physics.mass= 1 %total mass of point mass

}

nMass = AddElement(mass)

sda

{

element_type= "SpringDamperActuator2D" %specification of element type.

Position1.element_number= nMass %Number of constrained element

}

nSDA = AddConnector(sda)

3.3.20 PointJoint2D

Short description

The PointJoint2D is a simpli�ed version of the PointJoint for 2D elements. It constrains two
elements at at local element positions. If only one element is speci�ed (second element 0), a
ground PointJoint is realized. It provides both Lagrangian and penalty formulation.

Description of the di�erent modi

element to ground Position2.element_number has to be equal to 0
element to element Position2.element_number must not be equal to 0
Lagrange If Physics.use_penalty_formulation = 0, then no

sti�ness and no damping parameters are used.

Data objects of PointJoint2D:

Data name type R default description

3.3. CONNECTOR 221

element_type string "PointJoint2D" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "PointJoint2D" name of the element
element_number integer R 2 number of the element in the mbs
Graphics
Graphics.RGB_color vector [0.3, 0.8, 0.3] [red, green, blue] color of element, range = 0..1,

use default color:[-1,-1,-1]
Graphics.show_connector bool 1 Flag to draw connector
Graphics.
draw_size_joint_local_frame

double -1 drawing dimensions of joint local frame. If set to
-1, then global_draw_scalar_size is used. If set
to 0, then no joint local frame is drawn.

Graphics.draw_size double -1 drawing dimensions of constraint. If set to -1,
then global_draw_scalar_size is used.

Geometry
Geometry.
use_joint_local_frame

bool 0 Use a special joint local frame

Geometry.
joint_local_frame

double 0 Prerotate sti�ness vector w.r.t. global coordi-
nate system or local coordinate system of body
1 with angle phi_z about the z axis. Just used if
use_joint_local_frame == 1

Geometry.
use_local_coordinate_system

bool 0 0=use global coordinates, 1=use local coordinate
system of Body 1

Physics
Physics.
use_penalty_formulation

bool 0 0 = use lagrange multipliers (index 3 DAE, ex-
act), 1 = use penalty formulation (no additional
equation added, approximate constraint)

Physics.Penalty
Physics.Penalty.
spring_sti�ness

double 1e+008 general or penalty sti�ness parameter

Physics.Penalty.
spring_sti�ness_vector

vector [0, 0] penalty sti�ness parameter [kx,ky]. Just
used if scalar spring_sti�ness == 0, otherwise
kx=ky=spring_sti�ness

Physics.Penalty.damping double 1 damping coe�cient for viscous damping (F =
d*v), applied in all constrained directions

Physics.Lagrange
Physics.Lagrange.
constrained_directions

vector [1, 1] [x,y]...(1 = constrained, 0 = free), can be de�ned
as local or global directions (see Geometry)

Position1
Position1.
element_number

integer 1 Number of constrained element

Position1.position vector [0, 0] local position 1
Position2
Position2.
element_number

integer 0 Number of constrained element (0 if ground joint)

Position2.position vector [0, 0] local or global position 2

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-2
Internal.algebraic_variable algebraic variables of the element. range: 1-2

222 CHAPTER 3. HOTINT REFERENCE MANUAL

Connector.force force applied to the kinematic pairs due to the con-
nector. range: 1-2, corresponds to force in global x-y
direction

Example

see �le PointJoint2D.txt

grav

{

load_type= "Gravity" %specification of load type.

direction= 1 %global direction of the gravity

gravity_constant= 9.81 %use negative sign if necessary

}

nLoad = AddLoad(grav)

mass

{

element_type= "Mass2D" %specification of element type.

loads= [nLoad]

Initialization.initial_position= [1, 0.5] %initial position [x,y]

Physics.mass= 1 %total mass of point mass

}

nMass = AddElement(mass)

sda

{

element_type= "PointJoint2D" %specification of element type.

Position1.element_number= nMass %Number of constrained element

}

nSDA = AddConnector(sda)

3.4. CONTROL ELEMENTS 223

3.4 Control elements

These control elements are available:

• IODiscreteTransferFunction, 3.4.1

• IODigitalFilter, 3.4.2

• IORandomSource, 3.4.3

• IOLinearTransformation, 3.4.4

• IOQuantizer, 3.4.5

• IOContinuousTransferFunction, 3.4.6

• IOLinearODE, 3.4.7

• IOMathFunction, 3.4.8

• IOSaturate, 3.4.9

• IODeadZone, 3.4.10

• IOProduct, 3.4.11

• IOTime, 3.4.12

• IOPulseGenerator, 3.4.13

• IOTimeWindow, 3.4.14

• IOStopComputation, 3.4.15

• IOElementDataModi�er, 3.4.16

• IODisplay, 3.4.17

• IOMinMax, 3.4.18

• IOTCPIPBlock, 3.4.19

• IOX2C, 3.4.20

• IOLinearTransducer, 3.4.21

Control elements are connectors which have input- and/or output-ports.
Note:
In HOTINT several classes are treated as 'elements'. Connectors and control elements are also
'elements', and can therefore be edited and deleted in the GUI with the menu items of the
elements.
In the script language the command AddConnector has to be used for connectors and also for
the control elements in the list above.

224 CHAPTER 3. HOTINT REFERENCE MANUAL

3.4.1 IODiscreteTransferFunction

Short description

Discontinuous transfer function in z-space. It is a SISO (single input-single output) control
element. Inital state is zero.

Equations

y(z) = G(z)u(z)

G(z) = num
den

user input:
num(z) = num1 + num2z + num3z

2 + ...+ numn+1z
n

den(z) = den1 + den2z + den3z
2 + ...+ denn+1z

n

Theoretical background: Realization of z-transfer function as time discrete state space model



zk+1,1

.

.

.

zk+1,n


=


0 . . 0 −den1

1 0 . 0 −den2

.

0 0 . 1 −denn

 .


zk,1

.

.

.

zk,n


+


num1 − numn+1den1

.

.

numn − numn+1denn

uk (3.30)

yk = zk,n + numn+1uz; (3.31)

Figure 3.39: IODiscreteTransferFunction

Data objects of IODiscreteTransferFunction:

Data name type R default description

element_type string "IODiscreteTransferFunction"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IODiscreteTransferFunction"
name of the element

3.4. CONTROL ELEMENTS 225

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.
discrete_time_step

double 0 Sample time dT

IOBlock.
discrete_time_o�set

double 0 Sample o�set o�: Tk = k*dT + o�

IOBlock.num_coe�s vector [1] Coe�cients of numerator polynomial of z-
function

IOBlock.den_coe�s vector [1] Coe�cients of denominator polynomial of z-
function

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-2

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

Example

see �le ZTransferFunction.txt

226 CHAPTER 3. HOTINT REFERENCE MANUAL

Include("addTime.txt")

ztransferfunction

{

element_type = "IODiscreteTransferFunction"

IOBlock

{

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

discrete_time_step = 0.5

}

Graphics

{

position = [50,0]

}

}

nZTransferFunction = AddElement(ztransferfunction)

nSens = nZTransferFunction

nDisp = nZTransferFunction

Include("addSens.txt")

Include("addDisplay.txt")

3.4.2 IODigitalFilter

Short description

A digital (highpass or lowpass) �lter of 2nd order.

Equations

The �lter is fully de�ned by the following parameters:

• fc, cut o� frequency in Hz

• fs = 1/deltaT, sampling frequency

• Q-factor, see remarks below

The Q-factor is in�uencing the damping of the �lter, the following values are important:

• Q=0.5 critically damped

• Q<0.5 overdamped

• Q=1/sqrt(2) Butterworth

• Q=1/sqrt(3) Bessel

The coe�cients of the 2nd order discrete transfer function are computed automatically in this
IOBlock

Description of the di�erent modi

3.4. CONTROL ELEMENTS 227

lowpass (default) the �ag highpass is set to 0.
highpass the �ag highpass has to be set to 1

Figure 3.40: IODigitalFilter

Data objects of IODigitalFilter:

Data name type R default description

element_type string "IODigitalFilter"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IODigitalFilter"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.
discrete_time_step

double 0.001 Sample time dT

IOBlock.highpass bool 0 1..highpass, 0..lowpass
IOBlock.fc double 100 cut o� frequency of �lter in Hz
IOBlock.Q double 0.707 Q-factor: Q = 0.5..critically damped, Q smaller

0.5..overdamped

228 CHAPTER 3. HOTINT REFERENCE MANUAL

IOBlock.num_coe�s vector R [0.0675, 0.135,
0.0675] Coe�cients of numerator polynomial of z-

function
IOBlock.den_coe�s vector R [0.413, -1.14, 1]

Coe�cients of denominator polynomial of z-
function

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-4

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

Example

see �le IODigitalFilter.txt

Time.element_type= "IOTime"

nETime = AddElement(Time)

Signal

{

element_type= "IOMathFunction"

Graphics.position= [50, 0]

IOBlock.input_element_numbers= [nETime]

IOBlock.input_element_types= [1] % 1=IOElement

IOBlock.input_local_number= [1]

IOBlock.MathFunction.parsed_function= "10*sin(2*pi*5*t)+2*sin(2*pi*300*t)"

IOBlock.MathFunction.parsed_function_parameter= "t"

}

nESig=AddElement(Signal)

Filter

{

element_type= "IODigitalFilter"

Graphics.position= [100, 0]

IOBlock.input_element_numbers= [nESig]

IOBlock.input_element_types= [1] % 1=IOElement

IOBlock.input_local_number= [1]

IOBlock.discrete_time_step= 0.001 %Sample time dT

IOBlock.fc= 10 %cut off frequency of filter in Hz

IOBlock.Q= 0.7 %Q-factor

3.4. CONTROL ELEMENTS 229

}

nEFilt=AddElement(Filter)

SensorOutput

{

sensor_type= "ElementSensor"

element_number= nESig

value= "IOBlock.output[1]"

}

AddSensor(SensorOutput)

SensorOutput.element_number= nEFilt

AddSensor(SensorOutput)

3.4.3 IORandomSource

Short description

Discontinuous random source using alternatively an internal C++ based pseudo random gen-
erator or a linear feedback shift register. It has no input and one output.

Description of the di�erent modi

method 0 IOBlock.method must be set to 0. The built-in ran-
dom generator is used.

method 1 IOBlock.method must be set to 1. Generate a pseudo
random binary signal by using Linear Feedback Shift
Register.

Figure 3.41: IORandomSource

Data objects of IORandomSource:

Data name type R default description

element_type string "IORandomSource"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

230 CHAPTER 3. HOTINT REFERENCE MANUAL

name string "IORandomSource"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
discrete_time_step

double 0 Sample time dT

IOBlock.
discrete_time_o�set

double 0 Sample o�set o�: Tk = k*dT + o�

IOBlock.max_amplitude double 0 Max. amplitude of random value.
IOBlock.mean_value double 0 O�set of random signal.
IOBlock.method bool 0 Random generator method.
IOBlock.bits integer 15 Number of bits for random signal.
IOBlock.
constant_amplitude

bool 0 Output values are +amplitude or -amplitude if
�ag is activate.

IOBlock.seed double 0 seed � [0.,1.]... initialization of random generator
IOBlock.init_val double 0 initial value of the generator x(t=0) = y(t=0)

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-1

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

Example

see �le addRandomSource.txt

3.4. CONTROL ELEMENTS 231

random

{

element_type = "IORandomSource"

IOBlock

{

discrete_time_step = 0.05

discrete_time_offset = 0.0

max_amplitude = 2

mean_value =2.5

method = 1

bits = 15

constant_amplitude = 0

seed = 0.5

init_val = 2.5

}

Graphics

{

position = [0,-50]

}

}

nRandom = AddElement(random)

3.4.4 IOLinearTransformation

Short description

Continuous linear transformation. The transfer function type is SISO (single input-single out-
put) or MIMO (multi input-multi output).

Equations

y = Au + b; (3.32)

Matrix A and vector b are user de�ned.

Description of the di�erent modi

linear transformation y = Au Set b to zero.
gain y1 = A1,1u1 Set A as scalar value and b is zero.
constant y1 = b1 Set A to zero and b to the constant value.

232 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.42: IOLinearTransformation

Data objects of IOLinearTransformation:

Data name type R default description

element_type string "IOLinearTransformation"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOLinearTransformation"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 4 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.A_matrix matrix [0, 0, 0, 0; 0, 0,
0, 0; 0, 0, 0, 0; 0,
0, 0, 0]

transformation matrix A: y=A.u+b

IOBlock.b_vector vector [0, 0, 0, 0] o�set vector b: y=A.u+b

3.4. CONTROL ELEMENTS 233

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le LinearTransformation.txt

Include("addTime.txt")

transformation

{

element_type = "IOLinearTransformation"

Graphics

{

position = [50, 0] %reference drawing position

}

IOBlock

{

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

A_matrix = [2]

b_vector = [0.5]

}

}

nTrans = AddElement(transformation)

nSens = nTrans

nDisp = nTrans

Include("addSens.txt")

Include("addDisplay.txt")

3.4.5 IOQuantizer

Short description

A quantizer block passes its input signal through a stair-step function so that many neighboring
points on the input axis are mapped to one point on the output axis. The e�ect is to quantize
a smooth signal into a stair-step output. It is a SISO (single input-single output) control
element.

234 CHAPTER 3. HOTINT REFERENCE MANUAL

Equations

y(u) =

{
r floor

(
u
r

+ 0.5r
)
, if r! = 0

u, if r = 0
(3.33)

The user de�ned rounding value is r.

Figure 3.43: IOQuantizer

Data objects of IOQuantizer:

Data name type R default description

element_type string "IOQuantizer" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOQuantizer" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.rounding_value double 0.1 Max. amplitude of random value.

3.4. CONTROL ELEMENTS 235

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le Quantizer.txt

Include("addTime.txt")

quantizer

{

element_type = "IOQuantizer"

IOBlock

{

rounding_value = 0.2

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

}

Graphics

{

position = [50,0]

}

}

nQuantizer = AddElement(quantizer)

nSens = nQuantizer

nDisp = nQuantizer

Include("addSens.txt")

Include("addDisplay.txt")

3.4.6 IOContinuousTransferFunction

Short description

The STransferFunction is a linear transfer function for continuous state-space elements. It is a
SISO (single input-single output) type.

Equations

y(s) = G(s)u(s)

236 CHAPTER 3. HOTINT REFERENCE MANUAL

G(s) = num(s)
den(s)

user input:
num(s) = num1 + num2s+ num3s

2 + ...+ numn+1s
n

den(s) = den1 + den2s+ den3s
2 + ...+ denn+1s

n

Figure 3.44: IOContinuousTransferFunction

Data objects of IOContinuousTransferFunction:

Data name type R default description

element_type string "IOContinuousTransferFunction"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOContinuousTransferFunction"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 3 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

3.4. CONTROL ELEMENTS 237

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.numerator vector [1, 0, 0, 0] ascending numerator coe�cients n of transfer-
function. TF = num/den with num =
n(1)*1+n(2)*s+n(3)*s*s+... Will be normalized
automatically!

IOBlock.denominator vector [0, 0, 0, 1] ascending denominator coe�s d of transfer-
function. TF = num/den with den =
d(1)*1+d(2)*s+d(3)*s*s+... Will be normalized
automatically!

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-3
Internal.�rst_order_variable �rst order variables of the element. range: 1-3
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le STransferFunction.txt

Include("addTime.txt")

stransferfunction

{

element_type = "IOContinuousTransferFunction"

IOBlock

{

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

}

Graphics

{

position = [50,0]

}

}

nSTransferFunction = AddElement(stransferfunction)

nSens = nSTransferFunction

nDisp = nSTransferFunction

Include("addSens.txt")

238 CHAPTER 3. HOTINT REFERENCE MANUAL

Include("addDisplay.txt")

3.4.7 IOLinearODE

Short description

The LinearODE Element represents a linear ordinary di�erential equation of SISO (single input-
single output) or MIMO (multi input-multi output) type.

Equations

ẋ = A x + B u
y = C x + D u

Matrices A, B, C and D are user de�ned.

Figure 3.45: IOLinearODE

Data objects of IOLinearODE:

Data name type R default description

element_type string "IOLinearODE" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOLinearODE" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

3.4. CONTROL ELEMENTS 239

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.A_coe�s matrix [0] Coe�cients of state matrix A, x_dot = A*x +
B*u

IOBlock.B_coe�s matrix [0] Coe�cients of input matrix B, x_dot = A*x +
B*u

IOBlock.C_coe�s matrix [0] Coe�cients of output matrix C, y = C*x + D*u
IOBlock.D_coe�s matrix [0] Coe�cients of output matrix D, y = C*x + D*u
IOBlock.initital_vector vector [] Initial values of time-domain variables

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le LinearODE.txt

Include("addTime.txt")

lin

{

element_type = "IOLinearODE"

Graphics

{

position = [50, 0] %reference drawing position

}

IOBlock

{

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

A_coeffs = [1]

B_coeffs = [1]

C_coeffs = [1]

240 CHAPTER 3. HOTINT REFERENCE MANUAL

D_coeffs = [1]

initital_vector = [1]

}

}

nLin = AddElement(lin)

nSens = nLin

nDisp = nLin

Include("addSens.txt")

Include("addDisplay.txt")

3.4.8 IOMathFunction

Short description

A IOMathFunction contains a mathematical expression with functions and logical operators
or a lookup table with di�erent modes for piecewise interpolation. The output is result of the
evalutation of the MathFunction as a function of input.

Description of the di�erent modi

parsed function In order to use the parser for math-
ematical expressions, the variable
IOBlock.MathFunction.piecewise_mode
has to be set to −1. In
IOBlock.MathFunction.parsed_function one spec-
i�es a string representing parsed function, e.g.
'A ∗ sin(u)' with function parameter u de�ned in
IOBlock.MathFunction.parsed_function_parameter.

piecewise mode - constant IOBlock.MathFunction.piecewise_mode
must be set to 0. The vectors
IOBlock.MathFunction.piecewise_points and
IOBlock.MathFunction.piecewise_values are used.
The output value is piecewise constant with jumps
at the supporting points.

piecewise mode - linear IOBlock.MathFunction.piecewise_mode
must be set to 1. The vectors
IOBlock.MathFunction.piecewise_points and
IOBlock.MathFunction.piecewise_values are used.
The output value is piecewise linear between the
supporting points.

piecewise mode - quadratic IOBlock.MathFunction.piecewise_mode
must be set to 2 and in addition to
the other piecwise modes the vector
IOBlock.MathFunction.piecewise_di�_values is
needed. The output is a quadratic interpolation
between the supporting points.

3.4. CONTROL ELEMENTS 241

Figure 3.46: IOMathFunction

Data objects of IOMathFunction:

Data name type R default description

element_type string "IOMathFunction"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOMathFunction"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.MathFunction
IOBlock.MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

IOBlock.MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

242 CHAPTER 3. HOTINT REFERENCE MANUAL

IOBlock.MathFunction.
piecewise_values

vector [] values at supporting points

IOBlock.MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

IOBlock.MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

IOBlock.MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-1

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

Example

see �le IOMathFunction.txt

Time

{

element_type= "IOTime"

}

nTime = AddElement(Time)

% IOMathfunction with one input piecewise

IOBlock

{

element_type= "IOMathFunction"

Graphics.position= [50, 0]

IOBlock

{

input_element_numbers= [nTime]

input_element_types= [1]

input_local_number= [1]

MathFunction

{

piecewise_mode= 0

piecewise_points= [0, 1, 1.5, 2]

piecewise_values= [0, 1, 0.7, 0]

}

}

}

3.4. CONTROL ELEMENTS 243

nElem = AddElement(IOBlock)

SensorOutput

{

sensor_type= "ElementSensor"

element_number= nElem

value= "IOBlock.output[1]"

}

AddSensor(SensorOutput)

% IOMathfunction with multiple inputs and parsed function

IOBlock

{

element_type= "IOMathFunction"

Graphics.position= [100, 0]

IOBlock

{

input_element_numbers= [nTime, nTime]

input_element_types= [1, 1]

input_local_number= [1, 1]

MathFunction

{

piecewise_mode= -1

parsed_function = "u*((v>4)&&(v<6))"

parsed_function_parameter = "u,v"

}

}

}

nElem = AddElement(IOBlock)

SensorOutput.element_number = nElem

AddSensor(SensorOutput)

3.4.9 IOSaturate

Short description

Continuous saturation element for upper and lower limits. It is a SISO (single input-single
output) control element.

Equations

y(u) =


ul, if u > ul

u, if ll ≤ u ≤ ul

ll, if u < ll

(3.34)

In the de�ned equation ul is the upper limit and ll is the lower limit.

244 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.47: IOSaturate

Data objects of IOSaturate:

Data name type R default description

element_type string "IOSaturate" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOSaturate" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.upper_limit double 0.1 Upper limit of saturate.
IOBlock.lower_limit double 0 Lower limit of saturate.

3.4. CONTROL ELEMENTS 245

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le Saturate.txt

Include("addTime.txt")

saturate

{

element_type = "IOSaturate"

IOBlock

{

upper_limit = 2.6

lower_limit = 2.4

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

}

Graphics

{

position = [50,0]

}

}

nSaturate = AddElement(saturate)

nSens = nSaturate

nDisp = nSaturate

Include("addSens.txt")

Include("addDisplay.txt")

3.4.10 IODeadZone

Short description

Continuous dead-zone element. The outputs between upper and lower limit is zero. This leads
to an o�set of the input signal by the corresponding lower or upper limit. It is a SISO (single
input-single output) control element.

246 CHAPTER 3. HOTINT REFERENCE MANUAL

Equations

y(u) =


u− sd, if u < sd

0, if u ≥ sd and u ≤ ed

u− ed, if u > ed

(3.35)

In the de�ned equation sd is the start dead-zone value, ed is the end dead-zone value.

Figure 3.48: IODeadZone

Data objects of IODeadZone:

Data name type R default description

element_type string "IODeadZone" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IODeadZone" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

3.4. CONTROL ELEMENTS 247

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.start_deadzone double 0 Start of dead zone.
IOBlock.end_deadzone double 0 End of dead zone.

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le DeadZone.txt

Include("addTime.txt")

deadzone

{

element_type = "IODeadZone"

IOBlock

{

start_deadzone = 1

end_deadzone = 2

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

}

Graphics

{

position = [50,0]

}

}

nDeadZone = AddElement(deadzone)

nSens = nDeadZone

nDisp = nDeadZone

Include("addSens.txt")

Include("addDisplay.txt")

248 CHAPTER 3. HOTINT REFERENCE MANUAL

3.4.11 IOProduct

Short description

Continuous product (or division) of one or more inputs. A dedicated exponent for every input
and a o�set can be applied.

Equations

y(u) = uexp11 uexp22 ...uexpnn + offset (3.36)

All exponents are stored in a vector. For a simple multiplication with a input the dedicated
exponent is set to 1, for a division the exponent is set to -1. The o�set is a scalar value.

Figure 3.49: IOProduct

Data objects of IOProduct:

Data name type R default description

element_type string "IOProduct" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOProduct" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

3.4. CONTROL ELEMENTS 249

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.exponents vector [0] Exponent of inputs.
y=u1êxp1*u2êxp2*...*unêxpn+o�set.

IOBlock.o�set double 0 Output o�set.

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le Product.txt

Include("addTime.txt")

Include("addRandomSource.txt")

product

{

element_type = "IOProduct"

IOBlock

{

exponents = [2,3]

offset = -1

input_element_numbers = [nTime,nRandom]

input_element_types = [1,1]

input_local_number = [1,1]

}

Graphics

{

position = [50,0]

}

}

nProduct = AddElement(product)

nSens = nProduct

nDisp = nProduct

250 CHAPTER 3. HOTINT REFERENCE MANUAL

Include("addSens.txt")

Include("addDisplay.txt")

3.4.12 IOTime

Short description

Continuous time source. This element simply outputs the time.

Figure 3.50: IOTime

Data objects of IOTime:

Data name type R default description

element_type string "IOTime" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOTime" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

3.4. CONTROL ELEMENTS 251

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le addTime.txt

time

{

element_type = "IOTime"

name = "time"

Graphics

{

position = [0, 0] %reference drawing position

draw_size = [20, 20, 0] %draw size

}

}

nTime = AddElement(time)

3.4.13 IOPulseGenerator

Short description

Continuous pulse generator. This element outputs repeating sequence or rectangular pulses
after a certain delay. It has no input and one output.

Equations

∆t = t− toffset (3.37)

trest = ∆t mod p (3.38)

y(t) =

{
a, if ∆t ≥ 0 and trest < pw

0, else
(3.39)

User de�ned variables are pulse amplitude a, time o�set toffset, signal period p and pulse width
pw.

252 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.51: IOPulseGenerator

Data objects of IOPulseGenerator:

Data name type R default description

element_type string "IOPulseGenerator"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOPulseGenerator"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.amplitude double 1 Amplitude of rectangle pulse generator.
IOBlock.o�set double 0 Time o�set (s).
IOBlock.period double 1 Period of signal (s).
IOBlock.pulse_width double 0.5 Pulse width (s).
IOBlock.
use_external_time_source

integer R 0 1|(0) ... (Don't) use external input as time source.

Observable special values:

For more information see section 3.1

3.4. CONTROL ELEMENTS 253

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le addPulseGenerator.txt

pulse

{

element_type = "IOPulseGenerator"

IOBlock

{

amplitude = 2

offset = 1

period = 0.2

pulse_width = 0.1

}

Graphics

{

position = [0,-50]

}

}

nPulse = AddElement(pulse)

3.4.14 IOTimeWindow

Short description

This element helps to capture a special time window. It has two inputs and one output.

Equations

(a) y(u) =

{
u2, if tstart ≤ u1 ≤ tend

0, else
(3.40)

(b) y(u) =

{
u2, if tstart ≤ u1

0, else
(3.41)

Description of the di�erent modi

tend > tstart Output is determined with inequation (a).
tend ≤ tstart Output is determined with inequation (b).

254 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.52: IOTimeWindow

Data objects of IOTimeWindow:

Data name type R default description

element_type string "IOTimeWindow" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOTimeWindow" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.t_start double 0 Start time (s).
IOBlock.t_end double 0 End time (s).

3.4. CONTROL ELEMENTS 255

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le TimeWindow.txt

Include("addTime.txt")

Include("addPulseGenerator.txt")

window

{

element_type = "IOTimeWindow"

IOBlock

{

t_start = 1

t_end = 2

input_element_numbers = [nTime,nPulse]

input_element_types = [1,1]

input_local_number = [1,1]

}

Graphics

{

position = [50,0]

}

}

nWindow = AddElement(window)

nSens = nWindow

nDisp = nWindow

Include("addSens.txt")

Include("addDisplay.txt")

3.4.15 IOStopComputation

Short description

This element stops the computation, if input is unequal zero. It has one input and no output.

256 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.53: IOStopComputation

Data objects of IOStopComputation:

Data name type R default description

element_type string "IOStopComputation"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOStopComputation"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

3.4. CONTROL ELEMENTS 257

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le StopComputation.txt

Include("addPulseGenerator.txt")

stop

{

element_type = "IOStopComputation"

IOBlock

{

input_element_numbers = [nPulse]

input_element_types = [1]

input_local_number = [1]

}

Graphics

{

position = [50,-50]

}

}

nStop = AddElement(stop)

3.4.16 IOElementDataModi�er

Short description

This element can be used to modify data of a constraint or element. It has one input and no
output.

258 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.54: IOElementDataModi�er

Data objects of IOElementDataModi�er:

Data name type R default description

element_type string "IOElementDataModi�er"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOElementDataModi�er"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.
start_of_timestep_only

bool 0 modify element data at start time step only.

IOBlock.
mod_variable_name

string "" variable name of the modi�ed element data

IOBlock.
mod_element_number

integer 1 element number of the modi�ed element or con-
straint

3.4. CONTROL ELEMENTS 259

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

Example

see �le ElementDataModi�er.txt

gravLoad

{

load_type = "Gravity"

direction = 3 % z - direction

gravity_constant = 9.81 % m/s^2

}

nLoad = AddLoad(gravLoad)

mass3D

{

element_type = "Mass3D"

loads = [nLoad]

Physics.mass= 1

}

nMass3D = AddElement(mass3D)

IOTime

{

element_type = "IOTime"

}

nIOTime = AddElement(IOTime)

springDamperActuator

{

element_type = "SpringDamperActuator"

Position1.element_number = nMass3D %number of constrained element

}

nSpringDamperActuator = AddConnector(springDamperActuator)

modifier

{

element_type = "IOElementDataModifier"

IOBlock

{

input_element_numbers = [nIOTime] %element connected to input

260 CHAPTER 3. HOTINT REFERENCE MANUAL

input_element_types = [1]

input_local_number = [1]

mod_variable_name = "Connector.SpringDamperActuator.spring_length_offset" %modified element data

mod_element_number = nSpringDamperActuator %modified constraint

}

}

AddElement(modifier)

3.4.17 IODisplay

Short description

This element can be used to display any (single) numberical value fed into the (single) input.

Figure 3.55: IODisplay

Data objects of IODisplay:

Data name type R default description

element_type string "IODisplay" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IODisplay" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [60, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

3.4. CONTROL ELEMENTS 261

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.
number_of_digits

integer 3 number of digits

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-1

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock, if available

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

Example

see �le Display.txt

Include("addTime.txt")

display

{

element_type = "IODisplay"

IOBlock

{

input_element_numbers = [nTime]

input_element_types = [1]

input_local_number = [1]

number_of_digits = 3

}

Graphics

{

position = [70,0]

}

}

nDisplay = AddElement(display)

262 CHAPTER 3. HOTINT REFERENCE MANUAL

3.4.18 IOMinMax

Short description

This block returns the minimum, maximum or average value of the input. Up to a speci�c
point of time, this functionality is switched o� and the output y is equal to the input u. This
block can be used to postprocess sensor values.

Description of the di�erent modi

1 = minimum y = u for t ≤ t0
y = mint≥t0(u) for t > t0
with t0 = IOBlock.start_time

2 = maximum y = u for t ≤ t0
y = maxt≥t0(u) for t > t0

3 = average y = u for t ≤ t0
y = 1

N

∑
ti≥t0

ui for ti > t0
4 = minimum(abs) y = u for t ≤ t0

y = mint≥t0(|u|) for t > t0
5 = maximum(abs) y = u for t ≤ t0

y = mint≥t0(|u|) for t > t0
6 = average(abs) y = u for t ≤ t0

y = 1
N

∑
ti≥t0

|ui| for ti > t0

Figure 3.56: IOMinMax

Data objects of IOMinMax:

Data name type R default description

element_type string "IOMinMax" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOMinMax" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

3.4. CONTROL ELEMENTS 263

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 1 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.mode integer 1 1..min, 2..max, 3..avg, 4..min(abs), 5..max(abs),
6..avg(abs)

IOBlock.start_time double 0 Up to this point of time, the output is equal to
the input. Afterwards the output is computed
according to the mode.

Observable special values:

For more information see section 3.1

value name description
Internal.data_variable data varibales of the element which are no degrees of

freedom (e.g. inelastic strain, contact state, friction
state, etc.). range: 1-2

IOBlock.output IOBlock.output[i] ... measures the i-th output of this
IOBlock

IOBlock.input IOBlock.input[i] ... access to the i-th input of this
IOBlock, if available

Example

see �le IOMinMax.txt

Time.element_type= "IOTime"

nElem1 = AddElement(Time)

MinMax

{

element_type= "IOMinMax"

Graphics.position= [50, 0]

IOBlock

{

input_element_numbers= [nElem1]

input_element_types= [1]

264 CHAPTER 3. HOTINT REFERENCE MANUAL

input_local_number= [1]

mode = 1 % minimum

start_time = 0.5

}

}

nElem2 = AddElement(MinMax)

SensorOutput

{

sensor_type= "ElementSensor"

element_number= nElem1

value= "IOBlock.output[1]"

}

AddSensor(SensorOutput)

SensorOutput.element_number= nElem2

AddSensor(SensorOutput)

3.4.19 IOTCPIPBlock

Short description

This I/O element is a communication block based on TCP/IP which allows HOTINT to connect
to other programs or tools, opening up a wide range of possible applications including external
control, user-de�ned �add-ons�, or even co-simulation. Based on the speci�ed IP (v4) address
and port number the IOTCPIPBlock sets up a server socket and waits for a connection request
from a client. Hence, HOTINT here plays the server role, and the external program is the client
application.

Limitations

For the use of this element some kind of active network adapter is required. If you only want
to communicate locally on your computer and do not have an active network adapter, you can
alternatively use a so-called �loopback device� which emulates an active real network adapter in
a real network. To this end, either use the localhost address 127.0.0.1 (this is the default) � or
one address from the 127.0.0.0/8 subnet (127.0.0.1-127.255.255.254) � or create and con�gure
an actual virtual network adapter. The following steps summarize how such a loopback adapter
can be installed on Microsoft Windows:

(1) Open the device manager
(2) Select the network category and choose �Action → Add legacy hardware� via the menu
(3) Choose the option for manual installation and select the category �network adapters� from
the list
(4) In the next dialog select �Microsoft� as vendor and �Microsoft loopback adapter� as hard-
ware component
(5) Proceed and �nish the installation

Example: Communication with Simulink/Matlab
This example demonstrates how to realize a connection between HOTINT and Matlab/Simulink.
The purpose of the TCP/IP block is to use other powerful tools for some computations. For ex-
ample it is possible to do the control law calculations for the actuation of the multibody system

3.4. CONTROL ELEMENTS 265

in Simulink (as alternative to the IOBlocks in HOTINT). It's also very simple to do a parameter
variation, see the advanced example in the folder �examples/balancing_cart_TCPIP�.
In �examples/TCPIP� a very simple communication example is included: From the HOTINT
side four di�erent double values (simulation time t multiplied by the gain factors one to four)
are transmitted to Simulink, see �gure 3.58. Simulink summates the �rst and second respec-
tively the third and fourth value and sends the two double values back to HOTINT. The values
are captured by sensors, stored in the solution �le and can be visualized in the plot tool.
Comment: For testing purposes you can also use the executable �TCPIP_client.exe� which has
the same functionality as the Simulink example. To use this client executable create a �IP.txt�
�le in the same folder. The �rst four lines represent the IP address of the HOTINT computer,
the �fth line is the port number.

To start this example, following things have to be done:
(1) Start Matlab/Simulink and open the �le communication.mdl in the folder �examples/TCPIP�,
see �gure 3.59.
Comment: If the �Instrument Control Toolbox� is not installed the TCP/IP communication
blocks appear red and indicate an unresolved reference to a library block (bad link). The �gure
shows the basic structure that should not be changed. The output of the �TCP/IP Receive�
block is a vector yrec = [t, x1, ..., xn, f]T with HOTINT time t, data variables x1 to xn and the
handling �ag f . The �Selector� block outputs the last element of the vector (�ag f) for the �ag
handling. You have to adapt the these two blocks if you want to change the number of received
variables. There is no need to change the ��ag handling in� block.
(2) Make sure that the �Current Folder� is the folder which include the communication.mdl �le.
(3) Double click the �TCP/IP Receive� block and select the �Remote address� (i.e., the IP
address) of the computer HOTINT is running on and select a �Port�. Repeat this point for the
�TCP/IP Send� block.
Comment: If HOTINT and Simulink is running on the same computer you can also choose
localhost (�127.0.0.1�).
(4) Set the �Sample Time� of every block (TCP/IP Receive, Constants,...) and choose �xed
step size in the �Solver Options�.
(5) Open the subsystem �computations�, see �gure 3.60. This subsystem contains all computa-
tions y = f (u) with input u and output y.
Comment: Change this subsystem to your needs.
(6) Open the subsystem ��ag handling out�, see �gure 3.62. In default no handling �ags are
transmitted to HOTINT.
Comment: Change this subsystem to your needs.
(7) Save the mdl �le. (8) Open the TCPIP.hid HOTINT �le and type in the same �ip_address�
and �port_number� as for the Matlab/Simulink side.
(9) Make sure that �max_step_size� and �min_step_size� in the subtree �SolverOptions.Timeint�
are set to the same value as the �xed �Sample Time� in Simulink.
Comment: This is very important especially for the case of time dependent blocks like integra-
tors in Simulink.
(10) Save the �le.
(11) Load the communication.hid �le in HOTINT.
(12) Click the �Start simulation� button in Simulink.
(13) Click the �Start!� button in HOTINT.

Comment: The points 11-13 have to be executed within the timeout limits. You can change the
latter in the TCP/IP blocks for both HOTINT and Simulink. During these steps connection

266 CHAPTER 3. HOTINT REFERENCE MANUAL

errors might occur due to �rewall restrictions; you will probably have to set the corresponding
permissions in your �rewall(s).
It is also recommended to choose the Simulink �Simulation stop time� higher as the �end_time�
in HOTINT. The reason is that HOTINT sends a stop �ag after the last simulation step and
in Simulink this �ag is used to execute a �Stop� block which ends the communication and
simulation.

Additional notes

Data exchange is performed at a stage before every time step in HOTINT, following below
protocol:
The outgoing data, i.e. the data sent from HOTINT to the client, is an array of 8-byte double
precision numbers which contains, in that order, the current simulation time (1 double), the
current values of the inputs of the I/O element, and one additional element corresponding to
a communication control �ag (see the Communication �ags - section below for more details).
Hence, the total amount of outgoing data is (number of inputs+ 2) times 8 bytes (double pre-
cision numbers). After the client has received and processed that data, it sends back a data
package to HOTINT � the incoming data for the I/O element � which again consists of an
array of double precision numbers, this time with the length (number of outputs+ 1). The �rst
(number of output) double precision values determine the outputs of the I/O element, and the
last element again is used for the transfer of communication �ags.
HOTINT now begins the computation of one time step, where the transmitted data from the
client is accessible via the outputs of the IOTCPIPBlock.

Important notes

� The waiting procedure for the client connection request, as well as the send and receive oper-
ations all are so-called �blocking calls�. This means that HOTINT will wait for those operations
to �nish, and during that time, not respond to any user input. Therefore, a reasonable timeout
(default is 30 seconds) should be speci�ed for the IOTCPIPBlock to allow TCP/IP connection
or transmission error handling.

� You will probably have to adjust your �rewall settings and set appropriate permissions for
HOTINT and the client application.

� Depending on the implementation of the client, it might be neccessary to start the server,
i.e., HOTINT, �rst.

� Since HOTINT is running on Microsoft Windows, the memory byte order, also called �endi-
anness�, is �Little Endian�, which means that the least signi�cant bytes/digits are stored ��rst�
in memory, i.e., on the smallest memory address. Therefore, any data sent from or received by
the IOTCPIPBlock has or must have that byte order, respectively. You probably have to take
that into account on the client side, especially if the client is running on a di�erent platform
and/or architecture on another computer.

Communication �ags

Currently, the following 4-byte �ags are implemented:

(1) Neutral �ag: 0x00000000 (integer value: 0). This �ag signals that the application is run-
ning (properly) and no further action is required.
(2) Reset �ag: 0x00000001 (integer value: 1). This �ag is sent from HOTINT to the client in
the �rst step of the computation. This can be used, for instance, to reset the client application.

3.4. CONTROL ELEMENTS 267

(3) Error �ag: 0x00000002 (integer value: 2). Indicates that an error has occurred. If HOTINT
receives the error �ag, an error message is issued, the connection is closed and the program
execution terminated.
(4) Close �ag: 0x00000003 (integer value: 3). This �ag is sent from HOTINT to the client to
indicate that the computation has �nished and the connection will be closed, which is the case
when the computation has actually �nished, or the �Stop�-button has been hit.
(5) Any other value: Treated as error �ag (3).

One of these �ags is stored in and read from the last 8 bytes of the exchanged data � corre-
sponding to one additional double precision number � in either direction in every time step.
Currently, for simplicity, the �ag is just casted explicitly from an integer to a double precision
number which then can be transmitted and casted back to an integer exactly. Of course, this
procedure must be followed on both the server and the client side.

Figure 3.57: general concept of TCP/IP coupling

Figure 3.58: TCP/IP Block with 4 inputs and 2 outputs

268 CHAPTER 3. HOTINT REFERENCE MANUAL

Figure 3.59: TCP/IP communication with Matlab/Simulink (do not change this structure)

Figure 3.60: Subsystem computations

3.4. CONTROL ELEMENTS 269

Figure 3.61: TCP/IP subsystem ��ag handling in�

Figure 3.62: TCP/IP subsystem ��ag handling out�

Data objects of IOTCPIPBlock:

Data name type R default description

270 CHAPTER 3. HOTINT REFERENCE MANUAL

element_type string "IOTCPIPBlock" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOTCPIPBlock" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.port_number integer 50000 Port number, e.g. '50000'.
IOBlock.ip_address string "127.0.0.1" IP address, e.g. '127.0.0.1' (localhost). Do not

neglect the dots between the numbers.
IOBlock.
received_data_size

integer 0 Number of received data values (outputs). This
number has to be consistent with the transmitted
data values of the other communication side (the
additional double for the communication �ags is
not corresponding to this number).

IOBlock.timeout integer 30000 TCP/IP timeout in milliseconds; default is 30000.

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

3.4. CONTROL ELEMENTS 271

Example

see �le TCPIP.txt

time.element_type= "IOTime" %specification of element type.

nTime = AddElement(time)

gain

{

element_type= "IOLinearTransformation" %specification of element type.

Graphics.position= [50, 0]

IOBlock

{

input_element_numbers= [nTime] %v. of element(s) or sensor number(s)

input_element_types= [1] %v. with types of connected inputs; 1=IOElement

input_local_number= [1] %v. with i-th number of output of previous IOelement

A_matrix= [1] %transformation matrix A: y=A.u+b

b_vector= [0] %offset vector b: y=A.u+b

}

}

nGain1 = AddElement(gain)

gain.IOBlock.A_matrix= [2]

gain.Graphics.position= [50, -30]

nGain2 = AddElement(gain)

gain.IOBlock.A_matrix= [3]

gain.Graphics.position= [50, -60]

nGain3 = AddElement(gain)

gain.IOBlock.A_matrix= [4]

gain.Graphics.position= [50, -90]

nGain4 = AddElement(gain)

TCPIP

{

element_type= "IOTCPIPBlock" %specification of element type.

Graphics.position= [100, 0]

IOBlock

{

input_element_numbers= [nGain1,nGain2,nGain3,nGain4] %v. of sensor number(s)

input_element_types= [1,1,1,1] %v. w. types of connected inputs; 1=IOElement

input_local_number= [1,1,1,1] %v. w. i-th number of output

port_number= 50000 %Port number, e.g. '50000'.

ip_address= "127.0.0.1" %IP address, e.g. '127.0.0.1'.

received_data_size = 2 %Number of received values (outputs).

timeout= 10000 %TCP/IP timeout in milliseconds; default is 10000.

}

}

nTCPIP = AddElement(TCPIP)

sensor.sensor_type= "ElementSensor"

sensor.element_number= nTCPIP

sensor.value= "IOBlock.output[1]"

nSensor1= AddSensor(sensor)

272 CHAPTER 3. HOTINT REFERENCE MANUAL

sensor.name= "sens2"

sensor.value= "IOBlock.output[2]"

nSensor2= AddSensor(sensor)

SolverOptions.Timeint.max_step_size = 1

SolverOptions.Timeint.min_step_size = 1

SolverOptions.start_time = 0

SolverOptions.end_time = 10

3.4.20 IOX2C

Short description

This I/O element is a communication block based on IOTCPIPBlock which allows HOTINT
to connect to X2C. For the mapping of the inputs and outputs in HOTINT and X2C strings
are used.

Additional notes

HOTINT is the server and X2C Application the client.HOTINT needs synchronisation time
(sample time * 1.5) as double value.
Initialization

• X2C builds connection

• X2C sends synchronisation time

• HOTINT sends mapping of inports and outports (see Port Identi�er Order)

Initialization of inports and outports

• HOTINT sends (init-) inport values to X2C (see Port Value Exchange)

• X2C Update

Continuous communication

• X2C sends outport values to HOTINT (see Port Value Exchange)

• HOTINT Update

• HOTINT sends inport values to X2C (see Port Value Exchange)

• X2C Update

Closing of Communication

• usually done by server (HOTINT) by setting status �ag

• in error case also possible for client by setting status �ag

Figure 3.63: IOX2C Port Identi�er Order

3.4. CONTROL ELEMENTS 273

Figure 3.64: IOX2C Port Value Exchange

Figure 3.65: IOX2C Status Flag Values

Data objects of IOX2C:

Data name type R default description

element_type string "IOX2C" speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOX2C" name of the element
element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 0 number of inputs

IOBlock.
number_of_outputs

integer R 0 number of outputs

IOBlock.
number_of_states

integer R 0 number of states

IOBlock.
input_element_numbers

vector [] vector of element(s) or sensor number(s) con-
nected to input, only valid element numbers per-
mitted!

IOBlock.
input_element_types

vector [] vector with types of connected inputs; 1=IOEle-
ment, 2=Sensor

IOBlock.
input_local_number

vector [] vector with i-th number of output of previous
IOelement connected to this element

IOBlock.port_number integer 50000 Port number, e.g. '50000'.
IOBlock.ip_address string "127.0.0.1" IP address, e.g. '127.0.0.1' (localhost). Do not

neglect the dots between the numbers.
IOBlock.timeout integer 30000 TCP/IP timeout in milliseconds; default is 30000.

274 CHAPTER 3. HOTINT REFERENCE MANUAL

IOBlock.input_names string "" Names of the inputs, separated with commas.
Names have to be consistent with settings in X2C.
Order of names has to match vectors specifying
input element types. e.g. voltage,current

IOBlock.output_names string "" Names of the outputs, separated with commas.
Names have to be consistent with settings in X2C.
e.g. position,velocity

Observable special values:

For more information see section 3.1

value name description
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock, if available
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock, if available

3.4.21 IOLinearTransducer

Short description

The LinearTransducer realizes an electro-magnetic linear transducer.

Degrees of freedom

The element has 1 degree of freedom, the magnetic �ux

Equations

The LinearTransducer computes the force which has to be applied to the mechanical bodies,
e.g. Rigid3D. The magnetic �ux Ψ is computed as

dΨ

dt
= u−Ri (z,Ψ) (3.42)

with displacement z, current i, voltage u and resistance R. The force f of the transducer is a
function of displacement and current, f (z, i), whereas the current is a function of displacement
and magnetic �ux i (z,Ψ).To compute these values the LinearTransducer uses radial basis
functions (RBF) of the form

y (x) =
N∑
i=1

wiφ (‖xsc − ci‖) + v

[
1
xsc

]
(3.43)

with N supporting points (centers) c and the weights w and v. The argument x = [z,Ψ] for
the current and x = [z, i] for the force.The argument x is scaled with the scaling vector s,

xsci = xi/si (3.44)

Di�erent kernels of the RBF are available:

3.4. CONTROL ELEMENTS 275

• RBF kernel = 1: φ (‖xsc − ci‖) = φ (r) = r3

• RBF kernel = 2: φ (‖xsc − ci‖) = φ (r) = r2ln(r)

In the linear case you can use the following simpli�cation for the force

v = [F0, Cm, ki] (3.45)

w = [] (3.46)

c = [] (3.47)

s = [1; 1] (3.48)

Note: Cm is the destabilizing (negative) magnetic sti�ness.The linear case is therefore equal to

f(z, i) = F0 + Cmz + kii (3.49)

and for the current
v = [−Ψ0

L
,−ki

L
,

1

L
] (3.50)

w = [] (3.51)

c = [] (3.52)

s = [1; 1] (3.53)

which is equal to

i(z,Ψ) = −Ψ0

L
− ki
L
z +

1

L
Ψ (3.54)

Inputs and Outputs

• input 1: voltage u in V

• input 2: displacement z in m

• output 1: force f in N

• output 2: negative force −f in N

• output 3: current i in A

Figure 3.66: IOLinearTransducer

Data objects of IOLinearTransducer:

276 CHAPTER 3. HOTINT REFERENCE MANUAL

Data name type R default description

element_type string "IOLinearTransducer"
speci�cation of element type. Once the element
is added to the mbs, you MUST NOT change this
type anymore!

name string "IOLinearTransducer"
name of the element

element_number integer R 1 number of the element in the mbs
Graphics
Graphics.show_connector bool 1 Flag to draw connector
Graphics.position vector [0, 0] reference drawing position
Graphics.draw_size vector [20, 20, 0] draw size
Graphics.rotation double 0 rotation: 1==90°, 2==180°, 3==270°, 4=360°
Graphics.
background_color

vector [-1, -1, -1] background color; -1=transparent

Graphics.
foreground_color

vector [0, 0, 0] foreground color

Graphics.
input_nodes_num

vector [] number of input of drawing position "in-
put_nodes"

Graphics.input_nodes matrix []
IOBlock
IOBlock.
number_of_inputs

integer R 2 number of inputs

IOBlock.
number_of_outputs

integer R 3 number of outputs

IOBlock.
number_of_states

integer R 1 number of states

IOBlock.
input_element_numbers

vector [2, 3] numbers of IOElement or sensor providing the in-
puts [voltage, displacement]

IOBlock.
input_element_types

vector [1, 1] types of connected inputs; 1=IOElement, 2=Sen-
sor

IOBlock.
input_local_number

vector [1, 1] i-th number of output of previous IOelement con-
nected to this element

Physics
Physics.resistance double 0.6 electrical resistance in Ohm
Physics.RBF_Force
Physics.RBF_Force.
scaling_vector

vector [1, 1] scaling of displacement, x(1), and current, x(2):
x_scaled(i) = x(i)/scaling_vector(i)

Physics.RBF_Force.
centers

matrix [] c(i) is the scaled supporting point

Physics.RBF_Force.
weights_RBF

vector [] w(i) is the weight of the supporting point c(i)

Physics.RBF_Force.
weights_poly

vector [0, 1.4e+004, 14]
v(i), weights of the polynomial v*[1; x(1); x(2)],
in linear case: v = [F0, Cm, ki]

Physics.RBF_Force.
RBF_kernel

integer 1 kernel of the RBF: 1..r*r*r, 2..r*r*ln(r)

Physics.RBF_Current
Physics.RBF_Current.
scaling_vector

vector [1, 1] scaling of displacement, x(1), and current, x(2):
x_scaled(i) = x(i)/scaling_vector(i)

Physics.RBF_Current.
centers

matrix [] c(i) is the scaled supporting point

Physics.RBF_Current.
weights_RBF

vector [] w(i) is the weight of the supporting point c(i)

Physics.RBF_Current.
weights_poly

vector [0, -1e+003,
71.4] v(i), weights of the polynomial v*[1; x(1); x(2)],

in linear case: v = [-Psi0/L, -ki/L, 1/L]

3.4. CONTROL ELEMENTS 277

Physics.RBF_Current.
RBF_kernel

integer 1 kernel of the RBF: 1..r*r*r, 2..r*r*ln(r)

Observable special values:

For more information see section 3.1

value name description
Internal.DOF degrees of freedom (or generalized unknowns) of the

element. range: 1-1
Internal.�rst_order_variable �rst order variables of the element. range: 1-1
IOBlock.output IOBlock.output[i] ... measures the i-th output of this

IOBlock
IOBlock.input IOBlock.input[i] ... access to the i-th input of this

IOBlock

Example

see �le IOLinearTransducer.txt

volt.element_type= "IOLinearTransformation"

volt.IOBlock.A_matrix= []

volt.IOBlock.b_vector= [10] % constant voltage of 10 V

nEVolt = AddElement(volt)

rigidbody.element_type= "Mass1D"

rigidbody.Physics.mass= 0.315 % add 1 body

nEBody = AddElement(rigidbody)

elemSet.set_type = "ElementSet"

elemSet.element_numbers= [nEBody] % set with 1 body

nESetTilgerMoving = AddSet(elemSet)

spring.element_type= "CoordinateConstraint" % spring w.r.t. ground

spring.Physics.use_penalty_formulation= 1 % spring has to be sufficient stiff!

spring.Physics.Penalty.damping= 15 % damping coefficient Dp for viscous damping

spring.Physics.Penalty.spring_stiffness= 20000 % general or penalty stiffness parameter Sp

spring.Coordinate1.element_number= nEBody

spring.Coordinate1.local_coordinate= 1

AddConnector(spring)

sens.sensor_type= "FVElementSensor"

sens.element_number= nEBody

sens.field_variable= "displacement" % displacement is needed as input

nSensDisp = AddSensor(sens)

elektroMagnet

{

element_type= "IOLinearTransducer"

278 CHAPTER 3. HOTINT REFERENCE MANUAL

Graphics.position= [100, 0]

IOBlock.input_element_numbers= [nEVolt,nSensDisp] % inputs [voltage, displacement]

IOBlock.input_element_types= [1, 2] % types; 1=IOElement, 2=Sensor

}

nELinTransducer = AddElement(elektroMagnet)

force

{

load_type= "GCLoad"

load_function_type= 2 %time dependency of the load: 2..IOElement

IOElement.input_element_number= nELinTransducer %number of IOElement in the mbs

IOElement.input_local_number= 1 %number of output of IOElement connected to this element

}

nLTilger = AddLoad(force) % add load to mbs

AssignLoad(nESetTilgerMoving,nLTilger) % assign load to element

sensEl

{

name= "IO voltage"

sensor_type= "ElementSensor"

element_number= nELinTransducer

value= "IOBlock.input[1]"

}

AddSensor(sensEl)

sensEl.name= "IO displacement"

sensEl.value= "IOBlock.input[2]"

AddSensor(sensEl)

sensEl.name= "IO force"

sensEl.value= "IOBlock.output[1]"

AddSensor(sensEl)

sensEl.name= "IO current"

sensEl.value= "IOBlock.output[3]"

AddSensor(sensEl)

3.5. MATERIAL 279

3.5 Material

These materials are available:

• Material, 3.5.1

Note:
In HOTINT several classes are treated as 'material'. BeamProperties are also 'materials', and
can therefore be edited and deleted in the GUI with the menu items of the materials.
In the script language the command AddMaterial is just available for the materials in the list
above.

3.5.1 Material

Short description

Material is the basic Object for de�ning material properties for standard �nite elements (in
contrast to structural �nite elements such as beams and plates).

Additional notes

For static problems de�ne the elastic properties Solid.youngs_modulus and Solid.poisson_ratio,
whereas for dynamic problems also Solid.density is required. If the problem is planar
(Solid.plane is set to 1), then the plane strain case is assumed unless Solid.plane_stress is
set to 1. If the material is inelastic, then also the properties in the subtree Inelasticity have
to be set.

Data objects of Material:

Data name type R default description

Material_number integer R 2
material_type string "Material" speci�cation of material type. Once the material

is added to the mbs, you MUST NOT change this
type anymore!

Graphics
Graphics.color vector [0, 0, 1] material color (as yet used with FEMesh, only)
name string "Material" name of the material
Solid
Solid.density double 0 density (rho) for gravitational force
Solid.youngs_modulus double 0 Youngs modulus
Solid.poisson_ratio double 0 Poisson ratio
Solid.plane bool 0 true: 2D, false: 3D
Solid.plane_stress bool 0 for 2D-Elements only; 1: plane stress, 0: plane

strain
Inelasticity
Inelasticity.yield_stress double 0 Yield Stress s_y, e.g., |dev s| <= s_y
Inelasticity.
tangent_module

double 0 Modulus of hardening H

Inelasticity.
inelasticity_type

string "linear_elastic"
linear_elastic, elasto_plastic (= Prandtl
Reuss plasticity + isotropic hardening), non-
linear_elastic_Simo_Hughes (see Simo and
Hughes, Computational Inelasticity 1998:
S=lambda/2*(J*J-1)/C + mu*(1-1/C))

Inelasticity.inelastic-
ity_solution_method

string "default" �xed_point, return_mapping, consis-
tent_tangent_sti�ness (see Simo and Hughes,
Computational Inelasticity 1998)

280 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le Material.txt

my_material

{

material_type= "Material"

Solid.density = 7800

Solid.youngs_modulus = 2e10

}

nMaterial = AddMaterial(my_material)

3.6. BEAMPROPERTIES 281

3.6 BeamProperties

These beam properties are available:

• Beam3DProperties, 3.6.1

Note:
In HOTINT several classes are treated as 'material'. BeamProperties are also 'materials', and
can therefore be edited and deleted in the GUI with the menu items of the materials.
In the script language the command AddBeamProperties has to be used for the beam properties
in the list above.

3.6.1 Beam3DProperties

Short description

Beam3DProperties de�nes material and geometric properties for beam structural �nite ele-
ments.

Additional notes

First, specify the cross_section_type of the beam, which may be either rectangular (if set
to 1), circular (if set to 2) or polygonal (if set to 3). In either case the cross_section_size
is a vector of 2, 1, or 2n entries, where n confers to the number of vertices of a closed polygon.
Then specify the sti�nesses and moments of inertias, as they are neede by your beam and
problem.

Data objects of Beam3DProperties:

Data name type R default description

Material_number integer R 2
material_type string "Beam3DProperties"

speci�cation of material type. Once the material
is added to the mbs, you MUST NOT change this
type anymore!

Graphics
Graphics.color vector [0, 0, 1] material color (as yet used with FEMesh, only)
name string "Beam3DProperties"

name of the material
Inelasticity
Inelasticity.
inelasticity_type

string "linear_elastic"
linear_elastic, elasto_plastic (= Prandtl
Reuss plasticity + isotropic hardening), non-
linear_elastic_Simo_Hughes (see Simo and
Hughes, Computational Inelasticity 1998:
S=lambda/2*(J*J-1)/C + mu*(1-1/C))

Inelasticity.inelastic-
ity_solution_method

string "default" �xed_point, return_mapping, consis-
tent_tangent_sti�ness (see Simo and Hughes,
Computational Inelasticity 1998)

cross_section_type integer 1 1: rectangular, 2: circular, 3: tubular, 4: polygo-
nal

282 CHAPTER 3. HOTINT REFERENCE MANUAL

cross_section_size vector [0, 0] vector length of cross_section_size depends
on cross_section_type: length 1 for circular
cross section (radius), length 2 for rectangu-
lar cross section (y and z extension) or tubu-
lar cross section (outer and inner diameter)
, and length 2*n for polygonal cross section
(p1y,p1z,p2y,p2z,...,pny,pnz)

EA double 0 youngs modulus * area
EIy double 0 bending sti�ness w.r.t. y-axis (2D-beam)
EIz double 0 bending sti�ness w.r.t. z-axis
GAky double 0 shear sti�ness including shear correction factor ky

(2D-beam)
GAkz double 0 shear sti�ness including shear correction factor kz
GJkx double 0 torsional sti�ness including shear correction fac-

tor kx
RhoA double 0 density * area
RhoIx double 0 density * second area of moment w.r.t. x-axis
RhoIy double 0 density * second area of moment w.r.t. y-axis

(2D-beam)
RhoIz double 0 density * second area of moment w.r.t. z-axis
density double 0 density (rho) for gravitational force

Example

see �le Beam3DProperties.txt

bp

{

material_type= "Beam3DProperties"

cross_section_type= 1

cross_section_size= [0.1, 0.1]

EA= 2100000000

EIy= 1750000

EIz= 1750000

GJkx= 2692307.692307693

}

nBeamProperties = AddBeamProperties(bp)

3.7. NODE 283

3.7 Node

These nodes are available:

• Node3DS1rot1, 3.7.1

• Node3DS2S3, 3.7.2

• Node3DRxyz, 3.7.3

• Node3DR123, 3.7.4

• Node3DS1S2, 3.7.5

• Node3DThermoMechanic, 3.7.6

• Node3DThermo, 3.7.7

Note:
In HOTINT di�erent types of nodes exist. The main di�erence between these types are the
number of degrees of freedom. Depending on the chosen type of an element, the correct node
has to be used. Each element provides some information about the needed nodes.
In the script language the command AddNode is used for adding a node to the system.

3.7.1 Node3DS1rot1

Short description

Node3DS1rot1 is a �nite element node for elements in 3D, and provides 7 degrees of freedom.

Degrees of freedom

This node provides 7 degrees of freedom: the �rst 3 degrees of freedom are the displacement
(q1, q2, q3)

T = u = r − r0, the next 3 DOFs denote the change of the �rst slope, which is the
partial derivative of the position (q4, q5, q6)

T = r,ξ − r0,ξ with ξ denoting the �rst of the three
coordinates (ξ, η, ζ) of the reference element, and the 7th degree of freedom is the local rotation
q7 = θ of the node around its current direction S1.

Geometry

The reference geometry of the node is de�ned by the user via (a) Geometry.reference_position
and (b) the rotation Geometry.reference_rot_angles. The rotation is prescribed by the user
in form of kardan angles (initially, local (S1, S2, S3) and global frame (x, y, z) are identical, then
rotate local frame around S1, then S2 and �nally S3). The current position is evaluated by
adding displacement (the �rst three degrees of freedom) to the reference position of the node
(degrees of freedom: (q1, q2, q3)

T), and the current rotation of the node is obtained by adding
the change of the �rst axis of the local frame (DOFs: (q4, q5, q6)

T) to the �rst axis of the local
frame in reference con�guration of the node, and �nally rotating the two other axes around the
�rst axis of the local frame by the amount of the 7th degree of freedom q7 = θ.

Data objects of Node3DS1rot1:

Data name type R default description

284 CHAPTER 3. HOTINT REFERENCE MANUAL

node_type string "Node3DS1rot1" speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DS1rot1" Node identi�er.
node_number integer 1 Node Number.
Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Geometry.
reference_rot_angles

vector [0, 0, 0] Kardan rotation angles (X,Y,Z) in rad in global
frame of node in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0]

initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

Example

see �le Node3DS1rot1.txt

node

{

node_type= "Node3DS1rot1"

Geometry

{

reference_position= [0, 0, 0]

reference_rot_angles= [0, 0, 0]

}

}

nNode1 = AddNode(node)

3.7.2 Node3DS2S3

Short description

Node3DS2S3 is a �nite element node for elements in 3D, and provides 9 degrees of freedom.

Degrees of freedom

This node provides 9 degrees of freedom: the �rst 3 degrees of freedom are the displacement
(q1, q2, q3)

T = u = r− r0, the next 3 DOFs denote the change of the second slope, which are the
partial derivatives of the position (q4, q5, q6)

T = r,η − r0,η and (q7, q8, q9)
T = r,ζ − r0,zeta, where

η and ζ denote the second and third of the three coordinates (ξ, η, ζ) of the reference element.

Geometry

The reference geometry of the node is de�ned by the user via (a) Geometry.reference_position
and (b) the slopes Geometry.ref_slope2 and Geometry.ref_slope3. The current position is
evaluated by adding the displacement (the �rst three degrees of freedom (q1, q2, q3)

T) to the
reference position of the node, and further the current slopes of the node are obtained by adding

3.7. NODE 285

the change of the second and third slopes (DOFs: (q4, q5, q6)
T and (q7, q8, q9)

T) to the second
and third slopes in reference con�guration of the node.

Data objects of Node3DS2S3:

Data name type R default description

node_type string "Node3DS2S3" speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DS2S3" Node identi�er.
node_number integer 1 Node Number.
Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Geometry.
reference_slope2

vector [0, 1, 0] slope 2 of node in reference con�guration.

Geometry.
reference_slope3

vector [0, 0, 1] slope 3 of node in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0]

initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

3.7.3 Node3DRxyz

Short description

Node3DRxyz is a �nite element node in 3D. It has a 3D reference position, a reference orien-
tation described by bryant angles and 6 degrees of freedom.

Degrees of freedom

The �rst 3 degrees of freedom are used to describe the displacement (q1, q2, q3)
T = u = r− r0,

the last 3 are used for the description of linearized (small) angles (φx, φy, φz)
T . All degrees of

freedom are w.r.t. the global coordinate system.

Geometry

The reference position of the node is de�ned by the user via Geometry.reference_position
and the reference orientation via Geometry.reference_rot_angles. The current position is
evaluated by adding the displacement (the �rst three degrees of freedom (q1, q2, q3)

T) to the
reference position of the node.

Data objects of Node3DRxyz:

Data name type R default description

node_type string "Node3DRxyz" speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DRxyz" Node identi�er.
node_number integer 1 Node Number.

286 CHAPTER 3. HOTINT REFERENCE MANUAL

Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Geometry.
reference_rot_angles

vector [0, 0, 0] Kardan rotation angles (X,Y,Z) in rad in global
frame of node in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0] initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

3.7.4 Node3DR123

Short description

Node3DR123 is a �nite element node in 3D. It has a 3D reference position, a reference orien-
tation described by bryant angles and 6 degrees of freedom.

Degrees of freedom

The �rst 3 degrees of freedom are used to describe the displacement (q1, q2, q3)
T = u = r− r0,

the last 3 are used for the description of linearized (small) angles (φx, φy, φz)
T . All degrees of

freedom are w.r.t. the reference coordinate system of the node.

Geometry

The reference position of the node is de�ned by the user via Geometry.reference_position
and the orientation via Geometry.reference_rot_angles. The current position is evaluated
by adding the displacement (the �rst three degrees of freedom (q1, q2, q3)

T transformed into the
global coordinate system) to the reference position of the node.

Data objects of Node3DR123:

Data name type R default description

node_type string "Node3DR123" speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DR123" Node identi�er.
node_number integer 1 Node Number.
Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Geometry.
reference_rot_angles

vector [0, 0, 0] Kardan rotation angles (X,Y,Z) in rad in global
frame of node in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0] initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

3.7. NODE 287

3.7.5 Node3DS1S2

Short description

Node3DS1S2 is a �nite element node for elements in 3D, and provides 9 degrees of freedom.

Degrees of freedom

This node provides 9 degrees of freedom: the �rst 3 degrees of freedom are the displacement
(q1, q2, q3)

T = u = r − r0, the next 3 DOFs denote the change of the �rst slope, which are the
partial derivatives of the position (q4, q5, q6)

T = r,ξ − r0,ξ and (q7, q8, q9)
T = r,η − r0,eta, where

ξ and η denote the �rst and second of the three coordinates (ξ, η, ζ) of the reference element.

Geometry

The reference geometry of the node is de�ned by the user via (a) Geometry.reference_position
and (b) the slopes Geometry.ref_slope1 and Geometry.ref_slope2. The current position is
evaluated by adding the displacement (the �rst three degrees of freedom (q1, q2, q3)

T) to the
reference position of the node, and further the current slopes of the node are obtained by adding
the change of the �rst and second slopes (DOFs: (q4, q5, q6)

T and (q7, q8, q9)
T) to the �rst and

second slopes in reference con�guration of the node.

Data objects of Node3DS1S2:

Data name type R default description

node_type string "Node3DS1S2" speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DS1S2" Node identi�er.
node_number integer 1 Node Number.
Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Geometry.
reference_slope1

vector [1, 0, 0] slope 1 of node in reference con�guration.

Geometry.
reference_slope2

vector [0, 1, 0] slope 2 of node in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0]

initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

3.7.6 Node3DThermoMechanic

Short description

Node3DThermoMechanic is the basic �nite element node in 3D with an additional degree of
freedom for temperature. It owns a reference position in 3D, and 3 degrees of freedom resembling
the displacement in 3D. Additionally, it owns a scalar degree of freedom.

288 CHAPTER 3. HOTINT REFERENCE MANUAL

Degrees of freedom

This node provides four degrees of freedom, three components of the displacement vector u =
(q1, q2, q3)

T measured in the global frame of the multibody system. The fourth degree of freedom
de�nes the scalar temperature T

Geometry

The geometry of the node is de�ned by its current position r measured in the global frame
of the multibody system, which is the sum of the user de�ned reference position r0 and the
displacement vector u, which is composed of the nodal degrees of freedom. Addionally, the
scalar degree of freedom de�nes the temperature as a scalar unknown.

Data objects of Node3DThermoMechanic:

Data name type R default description

node_type string "Node3DThermoMechanic"
speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DThermoMechanic"
Node identi�er.

node_number integer 1 Node Number.
Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0, 0, 0, 0, 0,
0, 0] initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

3.7.7 Node3DThermo

Short description

Node3DThermo is the basic �nite element node in 3D with an additional degree of freedom for
temperature. It owns a reference position and velocity in 3D and one scalar degree of freedom.

Degrees of freedom

This node provides one degree of freedom namely the temperature T

Geometry

The geometry of the node is de�ned by its current position r measured in the global frame of
the multibody system.

Data objects of Node3DThermo:

Data name type R default description

3.7. NODE 289

node_type string "Node3DThermo" speci�cation of node type. Once the node is
added to the mbs, you MUST NOT change this
type anymore!

name string "Node3DThermoMechanic"
Node identi�er.

node_number integer 1 Node Number.
Geometry
Geometry.
reference_position

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Geometry.
reference_velocity

vector [0, 0, 0] Position (2D/3D) in reference con�guration.

Initialization
Initialization.
node_initial_values

vector [0, 0] initial values for all degrees of freedom of node

Graphics
Graphics.RGB_color vector [0.4, 0.4, 0.1] [red, green, blue] color of element, range = 0..1,
Graphics.visible integer 1 Visibility of node.

290 CHAPTER 3. HOTINT REFERENCE MANUAL

3.8 Load

These loads are available:

• GCLoad, 3.8.1

• BodyLoad, 3.8.2

• ForceVector2D, 3.8.3

• ForceVector3D, 3.8.4

• MomentVector3D, 3.8.5

• Gravity, 3.8.6

• SurfacePressure, 3.8.7

For all loads it is possible to vary the value of the load with respect to time. The following
options are available:

1. MathFunction

2. IOElement

3.8.0.1 MathFunction

The value F (t) of a load at time t is computed as:

F (t) = f(t)~F (3.55)

f(t) represents the value of the MathFunction at time t, e.g. f(t) = sin(t).
~F represents the (constant) force vector, if a force vector is used in the speci�c type of load,
e.g. ForceVector3D.
If no force vector is available for the load, then the load is de�ned by f(t) only. Any additional
scalar value (e.g. load_value in GCLoad) is set to 1!

3.8.0.2 IOElement

The value F (t) of a load at time t is computed as:

F (t) = f(t)~F (3.56)

f(t) represents the value of the output of the IOElement at time t. By the use of IOElements
it is possible to de�ne loads, that are not only dependent on time, but on any possible input of
an IOElement.
~F represents the (constant) force vector, if a force vector is used in the speci�c type of load,
e.g. ForceVector3D.
If no force vector is available for the load, then the load is de�ned by f(t) only. Any additional
scalar value (e.g. load_value in GCLoad) is set to 1!

3.8.1 GCLoad

A load acting on a generalized coordinate (gc) of the element.

Data objects of GCLoad:

3.8. LOAD 291

Data name type R default description

name string "Load" name of the load
load_type string "GCLoad" speci�cation of load type. Once the load is added

to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
generalized_coordinate integer 1 (local) number of the generalized coordinate
load_value double 0 value of the load acting in the direction of gener-

alized_coordinate
load_function_type integer 0 time dependency of the load: 0..constant,

1..MathFunction, 2..IOElement
MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

Example

see �le GCLoad.txt

myLoad % define the load

{

load_type = "GCLoad"

generalized_coordinate = 1 %(local) number of the generalized coordinate

load_value = 10

}

nLoad=AddLoad(myLoad)

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

}

nElement = AddElement(emptyMass3D)

292 CHAPTER 3. HOTINT REFERENCE MANUAL

3.8.2 BodyLoad

The load value is integrated over the volume of the body and applied to the body in the speci�ed
direction. For the case of a rigid body, a force of size load_value = density*gravity_constant
applies a force according to the gravitational force.

Data objects of BodyLoad:

Data name type R default description

name string "Load" name of the load
load_type string "BodyLoad" speci�cation of load type. Once the load is added

to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
direction integer 1 direction of the load
load_value double 0 value of the load acting
load_function_type integer 0 time dependency of the load: 0..constant,

1..MathFunction, 2..IOElement
MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

3.8.3 ForceVector2D

Data objects of ForceVector2D:

Data name type R default description

name string "Load" name of the load
load_type string "ForceVector2D" speci�cation of load type. Once the load is added

to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
force_vector vector [0, 0] de�nes the magnitude and direction of the force
position vector [0, 0] (local) position where the force is applied to the

element
local_force integer 0 �ag which describes, if local or global coordinate

system is used: 1 = force in local body coordinate
system, 0 = global force

load_function_type integer 0 time dependency of the load: 0..constant,
1..MathFunction, 2..IOElement

3.8. LOAD 293

MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

Example

see �le ForceVector2D.txt

myLoad % define the load

{

load_type = "ForceVector2D"

force_vector = [10,0] % magnitude and direction

}

nLoad=AddLoad(myLoad)

L_x = 0.10 % length

L_y = 0.20 % width

L_z = 0.01 % height (for drawing and computation of mass)

density= 7850

myRigid2D % add rigid body

{

element_type= "Rigid2D" %specification of element type.

name= "R2D" %name of the element

Graphics.body_dimensions = [L_x, L_y, 0]

loads = [nLoad] % add the load to the element

Physics

{

mass= density*L_x*L_y*L_z

moment_of_inertia= 1.0/12.0*mass*(L_x^2+L_y^2)

}

Initialization

{

initial_position= [0, 0] %[X, Y]

initial_rotation= [0.0] % rot1_Z in rad

initial_velocity= [0, 0] %[X, Y]

initial_angular_velocity= [0] %rad/s

294 CHAPTER 3. HOTINT REFERENCE MANUAL

}

}

nElement = AddElement(myRigid2D)

3.8.4 ForceVector3D

A load acting on an element at a speci�ed (local) position.

Data objects of ForceVector3D:

Data name type R default description

name string "Load" name of the load
load_type string "ForceVector3D" speci�cation of load type. Once the load is added

to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
force_vector vector [0, 0, 0] de�nes the magnitude and direction of the force
position vector [0, 0, 0] (local) position where the force is applied to the

element
local_force integer 0 �ag which describes, if local or global coordinate

system is used: 1 = force in local body coordinate
system, 0 = global force

load_function_type integer 0 time dependency of the load: 0..constant,
1..MathFunction, 2..IOElement

MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

Example

see �le ForceVector3D.txt

myLoad % define the load

{

load_type = "ForceVector3D"

force_vector = [10,0,0] % magnitude and direction

}

nLoad=AddLoad(myLoad)

3.8. LOAD 295

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

}

nElement = AddElement(emptyMass3D)

ViewingOptions.Loads.show_loads = 1

ViewingOptions.Loads.arrow_size = 0.2

3.8.5 MomentVector3D

A torque acting on an element at a speci�ed (local) position.

Data objects of MomentVector3D:

Data name type R default description

name string "Load" name of the load
load_type string "MomentVector3D"

speci�cation of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
moment_vector vector [0, 0, 0] de�nes the magnitude and direction of the mo-

ment
position vector [0, 0, 0] (local) position where the moment is applied to

the element
local_moment integer 0 �ag which describes, if local or global coordinate

system is used: 1 = moment in local body coor-
dinate system, 0 = global moment

load_function_type integer 0 time dependency of the load: 0..constant,
1..MathFunction, 2..IOElement

MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

296 CHAPTER 3. HOTINT REFERENCE MANUAL

3.8.6 Gravity

The load is integrated over the volume of the body and applied to the body in the speci�ed
direction. The density of the body is used to compute the force.

Data objects of Gravity:

Data name type R default description

name string "Load" name of the load
load_type string "Gravity" speci�cation of load type. Once the load is added

to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
direction integer 1 global direction of the gravity
gravity_constant double 9.81 use negative sign if necessary
load_function_type integer 0 time dependency of the load: 0..constant,

1..MathFunction, 2..IOElement
MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

Example

see �le Gravity.txt

myLoad % define the load

{

load_type = "Gravity"

name = "gravity for all elements"

direction = 2

gravity_constant = 9.81

}

nLoad=AddLoad(myLoad)

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

3.8. LOAD 297

}

nElement = AddElement(emptyMass3D)

ViewingOptions.Loads.show_loads = 1

ViewingOptions.Loads.arrow_size = 0.2

3.8.7 SurfacePressure

Data objects of SurfacePressure:

Data name type R default description

name string "Load" name of the load
load_type string "SurfacePressure"

speci�cation of load type. Once the load is added
to the mbs, you MUST NOT change this type
anymore!

load_number integer R 1 number of the load in the mbs
direction integer 1 local surface (inner/outer)
surface_pressure double 0 use negative sign if necessary
load_function_type integer 0 time dependency of the load: 0..constant,

1..MathFunction, 2..IOElement
MathFunction
MathFunction.
piecewise_mode

integer -1 modus for piecewise interpolation: -1=not piece-
wise, 0=constant, 1=linear, 2=quadratic

MathFunction.
piecewise_points

vector [] supporting points (e.g. time or place) for piece-
wise interpolation

MathFunction.
piecewise_values

vector [] values at supporting points

MathFunction.
piecewise_di�_values

vector [] di�erential values at supporting points - for
quadratic interpolation

MathFunction.
parsed_function

string "" string representing parsed function, e.g.
'A*sin(omega*t)'

MathFunction.
parsed_function_parameter

string "" string representing parameter of parsed function,
e.g. 't'

IOElement
IOElement.
input_element_number

integer 0 number of IOElement in the mbs

IOElement.
input_local_number

integer 0 number of output of IOElement connected to this
element

Example

see �le SurfacePressure.txt

298 CHAPTER 3. HOTINT REFERENCE MANUAL

3.9 Sensor

These sensors are available:

• FVElementSensor, 3.9.1

• ElementSensor, 3.9.2

• LoadSensor, 3.9.3

• MultipleSensor, 3.9.4

• SystemSensor, 3.9.5

In HOTINT it is possible to access all degrees of freedom and many more interesting values
with sensors. In general these values are stored to a �le at speci�ed time steps. Many options
concerning these settings are available in SolverOptions.Solution.
You can use the PlotTool to visualize the sensor values but it is also possible to import the
solution �le easily in other software for postprocessing.
If you want to modify sensor values online (e.g. convert the units from rad to degrees or subtract
an o�set) it is recommended to use ControlElements.
In the script language the command AddSensor is used to add a sensor to the system.

3.9.1 FVElementSensor

The FieldVariableElementSensor evaluates the value of a �eld variable at a speci�ed position.
There are two possibilities to de�ne this position:

• element number + local position

• element number + local node number

The descriptions of the elements above include a list of available �eld variables for each element.
Possible �eld variables are e.g.

• position, velocity and displacement

• bryant_angle and angular_velocity

• beam_axial_extension, beam_torsion, beam_curvature

• many more

Data objects of FVElementSensor:

Data name type R default description

sensor_number integer R 1 number of the sensor in the mbs
name string "sensor" name of the sensor for the output �les and for the

plot tool
sensor_type string "FVElementSensor"

speci�cation of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

element_number integer 1 number of the element, to which the sensor is
applied

3.9. SENSOR 299

node_number integer 0 local node number. If > 0, then the position of
this node is used.

local_position vector [0, 0, 0] local position at which the �eld variable is evalu-
ated.

�eld_variable string "position" name of the �eld variable, e.g. 'position', see the
documentation of the elements for the available
�eld variables

component string "x" component of the �eld variable, e.g. 'x'

Example

see �le FVElementSensor.txt

emptyMass3D

{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement(emptyMass3D)

sensor

{

sensor_type= "FVElementSensor"

element_number= nElement %number of the element

field_variable= "position" %name of the field variable

component= "x" %component of the field variable

}

nSensor = AddSensor(sensor)

3.9.2 ElementSensor

The ElementSensor returns special values evaluated in the element. It can be used e.g. for
measuring a speci�c degree of freedom of an element. The descriptions of the elements above
include a list of available special values for each element.

Data objects of ElementSensor:

Data name type R default description

sensor_number integer R 1 number of the sensor in the mbs
name string "sensor" name of the sensor for the output �les and for the

plot tool
sensor_type string "ElementSensor" speci�cation of sensor type. Once the sensor is

added to the mbs, you MUST NOT change this
type anymore!

element_number integer 1 number of the element, to which the sensor is
applied

value string "" special value of the element, use �[]� to access vec-
tor or matrix values, e.g. force[1] or stress[2,3]

300 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le ElementSensor.txt

emptyMass3D

{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement(emptyMass3D)

ElemSensor

{

sensor_type= "ElementSensor"

element_number= nElement

value= "Internal.second_order_variable[1]"

}

nElemSensor = AddSensor(ElemSensor)

3.9.3 LoadSensor

The LoadSensor can be applied to loads in order to measure their time dependency. The value
F (t) of a load at time t is computed (see the description of the loads for more details) as:

F (t) = f(t)~F (3.57)

The LoadSensor returns the value of the factor f(t) and not the value F (t). If the LoadSensor
is used for a scalar load (e.g. GCLoad), then f(t) and F (t) are equal. If the LoadSensor is used
for a load vector (e.g. ForceVector3D) then f(t) and F (t) may not be equal.
The LoadSensor can not be shown in the graphical output, because the load does not have a
position by itself and may be applied to several elements or nodes.

Data objects of LoadSensor:

Data name type R default description

sensor_number integer R 1 number of the sensor in the mbs
name string "sensor" name of the sensor for the output �les and for the

plot tool
sensor_type string "LoadSensor" speci�cation of sensor type. Once the sensor is

added to the mbs, you MUST NOT change this
type anymore!

load_number integer 1 number of the load, to which the sensor is applied

Example

see �le LoadSensor.txt

myLoad % define the load

{

load_type = "ForceVector3D"

force_vector = [10,0,0] % magnitude and direction

load_function_type = 1 % time dependent load

3.9. SENSOR 301

MathFunction

{

piecewise_mode= -1 %modus -1=not piecewise

parsed_function= "sin(100*t)" %string representing parsed function

parsed_function_parameter= "t" % parameter of parsed function

}

}

nLoad=AddLoad(myLoad)

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

}

nElement = AddElement(emptyMass3D)

sensor

{

sensor_type= "LoadSensor"

load_number= nLoad %number of the load

}

nSensor = AddSensor(sensor)

3.9.4 MultipleSensor

The MultipleSensor applies mathematical operations to a list of sensors. The sensor can be
used, e.g. to get the maximum or average value of a list of sensors. The following mathematical
operations are possible (use these words for 'operation'):

• average

• minimum

• maximum

• sum

• norm

• norm2

If weights are used, then the value of each sensor is multiplied with the weight before the
mathematical operation is performed. To compute a weighted sum of the �rst 4 sensors, the
entries would be e.g. sensor_numbers = [1,2,3,4] and weights = [0.125,0.125,0.25,0.5].

Data objects of MultipleSensor:

Data name type R default description

sensor_number integer R 1 number of the sensor in the mbs
name string "sensor" name of the sensor for the output �les and for the

plot tool

302 CHAPTER 3. HOTINT REFERENCE MANUAL

sensor_type string "MultipleSensor"
speci�cation of sensor type. Once the sensor is
added to the mbs, you MUST NOT change this
type anymore!

sensor_numbers vector [] number of the sensors, that are used for compu-
tation

weights vector [] weights for e.g. a weighted sum. This vector must
have the same length as sensor_numbers or must
be empty!

operation string "maximum" mathematical operation that is applied to the sen-
sor values, e.g. 'maximum','average',...

3.9.5 SystemSensor

The SystemSensor can be applied to global degrees of freedom, eigenvalues, several iteration
numbers or performance indicators. It returns the value of the speci�ed quantity at time t, and
can not be shown in the graphical output, because a system quantity does in general not have
a position by itself.

Data objects of SystemSensor:

Data name type R default description

sensor_number integer R 1 number of the sensor in the mbs
name string "Systemsensor" name of the sensor for the output �les and for the

plot tool
sensor_type string "SystemSensor" speci�cation of sensor type. Once the sensor is

added to the mbs, you MUST NOT change this
type anymore!

object string "none" Object tracked by systemsensor. Is ei-
ther 'DOF' (global degree of freedom),
'EV' (global eigenvalue), 'jacobians', 'new-
ton_iterations', 'newton_iterations_total',
'discontinuous_iterations', 'rhs_evaluations',
'rhs_evaluations_jacobian', 'volume',
'potential_energy', 'kinetic_energy',
'FE_color_minimum', 'FE_color_maximum',
'NNodes' or 'NElements'

global_index integer 0 Number of the global index. Has to be set if (and
only if) object is 'DOF' or 'EV'.

Example

see �le SystemSensor.txt

myLoad % define the load

{

load_type = "ForceVector3D"

force_vector = [10,0,0] % magnitude and direction

load_function_type = 1 % time dependent load

MathFunction

{

piecewise_mode= -1 %modus -1=not piecewise

3.9. SENSOR 303

parsed_function= "sin(100*t)" %string representing parsed function

parsed_function_parameter= "t" % parameter of parsed function

}

}

nLoad=AddLoad(myLoad)

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

}

nElement = AddElement(emptyMass3D)

Systemsensor

{

name= "Systemsensor Jacobians" %name of the sensor for the output files and for the plot tool

sensor_type= "SystemSensor" %specification of sensor type. Once the sensor is added to the mbs, you MUST NOT change this type anymore!

object= "jacobians" %Object tracked by systemsensor. Is either 'DOF' (global degree of freedom), 'EV' (global eigenvalue), 'jacobians', 'newton_iterations', 'discontinuous_iterations', 'rhs_evaluations', or 'rhs_evaluations_jacobian'

global_index= 0 %Number of the global index. Has to be set if (and only if) object is 'DOF' or 'EV'.

}

AddSensor(Systemsensor)

Systemsensor.object= "rhs_evaluations"

Systemsensor.name= "Systemsensor RHS Evaluations"

AddSensor(Systemsensor)

Systemsensor.object= "DOF"

Systemsensor.global_index= 4

Systemsensor.name= "Systemsensor DOF 4"

AddSensor(Systemsensor)

304 CHAPTER 3. HOTINT REFERENCE MANUAL

3.10 GeomElement

These GeomElements are available:

• GeomMesh3D, 3.10.1

• GeomCylinder3D, 3.10.2

• GeomSphere3D, 3.10.3

• GeomCube3D, 3.10.4

• GeomOrthoCube3D, 3.10.5

GeomElements are used in HOTINT to improve the appearance of your simulation model.
GeomElements do not have any physical meaning in HOTINT and have to be attached to
the ground or some (real) reference element. The GeomElement will move with this reference
element.
GeomElements are also a good tool to de�ne surfaces e.g. used for coupled simulations with
�uid-structure interaction.
In the script language the command AddGeomElement is used to add GeomElements to the
system.

3.10.1 GeomMesh3D

Data objects of GeomMesh3D:

Data name type R default description

geom_element_type string "GeomMesh3D" speci�cation of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement
reference_element_number integer 0 0 ... ground, otherwise insert number of existing

element
Graphics
Graphics.RGB_color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1
Graphics.transparency double -1 transparency [0..1], 0=transparent, 1=solid, set

-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 �ll area, +4 highlight

points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]
Graphics.
smooth_drawing

bool 1 Draw smooth interpolation of surface

Graphics.
draw_edge_angle

double 36 Minimum angle between two triangles that de-
�nes an edge (°)

Geometry
Geometry.
transform_scale

vector [1, 1, 1] Resize GeomElement in X, Y and Z direction [sX,
sY, sZ]

Geometry.
transform_rotation

vector [0, 0, 0] Resize GeomElement in X, Y and Z direction [sX,
sY, sZ]

Geometry.
transform_position

vector [0, 0, 0] Translate GeomElement in X, Y and Z direction
[tX, tY, tZ]

MeshData
MeshData.triangles matrix [] Fill in point numbers of each triangle: p1, p2, p3;

p4, p5, p6 ...

3.10. GEOMELEMENT 305

MeshData.points matrix [] Fill in point coordinates: X1, Y1, Z1; X2, Y2, Z2
...

3.10.2 GeomCylinder3D

Data objects of GeomCylinder3D:

Data name type R default description

geom_element_type string "GeomCylinder3D"
speci�cation of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement
reference_element_number integer 0 0 ... ground, otherwise insert number of existing

element
Graphics
Graphics.RGB_color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1
Graphics.transparency double -1 transparency [0..1], 0=transparent, 1=solid, set

-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 �ll area, +4 highlight

points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]
Graphics.draw_resolution integer 16 Number of quadrangles to draw the cylinder sur-

face
Graphics.split_coloring bool 0 true if one side should be slightly lighter than the

other
Geometry
Geometry.radius double 0 radius of the cylinder
Geometry.radius_hole double 0 inner radius of the cylinder (0 if full cylinder)
Geometry.axis_point1 vector [0, 0, 0] point on axis of rotation
Geometry.axis_point2 vector [0, 0, 0] point on axis of rotation

3.10.3 GeomSphere3D

Data objects of GeomSphere3D:

Data name type R default description

geom_element_type string "GeomSphere3D" speci�cation of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement
reference_element_number integer 0 0 ... ground, otherwise insert number of existing

element
Graphics
Graphics.RGB_color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1
Graphics.transparency double -1 transparency [0..1], 0=transparent, 1=solid, set

-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 �ll area, +4 highlight

points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]

306 CHAPTER 3. HOTINT REFERENCE MANUAL

Graphics.draw_resolution integer 16 Number of quadrangles to draw the sphere
Geometry
Geometry.radius double 0 radius of the sphere
Geometry.center_point vector [0, 0, 0] center point of the sphere

3.10.4 GeomCube3D

Data objects of GeomCube3D:

Data name type R default description

geom_element_type string "GeomCube3D" speci�cation of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement
reference_element_number integer 0 0 ... ground, otherwise insert number of existing

element
Graphics
Graphics.RGB_color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1
Graphics.transparency double -1 transparency [0..1], 0=transparent, 1=solid, set

-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 �ll area, +4 highlight

points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]
Geometry
Geometry.point1 vector [-0.5, -0.5, -0.5]

Bottom point 1 of bottom points: 1-2-4-3
Geometry.point2 vector [0.5, -0.5, -0.5]

Bottom point 2 of bottom points: 1-2-4-3
Geometry.point3 vector [-0.5, 0.5, -0.5]

Bottom point 3 of bottom points: 1-2-4-3
Geometry.point4 vector [0.5, 0.5, -0.5]

Bottom point 4 of bottom points: 1-2-4-3
Geometry.point5 vector [-0.5, -0.5, 0.5]

Bottom point 5 of bottom points: 5-6-8-7
Geometry.point6 vector [0.5, -0.5, 0.5]

Bottom point 6 of bottom points: 5-6-8-7
Geometry.point7 vector [-0.5, 0.5, 0.5]

Bottom point 7 of bottom points: 5-6-8-7
Geometry.point8 vector [0.5, 0.5, 0.5] Bottom point 8 of bottom points: 5-6-8-7

3.10.5 GeomOrthoCube3D

Data objects of GeomOrthoCube3D:

Data name type R default description

geom_element_type string "GeomOrthoCube3D"
speci�cation of GeomElement type. Once the
element is added to the mbs, you MUST NOT
change this type anymore!

name string "GeomElement" name of the GeomElement

3.10. GEOMELEMENT 307

reference_element_number integer 0 0 ... ground, otherwise insert number of existing
element

Graphics
Graphics.RGB_color vector [0.2, 0.2, 0.8] [red, green, blue], range = 0..1
Graphics.transparency double -1 transparency [0..1], 0=transparent, 1=solid, set

-1 if global transparency is used
Graphics.drawstyle integer 3 +1: draw outline, +2 �ll area, +4 highlight

points, +8 colored: outline
Graphics.pointsize double 0.1 size for highlighted points [m]
Graphics.linethickness double 1 thickness of lines [pts]
Geometry
Geometry.center_point vector [0, 0, 0] Center point in global coordinates
Geometry.size vector [1, 1, 1] Dimension of cube in X, Y and Z-direction
Geometry.
rotation_matrix

matrix [1, 0, 0; 0, 1, 0;
0, 0, 1] The rotation matrix de�nes the orientation of the

cube (global_point = matrix . local_point).

308 CHAPTER 3. HOTINT REFERENCE MANUAL

3.11 Set

These Sets are available:

• ElementSet, 3.11.1

• GlobalNodeSet, 3.11.2

• LocalNodeSetA, 3.11.3

• LocalNodeSetB, 3.11.4

• GlobalCoordSet, 3.11.5

• LocalCoordSetA, 3.11.6

• LocalCoordSetB, 3.11.7

In HOTINT sets of di�erent types can be de�ned. They fall in di�erent categories (ElementSets,
PointSet). For some categories there is more then one possibility to de�ne a set of a given type.
The PointSet can be de�ned as, for example list of global positions, list of elements and local
nodes, ...
Sets can be manipulated via the GUI (add, edit, delete). the scipt language also provides the
command AddSet.
The di�erent possibilities to de�ne a set all lead to the same data for further processing. All
PointSets are automatically converted to a list of (element number,local position). Sets can be
used as input parameters for functions to generate constraints, manipulate properties.

3.11.1 ElementSet

de�nes set of elements

Data objects of ElementSet:

Data name type R default description

set_name string "ElementSet" the name of the set
set_type string "ElementSet" type of the set
element_numbers vector [] Elements in this set

3.11.2 GlobalNodeSet

de�nes set of global nodes

Data objects of GlobalNodeSet:

Data name type R default description

set_name string "GlobalNodeSet" the name of the set
set_type string "GlobalNodeSet" type of the set
element_numbers vector R [] Elements in this set
local_positions matrix R [] Local positions on the elements in this set
global_node_numbers vector [] Global Nodes in this set

3.11. SET 309

3.11.3 LocalNodeSetA

de�nes pairs of (element,local nodes)

Data objects of LocalNodeSetA:

Data name type R default description

set_name string "LocalNodeSetA" the name of the set
set_type string "LocalNodeSetA" type of the set
element_numbers vector [] Elements in this set
local_positions matrix R [] Local positions on the elements in this set
local_node_numbers vector [] Local Nodes in this set

3.11.4 LocalNodeSetB

de�nes set of elements and set of local nodes valid for each of these elements - all combinations

Data objects of LocalNodeSetB:

Data name type R default description

set_name string "LocalNodeSetB" the name of the set
set_type string "LocalNodeSetB" type of the set
element_numbers vector R [] Elements in this set
local_positions matrix R [] Local positions on the elements in this set
element_numbers_shortlist vector [] Shortlist of Elements in this set
local_node_numbers_shortlistvector [] Shortlist of Local Nodes in this set

3.11.5 GlobalCoordSet

de�nes set of global positions

Data objects of GlobalCoordSet:

Data name type R default description

set_name string "GlobalCoordSet"
the name of the set

set_type string "GlobalCoordSet"
type of the set

element_numbers vector R [] Elements in this set
local_positions matrix R [] Local positions on the elements in this set
global_positions matrix [] Global positions registered in this set

3.11.6 LocalCoordSetA

de�nes pairs of (element,local positions)

Data objects of LocalCoordSetA:

Data name type R default description

set_name string "LocalCoordSetA"
the name of the set

set_type string "LocalCoordSetA"
type of the set

310 CHAPTER 3. HOTINT REFERENCE MANUAL

element_numbers vector [] Elements in this set
local_positions matrix [] Local positions on the elements in this set

3.11.7 LocalCoordSetB

de�nes set of elements and set of local positions valid for each of these elements - all combina-
tions

Data objects of LocalCoordSetB:

Data name type R default description

set_name string "LocalCoordSetB"
the name of the set

set_type string "LocalCoordSetB"
type of the set

element_numbers vector R [] Elements in this set
local_positions matrix R [] Local positions on the elements in this set
element_numbers_shortlist vector [] Shortlist of Elements in this set
local_positions_shortlist matrix [] Shortlist of Local Positions in this set

3.12. COMMAND 311

3.12 Command

These commands are available:

• AddElement, 3.12.1

• AddGeomElement, 3.12.2

• AssignGeomElementToElement, 3.12.3

• AddConnector, 3.12.4

• AddLoad, 3.12.5

• AddSensor, 3.12.6

• AddMaterial, 3.12.7

• AddBeamProperties, 3.12.8

• AddNode, 3.12.9

• Include, 3.12.10

• Print, 3.12.11

• ReadSTLFile, 3.12.12

• LoadVectorFromFile, 3.12.13

• TransformPoints, 3.12.14

• ComputeInertia, 3.12.15

• Sum, 3.12.16

• Product, 3.12.17

• Transpose, 3.12.18

• CrossProduct, 3.12.19

• for, 3.12.20

• if, 3.12.21

• DoesEntryExist, 3.12.22

• GetByName, 3.12.23

• SetByName, 3.12.24

• Compare, 3.12.25

• StrCat, 3.12.26

• Zeros, 3.12.27

312 CHAPTER 3. HOTINT REFERENCE MANUAL

• AddSet, 3.12.28

• GenerateConstraints, 3.12.29

• AssignMaterial, 3.12.30

• AssignLoad, 3.12.31

• ChangeProperties, 3.12.32

• SetInitialCondition, 3.12.33

3.12.1 AddElement

Adds an element to the system. See the description of the elements above in order to get the
available options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the element.
ATTENTION: the entry element_type must exist!
return values:
The return value of this command is the number of the element in the MBS.

Example

see �le AddElement.txt

emptyMass3D

{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement(emptyMass3D)

3.12.2 AddGeomElement

This command adds an geometric element.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the geometric
element. ATTENTION: the entry geom_element_type must exist!
return values:
The return value of this command is the number of the geometric element in the MBS.

Example

see �le AddGeomElement.txt

myCube

{

name= "myGeomElement"

geom_element_type = "GeomOrthoCube3D"

3.12. COMMAND 313

Geometry.center_point= [0.0, 0.0, 0.0]

Geometry.size= [1.0, 1.0, 1.0]

}

AddGeomElement(myCube)

3.12.3 AssignGeomElementToElement

This command assigns a geom element to an element. The reference point and rotation of the
element are evaluated and the settings of the geom element are modi�ed automatically, such
that the current relative orientation of element and geom element keeps the same. You can
therefore add and align the geom element independently from the element �rst and afterwards
decide to connect the geom element to the element without the need of changing the settings
of the geom element again.
Parameters:
The parameters of this command are

1. 1st parameter: an element number

2. 2nd parameter: a geom element number

-
return values:
returns 0 or an error code

Example

see �le AssignGeomElementToElement.txt

red = [1,0,0] % colour for "relative" (geom) elements

blue = [0,0,1] % colour for "absolute" (geom) elements

geomElement % define and add some geom element

{

name = "absolute geom Element"

geom_element_type = "GeomCylinder3D"

Geometry.radius= 0.1 % radius of the cylinder

Geometry.axis_point1= [1, 1, 0] % point on axis of rotation

Geometry.axis_point2= [1.5, 1, 0] % point on axis of rotation

Graphics.RGB_color=blue

}

nGeomEl_absolute = AddGeomElement(geomElement)

% the geomElement is added to the mbs with global positions

geomElement.Graphics.RGB_color=red

geomElement.name = "relative geom Element"

geomElement.Geometry.axis_point1= [0, 0, 0] % point on axis of rotation

geomElement.Geometry.axis_point2= [0.5, 0, 0] % point on axis of rotation

nGeomEl_relative = AddGeomElement(geomElement)

% the geomElement is added a second time to the mbs with different

% global positions and color

314 CHAPTER 3. HOTINT REFERENCE MANUAL

elementRelative

{

name = "relative element"

element_type= "Rigid3DMinCoord"

Graphics.use_alternative_shape = 1

Graphics.geom_elements = [nGeomEl_relative]

Graphics.position_offset = [1,0,0]

Graphics.RGB_color=red

}

nERel = AddElement(elementRelative)

% the geomElement "relative" is linked to the element "relative" at the time when the

% element is added to the mbs

% the coordinates of the geomElement are now relative to the reference point of the element

% the element "relative" is not visible, only the geomElement is visible

elementAbsolute

{

name = "absolute element"

element_type= "Rigid3DMinCoord"

Graphics.position_offset = [1,1,0]

Graphics.RGB_color=blue

}

nEAbs = AddElement(elementAbsolute)

% the geomElement "absolute" and the element "absolute" are both visible in mbs

% you can check the alignment

AssignGeomElementToElement(nEAbs,nGeomEl_absolute)

% the element "absolute" vanishes but the geomElement "absolute" stays at the same place

% the settings of the geomElement were adjusted automatically

% the element "absolute" is linked with the geomElement "absolute"

3.12.4 AddConnector

Adds a connector to the system. See the description of the connectors above in order to get
the available options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the connector.
ATTENTION: the entry element_type must exist!
return values:
The return value of this command is the number of the connector in the MBS.

Example

see �le AddConnector.txt

RigidBody % define some element

{

element_type = "Rigid3D"

Physics.mass = 1

3.12. COMMAND 315

Graphics.Body_dimensions = [0.1,1,0.1]

}

nElement =AddElement(RigidBody)

myConnector

{

element_type = "PointJoint"

Physics

{

use_penalty_formulation = 0

Lagrange

{

constrained_directions = [1,1,1]

}

}

Position1

{

element_number = nElement

position = [0,-0.5,0]

}

Position2

{

element_number = 0 % = 0 �> global node/coordinate

position = [0,0,0] % position of ground

}

Graphics.draw_size = 0.05

}

nConnector = AddConnector(myConnector)

3.12.5 AddLoad

Adds a load to the system. See the description of the loads above in order to get the available
options. You have to adjust the value 'loads' in the element to assign the load to the element.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the load. AT-
TENTION: the entry load_type must exist!
return values:
The return value of this command is the number of the load in the MBS.

Example

see �le AddLoad.txt

myLoad % define the load

{

load_type = "Gravity"

name = "gravity for all elements"

direction = 2

gravity_constant = 9.81

316 CHAPTER 3. HOTINT REFERENCE MANUAL

}

nLoad=AddLoad(myLoad)

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

loads = [nLoad] % add the load to the element

}

nElement = AddElement(emptyMass3D)

ViewingOptions.Loads.show_loads = 1

ViewingOptions.Loads.arrow_size = 0.2

3.12.6 AddSensor

Adds a sensor to the system. See the description of the sensors above in order to get the avail-
able options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the sensor. AT-
TENTION: the entry sensor_type must exist!
return values:
The return value of this command is the number of the sensor in the MBS.

Example

see �le AddSensor.txt

emptyMass3D % define some element

{

element_type = "Mass3D"

Physics.mass= 1

}

nElement = AddElement(emptyMass3D)

mySensor

{

sensor_type = "FVElementSensor"

name = "Position of the Mass3D in z-direction"

element_number = nElement

field_variable = "position"

component = "z"

}

nSensor = AddSensor(mySensor)

ViewingOptions.Sensors.show_sensors = 1

3.12. COMMAND 317

3.12.7 AddMaterial

Adds a material to the system. See the description of the materials above in order to get the
available options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the material.
ATTENTION: the entry material_type must exist!
return values:
The return value of this command is the number of the material in the MBS.

Example

see �le AddMaterial.txt

Material1

{

material_type= "Material"

Solid

{

density= 7850 % density (rho) for gravitational force

youngs_modulus= 2.1e11 %Youngs modulus

poisson_ratio= 0.3 %Poisson ratio

}

}

AddMaterial(Material1)

3.12.8 AddBeamProperties

Adds a BeamProperty to the system. See the description of the BeamProperties above in order
to get the available options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the BeamProp-
erties. ATTENTION: the entry material_type must exist!
return values:
The return value of this command is the number of the node in the MBS.

Example

see �le AddBeamProperties.txt

beam1

{

material_type = "Beam3DProperties"

cross_section_size = [0.1,0.1]

EA = 2e9

EIy = 2e6

EIz = 2e6

GJkx = 2e6

}

AddBeamProperties(beam1)

318 CHAPTER 3. HOTINT REFERENCE MANUAL

3.12.9 AddNode

Adds a node to the system. See the description of the nodes above in order to get the available
options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the node. AT-
TENTION: the entry node_type must exist!
return values:
The return value of this command is the number of the node in the MBS.

Example

see �le AddNode.txt

node1

{

node_type = "Node3DS1rot1"

}

AddNode(node1)

ViewingOptions.FiniteElements.Nodes.show = 1

ViewingOptions.FiniteElements.Nodes.node_size = 0.05

3.12.10 Include

This command includes a �le.
Parameters:
The parameter of this command is the absolut or relative �lename. If a relative �lename is
used, then the path is relative to the last �le! Be carefull, if you use this command more than
one time in a �le.
return values:
There is no return value de�ned yet.

Example

see �le Include.txt

%Include("D:\HelloWorld.txt") % absolute file path

Include("..\..\examples\double_pendulum.txt") % relative path 1

%Include("AddElement.txt") % relative path 2 (same folder)

3.12.11 Print

Prints a text to the output window
Parameters:
There are three possibilities to use the command. The parameter can either be:

3.12. COMMAND 319

• a text, e.g. Print("Hello world")

• an ElementDataContainer, e.g. Print(my_mass)

• an ElementData, e.g. Print(my_mass.density)

In the case of a text or an ElementData, only the text itself is printed. In the case of an
ElementDataContainer, also the name of the ElementData is printed.
return values:
There is no return value for this command

Example

see �le Print.txt

Print("Hello world! \n")

TestEDC

{

number = 1

text = "this is a text in an edc"

}

Print("\nPrinting the edc:\n")

Print(TestEDC)

Print("\n")

Print("Printing elements of the edc: \n")

Print(TestEDC.text)

Print("\n")

Print(TestEDC.number)

Print("\n")

3.12.12 ReadSTLFile

This command reads a stl-mesh from a �le and stores the data in an ElementDataContainer.
Parameters:
The parameter of this command is the absolut or relative �lename.
return values:
The return value is an ElementDataContainer with 2 entries: triangles and points.

Example

see �le ReadSTLFile.txt

STL = ReadSTLFile("mesh.stl")

myGeomElementMesh3D

{

geom_element_type = "GeomMesh3D"

% MeshData = STL % not possible yet

MeshData.triangles = STL.triangles

320 CHAPTER 3. HOTINT REFERENCE MANUAL

MeshData.points = STL.points

}

nGeom1 = AddGeomElement(myGeomElementMesh3D)

3.12.13 LoadVectorFromFile

This command reads a vector from a �le and returns this vector.
Parameters:
The parameters of this command are

1. The name of the �le as string

2. An integer de�ning in which column (default) or row of the �le the vector is stored

3. (optional) 0.. take the column (default), 1.. take the row

-
return values:
The return value is the vector.

Example

see �le LoadVectorFromFile.txt

%========== basic example ===============

t = LoadVectorFromFile("solution.txt",1) % relative path

% x = LoadVectorFromFile("D:\sol.txt",2) % absolute also possible

x = LoadVectorFromFile("solution.txt",2)

x7 = x[7] % direct access to element of vector

%========== extended example ============

% use loaded vectors to define a MathFunction

Time.element_type= "IOTime"

nTime = AddElement(Time) % time as input for the Mathfunction

Mathf

{

element_type= "IOMathFunction"

Graphics.position= [100, 0]

IOBlock

{

input_element_numbers= [nTime]

input_element_types= [1] % vector with types of connected inputs; 1=IOElement

input_local_number= [1] % i-th number of output of previous IOelement

MathFunction

{

piecewise_mode= 1 % modus for piecewise interpolation: 1=linear

piecewise_points= t % supporting points for piecewise interpolation

piecewise_values= x % values at supporting points

}

}

}

3.12. COMMAND 321

nMF = AddElement(Mathf)

% sensor to measure the output of the mathfunction

sensor.sensor_type= "ElementSensor"

sensor.element_number= nMF

sensor.value= "IOBlock.output[1]"

AddSensor(sensor)

3.12.14 TransformPoints

With this command, the geometry described by the points can be transformed. It is possible
to apply rotation and/or translation and/or scaling. The new point pN is computed according
to the formula pN = trans + rot*p.
Parameters:
The parameters of this command are as follows

1. points: Matrix of the points: Each line represents a point p. The 3 columns are the x-, y-
and z-coordinate

2. trans: Vector of translation, 3 dimensions!

3. rot: rotation matrix (3x3), can be used for scaling as well as rotation

-
return values:
The return value is a Matrix containing the transformed points pN.

Example

see �le TransformPoints.txt

STL = ReadSTLFile("mesh.stl") % load mesh

% add geomElement with original points

myGeomElementMesh3D

{

geom_element_type = "GeomMesh3D"

MeshData.triangles = STL.triangles

MeshData.points = STL.points

Graphics.RGB_color = [0.2,0.2,0.8]

}

nGeom1 = AddGeomElement(myGeomElementMesh3D)

% transform points

vec = [0,50,0] % translation

A = [0.75,0,0;0,0.75,0;0,0,0.75] % scaling

points=TransformPoints(STL.points,vec,A)

% add geomElement with transformed points

myGeomElementMesh3D.MeshData.points = points

myGeomElementMesh3D.Graphics.RGB_color = [0.2,0.8,0.2]

nGeom2 = AddGeomElement(myGeomElementMesh3D)

322 CHAPTER 3. HOTINT REFERENCE MANUAL

3.12.15 ComputeInertia

This command computes the mass, moment of inertia, volume and center of mass based on the
information about the geometry and the material of a body
Parameters:
The parameter of this command is an ElementDataContainer, with the following entries:

• density or material_number (one of these 2 has to be set!)

• One of the following options to de�ne the geometry:

� MeshData.triangles and MeshData.points
both entries are Matrices with 3 columns

� Cube.body_dimensions

-
return values:
The return value is an ElementDataContainer with 4 entries: volume, mass, moment_of_inertia
and center_of_mass

Example

see �le ComputeInertia.txt

% simple example with a cube

my_data

{

density = 7850

Cube.body_dimensions = [1.0,0.1,0.1]

}

CI1 = ComputeInertia(my_data)

Print(CI1)

% example with a mesh

STL = ReadSTLFile("mesh.stl")

Material1

{

material_type= "Material"

Solid.density= 7850

}

n = AddMaterial(Material1)

my_data2

{

material_number = n

MeshData

{

triangles = STL.triangles

points = STL.points

}

}

3.12. COMMAND 323

CI2 = ComputeInertia(my_data2)

Print(CI2)

3.12.16 Sum

This command adds two components of the same type (scalar, vector or matrix).
Parameters:
The parameters of this command are

1. 1st summand, either scalar, vector or matrix

2. 2nd summand, either scalar, vector or matrix

-
return values:
The return value is the sum of the two inputs.

Example

see �le Sum.txt

Scalar = 1.5

Vector2D = [1,2]

Matrix2D = [0,1;2,0]

s = Sum(Scalar,Scalar) % 3

v = Sum(Vector2D,Vector2D) % [2,4]

m = Sum(Matrix2D,Matrix2D) % [0,2;4,0]

3.12.17 Product

This command multiplies two components of the type (scalar, vector or matrix) when the
operation is de�ned.
Parameters:
The parameters of this command are

1. 1st factor, either scalar, vector or matrix

2. 2nd factor, either scalar, vector or matrix

product of two vectors is always computed as scalar product for vector times Matrix the vector
is automatically transposed if required -
return values:
The return value is the product of the two inputs.

324 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le Product2.txt

Scalar = 1.5

Vector2D = [1,2]

Matrix2D = [0,1;2,0]

s1 = Product(Scalar,Scalar) % 2.25

v1 = Product(Scalar,Vector2D) % [1.5,3]

m1 = Product(Scalar,Matrix2D) % [0,1.5;3,0]

s2 = Product(Vector2D,Vector2D)

v2 = Product(Vector2D,Scalar)

m2 = Product(Matrix2D,Scalar) % [0,1.5;3,0]

3.12.18 Transpose

This command transposes a matrix or vector.
Parameters:
The parameters of this command are

1. vector or matrix to be transposed

-
return values:
The return value is a matrix or a vector.

Example

see �le Transpose.txt

Vector2D = [1,2]

a = Transpose(Vector2D) % [1;2]

b = Transpose(a) % [1,2]

3.12.19 CrossProduct

This command computes the cross product of two vectors.
Parameters:
The parameters of this command are

1. 1st vector (2D or 3D)

2. 2nd vector (2D or 3D)

for two 3D vectors the retuen value is also a 3D vector. For two 2D vectors the return value is
a scalar. -
return values:
The return value is the scalar cross product.

3.12. COMMAND 325

Example

see �le CrossProduct.txt

v1 = [1,2,3]

v2 = [2,3,4]

C1 = CrossProduct(v1,v2) % [-1, 2,-1]

C2 = CrossProduct(v2,v1) % [1,-2, 1]

3.12.20 for

This command starts a FOR loop for the subsequent block.
Parameters:
The parameters of this command are

1. 1st de�ne and initialize loop variable ("i=1")

2. 2nd loop condition ("i<5")

3. 3rd loop increment ("i=i+1")

the command must be followed by a container for the loop code -
return values:
The return value is the number of iterations.

Example

see �le LoopCond.txt

%% Test 1

Test1 % general function and tree correctness

{

sum = 0

for(i=1,i<11,i=i+1)

{

sum = sum + i

}

Print("Test1: ")

Print(sum)

Print(" (55)\n")

if(sum==55)

{

Print("TEST 1 PASSED \n")

}

}

%% Test2 % nesting loops

%Test2

%{

for(i=1,i<5,i=i+1)

{

326 CHAPTER 3. HOTINT REFERENCE MANUAL

for(j=1,j<5,j=j+1)

{

Mass3D

{

element_type = "Mass3D"

Physics.mass= 1

Initialization.initial_position= [i,j, 0]

Graphics.RGB_color = [1,1,1]

}

if(i==j)

{

if(i==1)

{

Mass3D.Graphics.RGB_color = [0,0,0]

}

if(i==2)

{

Mass3D.Graphics.RGB_color = [1,0,0]

}

if(i==3)

{

Mass3D.Graphics.RGB_color = [0,1,0]

}

if(i==4)

{

Mass3D.Graphics.RGB_color = [0,0,1]

}

}

elnr = AddElement(Mass3D)

Print("Added Element ")

Print(elnr)

Print(" to MBS\n")

}

}

%}

3.12.21 if

This command evaluates an IF condition for the subsequent block.
Parameters:
The parameters of this command are

1. 1st condition ("i<10")

the command must be followed by a container for the conditional code -
return values:
The return value is the 1 for true and 0 for false.

Example

see �le LoopCond.txt

3.12. COMMAND 327

%% Test 1

Test1 % general function and tree correctness

{

sum = 0

for(i=1,i<11,i=i+1)

{

sum = sum + i

}

Print("Test1: ")

Print(sum)

Print(" (55)\n")

if(sum==55)

{

Print("TEST 1 PASSED \n")

}

}

%% Test2 % nesting loops

%Test2

%{

for(i=1,i<5,i=i+1)

{

for(j=1,j<5,j=j+1)

{

Mass3D

{

element_type = "Mass3D"

Physics.mass= 1

Initialization.initial_position= [i,j, 0]

Graphics.RGB_color = [1,1,1]

}

if(i==j)

{

if(i==1)

{

Mass3D.Graphics.RGB_color = [0,0,0]

}

if(i==2)

{

Mass3D.Graphics.RGB_color = [1,0,0]

}

if(i==3)

{

Mass3D.Graphics.RGB_color = [0,1,0]

}

if(i==4)

{

Mass3D.Graphics.RGB_color = [0,0,1]

}

}

elnr = AddElement(Mass3D)

328 CHAPTER 3. HOTINT REFERENCE MANUAL

Print("Added Element ")

Print(elnr)

Print(" to MBS\n")

}

}

%}

3.12.22 DoesEntryExist

This command checks if the speci�ed entry exists.
Parameters:
The parameters of this command are

1. 1st parameter: string with the name and tree of the entry to check

-
return values:
returns 0 if the entry does not exist, returns 1 if the entry exists, returns 2 if the entry is an EDC

Example

see �le Container.txt

Root.NodeL.NodeL.path = [0 0]

Root.NodeL.NodeR.path = [0 1]

Root.NodeR.path = [1]

Leaf = "Root.NodeL.NodeR"

flag_exist = DoesEntryExist(Leaf)

str = StrCat(Leaf,".path")

p = GetByName(str)

newpath = [1 0]

SetByName("Root.NodeR.NodeL.path",newpath)

null = 0

SetByName("Root.NodeL",null)

3.12.23 GetByName

This command lets you get any (existing) EDC entry by name.
Parameters:
The parameters of this command are

1. 1st parameter: string with the name and tree of the entry to get

-
return values:
returns the entry associated with the string.

3.12. COMMAND 329

Example

see �le Container.txt

Root.NodeL.NodeL.path = [0 0]

Root.NodeL.NodeR.path = [0 1]

Root.NodeR.path = [1]

Leaf = "Root.NodeL.NodeR"

flag_exist = DoesEntryExist(Leaf)

str = StrCat(Leaf,".path")

p = GetByName(str)

newpath = [1 0]

SetByName("Root.NodeR.NodeL.path",newpath)

null = 0

SetByName("Root.NodeL",null)

3.12.24 SetByName

This command lets you set any EDC entry by name, the name contains the absolute treename.
Parameters:
The parameters of this command are

1. 1st parameter: string with the name and tree of the entry to set

2. 2nd parameter: the variable that should be assigned

-
return values:
has no return value.

Example

see �le Container.txt

Root.NodeL.NodeL.path = [0 0]

Root.NodeL.NodeR.path = [0 1]

Root.NodeR.path = [1]

Leaf = "Root.NodeL.NodeR"

flag_exist = DoesEntryExist(Leaf)

str = StrCat(Leaf,".path")

p = GetByName(str)

newpath = [1 0]

SetByName("Root.NodeR.NodeL.path",newpath)

null = 0

SetByName("Root.NodeL",null)

330 CHAPTER 3. HOTINT REFERENCE MANUAL

3.12.25 Compare

This command compares two strings.
Parameters:
The parameters of this command are

1. 1st parameter: string A

2. 2nd parameter: string B

-
return values:
returns 0 if both strings are identical, returns >0 or <0 otherwise indicating which string has
higher value .

Example

see �le strings.txt

str = "string"

strA = "stringA"

strB = "stringB"

str1 = "1"

str2 = "2"

mone = Compare(strA,strB)

pone = Compare(strB,strA)

zero = Compare(str,str)

string1 = StrCat(str,str1)

string2 = StrCat(str,str2)

string12 = StrCat(string1,str2)

3.12.26 StrCat

This command joins two strings together
Parameters:
The parameters of this command are

1. 1st parameter: string A

2. 2nd parameter: string B

You can also use integer or double values instead of the strings. Inline de�nition of strings,
e.g. StrCat(�this is a �,�test�), do not work properly. The spaces are not taken into account
correctly! -
return values:
returns a single string - strA+strB.

3.12. COMMAND 331

Example

see �le strings.txt

str = "string"

strA = "stringA"

strB = "stringB"

str1 = "1"

str2 = "2"

mone = Compare(strA,strB)

pone = Compare(strB,strA)

zero = Compare(str,str)

string1 = StrCat(str,str1)

string2 = StrCat(str,str2)

string12 = StrCat(string1,str2)

3.12.27 Zeros

This command sets a vector or matrix variable to agiven dimension and sets all entries to 0
Parameters:
The parameters of this command are

1. 1st parameter: length of the vector or �rst dimension of the matrix

2. 2nd parameter: second dimenstion of the matrix

-
return values:
returns a vector or matrix variable

Example

see �le lists.txt

mat22 = Zeros(2,2) % matrix

vec3 = Zeros(3,1) % vector

vec3t = Zeros(1,3) % matrix

vec3[1] = 1

mat22[1,1] = 11

mat22[1,2] = 12

squares = Zeros(10,1)

for(i=1,i<11,i=i+1)

{

squares[i] = i*i

}

332 CHAPTER 3. HOTINT REFERENCE MANUAL

3.12.28 AddSet

Adds a set to the system. See the description of the set above in order to get the available
options.
Parameters:
The parameter of this command is an ElementDataContainer with the data of the set. AT-
TENTION: the entry set_type must exist!
return values:
The return value of this command is the number of the set in the MBS.

Example

see �le AddSet.txt

myRigid

{

element_type= "Rigid3D" %specification of element type.

}

AddElement(myRigid)

myRigid.Initialization.initial_position= [1, 0, 0]

AddElement(myRigid)

Set1

{

set_name = "SetOfElements1"

set_type = "ElementSet"

element_numbers = [1,2]

}

nSet1 = AddSet(Set1)

3.12.29 GenerateConstraints

This command generates constraints for the given set
Parameters:
The parameters of this command are

1. 1st parameter: a set of global node numbers (more types will be added)

2. 2nd parameter: parameters for the constraints

enties in the properties EDC are:

• mode - 'ground' or 'pair'(default)

• type - type string for the constraint to use

-
return values:
returns a list of element numbers for the generated constraints

3.12. COMMAND 333

Example

see �le GenerateConstraints.txt

meshparameters

{

mesh_type = "StructuralMesh"

mesh_name = "Mesh1"

}

Mesh1 = GenerateNewMesh(meshparameters)

platematerial

{

material_type = "Material"

Solid.density = 7850

Solid.youngs_modulus = 2.1e11

Solid.poisson_ratio = 0.3

}

mnr_plate = AddMaterial(platematerial)

discr_x = 3

discr_y = 3

plateparameters

{

component_name = "tile_1"

Generation.matnr = mnr_plate

Generation.discretization = [discr_x,discr_y]

Generation.thickness = 0.01

}

Mesh1.GeneratePlate(plateparameters)

MeshAsVariable = Mesh1.AddMeshToMBS(1)

nnrs = [1 (1+discr_x) 1+discr_y*(1+discr_x) (1+discr_y)*(1+discr_x)]

Set1

{

set_name = "CornerNodes"

set_type = "GlobalNodeSet"

global_node_numbers = nnrs

}

nSet1 = AddSet(Set1)

consraintparameter.mode = "ground"

cnrs = GenerateConstraints(nSet1,consraintparameter)

Set2

{

set_name = "theConstraints"

set_type = "ElementSet"

element_numbers = cnrs

}

nSet2 = AddSet(Set2)

replace.Physics.Lagrange.constrained_rotations= [0 0 0]

ChangeProperties(nSet2,replace)

334 CHAPTER 3. HOTINT REFERENCE MANUAL

g_force_factor = 1 %9.81

dir = 3

gravity

{

name= "Acceleration on Panels" %name of the load

load_type= "Gravity" %specification of load type. Once the load is added to the mbs, you MUST NOT change this type anymore!

direction= dir %global direction of the gravity

gravity_constant= g_force_factor %use negative sign if necessary

}

loadnr = AddLoad(gravity)

elspp = discr_x*discr_y

elnrs = Zeros(elspp,1)

for(i=1,i<=elspp,i=i+1)

{

elnrs[i] = i

}

elementset

{

set_name = "Elements of Panels"

set_type = "ElementSet"

element_numbers = elnrs

}

setnr = AddSet(elementset)

errorcode = AssignLoad(setnr,loadnr)

3.12.30 AssignMaterial

This command sets the material number of all elemenets of the element-set to a given number
Parameters:
The parameters of this command are

1. 1st parameter: a set of elements

2. 2nd parameter: material number to be assigned

-
return values:
returns 0 or an error code

Example

see �le AssignMaterial.txt

beam_material

3.12. COMMAND 335

{

material_type = "Beam3DProperties"

cross_section_size = [0.1,0.1]

}

AddBeamProperties(beam_material)

AddBeamProperties(beam_material)

node

{

node_type = "Node3DRxyz"

}

n1 = AddNode(node)

node.Geometry.reference_position = [1,0,0]

n2 = AddNode(node)

beam

{

element_type= "LinearBeam3D"

Physics.material_number = 1

Geometry.node_1 = n1

Geometry.node_2 = n2

}

nBeam = AddElement(beam)

Set1

{

set_name = "ElementSet"

set_type = "ElementSet"

element_numbers = [1]

}

nSet1 = AddSet(Set1)

AssignMaterial(nSet1,2) %% set with number nSet - assign material 2

AssignMaterial("ElementSet",1) %% set with name "ElementSet" - assign material 1

AssignMaterial(1,2) %% first set - assign material 2

3.12.31 AssignLoad

This command adds a load to all elemenets of the element-set
Parameters:
The parameters of this command are

1. 1st parameter: a set of elements

2. 2nd parameter: load number to be added or "ClearAll" to remove all loads

-
return values:
returns 0 or an error code

336 CHAPTER 3. HOTINT REFERENCE MANUAL

Example

see �le AssignLoad.txt

beam_material

{

material_type = "Beam3DProperties"

cross_section_size = [0.1,0.1]

}

AddBeamProperties(beam_material)

AddBeamProperties(beam_material)

node

{

node_type = "Node3DRxyz"

}

n1 = AddNode(node)

node.Geometry.reference_position = [1,0,0]

n2 = AddNode(node)

beam

{

element_type= "LinearBeam3D"

Physics.material_number = 1

Geometry.node_1 = n1

Geometry.node_2 = n2

}

nBeam = AddElement(beam)

Gravity

{

load_type = "Gravity"

name = "Gravity"

direction = 3

gravity_constant = -9.81

}

gravnr = AddLoad(Gravity)

Set1

{

set_name = "ElementSet"

set_type = "ElementSet"

element_numbers = [1]

}

nSet1 = AddSet(Set1)

AssignLoad(nSet1,1) %% set with number nSet - assign load 1

AssignLoad("ElementSet","Gravity") %% set with name "ElementSet" - assign load named "Gravity"

3.12.32 ChangeProperties

This command changes properties of the elements of the set
Parameters:
The parameters of this command are

3.12. COMMAND 337

1. 1st parameter: a set of elements or global nodes

2. 2nd parameter: EDC containing substitute parameters EDC

-
return values:
returns 0 or an error code

Example

see �le ChangeProperties.txt

meshparameters

{

mesh_type = "StructuralMesh"

mesh_name = "Mesh1"

}

Mesh1 = GenerateNewMesh(meshparameters)

platematerial

{

material_type = "Material"

Solid.density = 7850

Solid.youngs_modulus = 2.1e11

Solid.poisson_ratio = 0.3

}

mnr_plate = AddMaterial(platematerial)

plateparameters

{

component_name = "tile_1"

Generation.P1 = [0., 0., 0.]

Generation.P2 = [2., 0., 0.]

Generation.P3 = [0., 2., 0.]

Generation.P4 = [2., 2., 0.]

Generation.matnr = mnr_plate

Generation.discretization = [3,3]

Generation.thickness = 0.1

}

Mesh1.GeneratePlate(plateparameters)

MeshAsVariable = Mesh1.AddMeshToMBS(1)

Set1

{

set_name = "SomeElements"

set_type = "ElementSet"

element_numbers = [1,3,7,9]

}

nSet1 = AddSet(Set1)

invisible.Graphics.show_element = 0

338 CHAPTER 3. HOTINT REFERENCE MANUAL

ChangeProperties(nSet1,invisible)

Set2

{

set_name = "AllNodes"

set_type = "GlobalNodeSet"

global_node_numbers = MeshAsVariable.list_of_nodes

}

nSet2 = AddSet(Set2)

initvel.Initialization.node_initial_values = [0,0,0, 0,0,0, 0,0,0, 0,0,1, 0,0,0, 0,0,0]

ChangeProperties(nSet2,initvel)

3.12.33 SetInitialCondition

This command sets the initial condition of all members of the element or node set.
Parameters:
The parameters of this command are

1. 1st parameter: a set of elements or global nodes

2. 2nd parameter: index of initial value

3. 3rd parameter: expression of the value. Can contain:

• "x" for the global reference position of the node or element

• "y" for the global reference position of the node or element

• "z" for the global reference position of the node or element

-

Example

see �le SetInitialCondition.txt

3.13. OPTIONS 339

3.13 Options

These options are available:

• SolverOptions 3.13.1

• LoggingOptions 3.13.2

• GeneralOptions 3.13.3

• ViewingOptions 3.13.4

• PlotToolOptions 3.13.5

SolverOptions can be saved in the GUI separately of the other HOTINT options.

3.13.1 SolverOptions

Data objects of SolverOptions:

Data name type default description

SolverOptions
SolverOptions.start_time double 0 Starting time of simulation, usually 0; for static and

timeint solver
SolverOptions.end_time double 10 Final simulation time; for static and timeint solver
SolverOptions.
do_static_computation

bool 0 Do only static computation; velocities and acceler-
ation terms are ignored; system may not have kine-
matic degrees of freedom.

SolverOptions.Timeint
SolverOptions.Timeint.
max_step_size

double 0.001 Maxial step size of timeint solver.

SolverOptions.Timeint.
min_step_size

double 0.0001 Minimal step size of timeint solver.

SolverOptions.Timeint.
max_index

integer 2 maximum index which solver the solver needs to
handle

SolverOptions.Timeint.
tableau_name

string "LobattoIIIA" Runge Kutta tableau chosen

SolverOptions.Timeint.
max_stages

integer 2 Number of stages for simulation, max. stages for
variable order.

SolverOptions.Timeint.
min_stages

integer 1 Min. stages for variable order.

SolverOptions.Timeint.
automatic_stepsize_control

bool 0 1|(0) ... Full adaptive stepsize selection of timeint
is (not) active?

SolverOptions.Timeint.
init_step_size

double 0.01 Initial stepsize for timeint.

SolverOptions.Timeint.
absolute_accuracy

double 0.01 Absolute accuracy, for full adaptive timeint.

SolverOptions.Timeint.
relative_accuracy

double 1 Relative accuracy, for full adaptive timeint.

SolverOptions.Timeint.
variable_order

integer 0 1|(0) ... Variable order algorithm is (not) active.

SolverOptions.Timeint.
do_implicit_integration

bool 1 1 .. Use implicit integration, 0..use explicit integra-
tion.

SolverOptions.Timeint.
reset_after_simulation

bool 1 Reset start time and initial values after each simu-
lation.

SolverOptions.Timeint.as-
sume_constant_mass_matrix

bool 0 Experimental version of constant mass matrix
(WARNING: experimental only)

340 CHAPTER 3. HOTINT REFERENCE MANUAL

SolverOptions.Static
SolverOptions.Static.
min_load_inc

double 1e-012 Minimal increment.

SolverOptions.Static.
max_load_inc

double 1 Maximum load increment.

SolverOptions.Static.
init_load_inc

double 1 Initial load increment.

SolverOptions.Static.
load_inc_up

double 2 Increase load increment if success very often.

SolverOptions.Static.
load_inc_down

double 2 Decrease load increment if no success.

SolverOptions.Static.
increase_load_inc_steps

integer 1 If increase_load_inc_steps successfull steps �>
leads to increase of load increment.

SolverOptions.Static.
spring_regularisation_parameter

double 0 Spring-type regularisation parameter to stabilize al-
most kinematic systems during static comp.

SolverOptions.Static.
use_tolerance_relax_factor

integer 0 Enables/disables [1/0] the use of the relaxation fac-
tor on the tolerance goal (discontinuous accuracy)
within static comp. Relaxation depends on load
factor (0..1)

SolverOptions.Static.
max_tolerance_relax_factor

double 10 Uper bound for relaxation factor on the tolerance
goal (discontinuous accuracy)

SolverOptions.Static.
experimental_sparse_jacobian

bool 1 Experimental: optimized (low memory) sparse ja-
cobian matrix

SolverOptions.Newton
SolverOptions.Newton.
relative_accuracy

double 1e-008 Relative accuracy for Newton method

SolverOptions.Newton.
absolute_accuracy

double 100 Absolute accuracy for Newton method

SolverOptions.Newton.
num_di�_parameter

double 1e-007 Numerical di�erentiation parameter

SolverOptions.Newton.
use_central_di�_quotient

bool 1 Use central di�erence quotient for numerical di�er-
entiation (slower).

SolverOptions.Newton.
use_modi�ed_newton

bool 1 Use modi�ed Newton (approximated Jacobian,
much faster).

SolverOptions.Newton.
max_modi�ed_newton_steps

integer 12 Max. modi�ed Newton steps.

SolverOptions.Newton.
max_restart_newton_steps

integer 15 Max. modi�ed Newton steps after restart.

SolverOptions.Newton.
max_full_newton_steps

integer 25 Max. full Newton steps.

SolverOptions.Newton.
use_trust_region

bool 0 0...do not use trust region; 1..use line search algo-
rithm for newton's method, usually not necessary.

SolverOptions.Newton.
trust_region_division

double 0.1 Increment for line search.

SolverOptions.Newton.
low_contractivity_tolerance

double 0.7 Used in modi�ed Newton: if ratio error over last
error violates this bound more than twice, then Ja-
cobian is recomputed.

SolverOptions.Newton.
high_contractivity_tolerance

double 2 Used in modi�ed Newton: if ratio error over last er-
ror violates this bound more than twice, then switch
to classical Newton method.

SolverOptions.Eigensolver
SolverOptions.Eigensolver.
do_eigenmode_computation

bool 0 This overwrites the dostaticcomputation �ag
and activates eigenmode computation on button
START.

SolverOptions.Eigensolver.
reuse_last_eigenvectors

bool 0 Reuse eigenvectors from last computation (faster,
but might be eigenvectors from di�erent system).

3.13. OPTIONS 341

SolverOptions.Eigensolver.
n_eigvals

integer 3 Number of eigenvalues and eigenmodes to be com-
puted for sparse iterative methods.

SolverOptions.Eigensolver.
max_iterations

integer 1000 Maximum number of iterations for iterative eigen-
value solver.

SolverOptions.Eigensolver.
solver_type

integer 0 Solvertype for eigenvalue computations: 0..di-
rect (LAPACK), 1..Arnoldi (Matlab), 2..LOBPCG
(HotInt).

SolverOptions.Eigensolver.
n_zero_modes

integer 0 Number of zero eigenvalues (convergence check).

SolverOptions.Eigensolver.
use_n_zero_modes

bool 0 Check convergence for zero eigenvalues.

SolverOptions.Eigensolver.
use_preconditioning

bool 0 Use preconditioner inv(K + lambda M)

SolverOptions.Eigensolver.
accuracy

double 1e-010 Tolerance for iterative Eigenvalue solver.

SolverOptions.Eigensolver.
preconditioner_lambda

double 1 lambda for preconditioner inv(K + lambda M)

SolverOptions.Eigensolver.
eigenmodes_scaling_factor

double 1 scaling factor for the eigenmodes

SolverOptions.Eigensolver.
eigen-
modes_normalization_mode

integer 0 0 (standard)... max(v) = 1 , 1.. v'v = 1

SolverOptions.Eigensolver.lin-
earize_about_actual_solution

bool 0 Use actual solution as con�guration for lineariza-
tion of K/M

SolverOptions.Eigensolver.
use_gyroscopic_terms

bool 0 Use gyroscopy terms for Eigenvalue computation

SolverOptions.Eigensolver.
eigval_outp_format_�ag

integer 3 print (bitwise sum) 1 .. eigenfreq., 2 .. eigenvec., 4
.. eigenfreq. in Hz (otherwise in rad/s)

SolverOptions.Linalg
SolverOptions.Linalg.
use_sparse_solver

bool 0 1|(0) ... Sparse Jacobian and sparse solver is
(not)activated.

SolverOptions.Linalg.
undetermined_system

bool 0 1|(0) ... Solve system which is overdetermined (least
squares solution) or underdetermined (minimum
norm solution) via LAPACK routine dgels.

SolverOptions.Linalg.
estimated_condition_number

double 1e+012 Used for considering equations to be linearly de-
pendent when solving undetermined systems. Use
together with option undetermined_system.

SolverOptions.Discontinuous
SolverOptions.Discontinuous.
absolute_accuracy

double 0.0001 Accuracy for discontinuous problems (plasticity,
contact, friction, ...).

SolverOptions.Discontinuous.
max_iterations

integer 8 Max. number of iterations for discont. problems.

SolverOptions.Discontinuous.
ignore_max_iterations

bool 0 continue anyway if error goal is not reached after
max discontinuous iterations

SolverOptions.Solution
SolverOptions.Solution.
write_solution

bool 1 (0)|1 ... (Don't) write results to �le.

SolverOptions.Solution.
write_solution_every_x_step

integer 1 Write solution every xx steps.

SolverOptions.Solution.
immediately_write_�le

bool 1 1 ... SLOW: immediately write data to �le with '�
�ush' (no bu�ering), 0=FAST

SolverOptions.Solution.
always_replace_�les

bool 0 1 = always replace �les, 0 = append solution to �les

SolverOptions.Solution.SolutionFile
SolverOptions.Solution.
SolutionFile.
write_solution_�le_header

bool 1 Write solution �le header.

342 CHAPTER 3. HOTINT REFERENCE MANUAL

SolverOptions.Solution.
SolutionFile.
solution_�le_header_comment

string "" Comment written in solution �le header.

SolverOptions.Solution.
SolutionFile.output_�lename

string "sol.txt" Filename for general solution �le (sensor output).

SolverOptions.Solution.ParameterFile
SolverOptions.Solution.
ParameterFile.
parameter_variation_�lename

string "solpar.txt" Filename for parameter variation solution �le.

SolverOptions.Solution.
ParameterFile.
write_�nal_sensor_values

bool 1 Write �nal sensor values into parameter �le.

SolverOptions.Solution.
ParameterFile.
write_cost_function

bool 1 Write cost function of sensors into parameter �le.

SolverOptions.Solution.
ParameterFile.
write_second_order_size

bool 0 Write second order size into parameter �le.

SolverOptions.Solution.
ParameterFile.
write_CPU_time

bool 0 Write CPU-time into parameter �le.

SolverOptions.Solution.
store_solution_state

integer 0 Store �nal solution state in �le.

SolverOptions.Solution.
store_solution_state_name

string "" Filename for �nal solution state storage.

SolverOptions.Solution.
load_solution_state

integer 0 Load initial con�guration from �le.

SolverOptions.Solution.
load_solution_state_name

string "" Filename for initial con�guration.

SolverOptions.Solution.Sensor
SolverOptions.Solution.Sensor.
postproc_compute_eigenvalues

bool 0 Compute eigenvalues in postprocessing.

SolverOptions.Element
SolverOptions.Element.
store_�nite_elements_matrices

bool 1 Store intermediate matrices for �nite elements
(faster, but uses huge memory).

SolverOptions.Element.
element_wise_jacobian

bool 1 Jacobian is computed only for each element, taking
into account known couplings.

SolverOptions.ParameterVariation
SolverOptions.
ParameterVariation.activate

bool 0 Do multiple computations by varying a parameter
in a certain range.

SolverOptions.
ParameterVariation.geometric

bool 0 Vary parameter geometrically (a*x, a*a*x,
a*a*a*x, ...).

SolverOptions.
ParameterVariation.start_value

double 0 Start value for parameter variation.

SolverOptions.
ParameterVariation.end_value

double 0 Final value for parameter variation.

SolverOptions.
ParameterVariation.
arithmetic_step

double 1 Arithmetic step size for parameter variation.

SolverOptions.
ParameterVariation.
geometric_step

double 2 Geometric factor for parameter variation.

SolverOptions.
ParameterVariation.
MBS_EDC_variable_name

string "" Path and variablename in MBS EDC which shall
be varied in parameter variation.

SolverOptions.ParameterVariation.Var2

3.13. OPTIONS 343

SolverOptions.
ParameterVariation.Var2.
activate

bool 0 Do multiple computations by varying a parameter
in a certain range.

SolverOptions.
ParameterVariation.Var2.
geometric

bool 0 Vary parameter geometrically (a*x, a*a*x,
a*a*a*x, ...).

SolverOptions.
ParameterVariation.Var2.
start_value

double 0 Start value for parameter variation.

SolverOptions.
ParameterVariation.Var2.
end_value

double 0 Final value for parameter variation.

SolverOptions.
ParameterVariation.Var2.
arithmetic_step

double 1 Arithmetic step size for parameter variation.

SolverOptions.
ParameterVariation.Var2.
geometric_step

double 2 Geometric factor for parameter variation.

SolverOptions.
ParameterVariation.Var2.
MBS_EDC_variable_name

string "" Path and variablename in MBS EDC which shall
be varied in parameter variation.

SolverOptions.Optimization
SolverOptions.Optimization.
activate

bool 0 Do multiple computations by genetic optimization
of parameter(s) in a certain range.

SolverOptions.Optimization.
run_with_nominal_parameters

bool 0 (0)1 ... (Don't) perform single simulation with
nominal parameters.

SolverOptions.Optimization.
sensors

integer 0 De�ne sensor number(s) here; (the sum of) the end
value(s) of the sensor signal time history is de�ned
as cost function. The use of more than one sensor
is planned.

SolverOptions.Optimization.
restart

bool 0 (0)1...(Don't) continue parameters optimization
based on existing parameter �le. 0..create new pa-
rameter �le, 1..append to existing parameter �le.

SolverOptions.Optimization.
method

string "Genetic" Genetic: optimize using random parameters, best
parameters are further tracked.

SolverOptions.Optimization.Parameters
SolverOptions.Optimization.
Parameters.
number_of_params

integer 0 Number of parameters to optimize.

SolverOptions.Optimization.
Parameters.param_name1

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval1

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval1

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name2

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval2

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval2

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name3

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval3

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval3

double 0 Upper limit of parameter.

344 CHAPTER 3. HOTINT REFERENCE MANUAL

SolverOptions.Optimization.
Parameters.param_name4

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval4

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval4

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name5

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval5

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval5

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name6

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval6

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval6

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name7

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval7

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval7

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name8

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval8

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval8

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name9

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval9

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval9

double 0 Upper limit of parameter.

SolverOptions.Optimization.
Parameters.param_name10

string "" Parameter name.

SolverOptions.Optimization.
Parameters.param_minval10

double 0 Lower limit of parameter.

SolverOptions.Optimization.
Parameters.param_maxval10

double 0 Upper limit of parameter.

SolverOptions.Optimization.Newton
SolverOptions.Optimization.
Newton.
random_starting_values

bool 0 set to 1 if the 'surviving_population_size' best
value(s) of shooting with 'initial_population_size'
di�erent parameter sets should be used as starting
values for Newton's method

SolverOptions.Optimization.
Newton.param_epsilon_abs

double 1e-006 Absolute value D for numerical computation of
dx=K*x + D (==>f'(x) = df/dx).

SolverOptions.Optimization.
Newton.param_epsilon_rel

double 0.0001 Relative value K for numerical computation of
dx=K*x + D (==>f'(x) = df/dx).

SolverOptions.Optimization.
Newton.
max_number_of_iterations

integer 5 Maximal number of newton iterations.

SolverOptions.Optimization.
Newton.absolute_accuracy

double 1e-006 Absolute accuracy.

3.13. OPTIONS 345

SolverOptions.Optimization.
Newton.use_param_limits

integer 0 0...no limit of optimized parameter values, 1...use
param_[min|max]val, 2...assume all parameters
positive, -1...assume all parameters negative.

SolverOptions.Optimization.
Newton.
initial_population_size

integer 1 Shooting: number of initial parameter sets initial
evaluations of the cost function (randomly between
range Parameters.minval and Parameters.maxval)

SolverOptions.Optimization.
Newton.
surviving_population_size

integer 1 Number of starting parameter sets for Newton's
method. This number de�nes how often Newton's
method should be started.

SolverOptions.Optimization.Genetic
SolverOptions.Optimization.
Genetic.initial_population_size

integer 20 Size of initial trial values; also used for random
Newton initialization.

SolverOptions.Optimization.
Genetic.
surviving_population_size

integer 10 Size of values which are further tracked; also used
for random Newton initialization.

SolverOptions.Optimization.
Genetic.number_of_children

integer 10 Number of children of surviving population.

SolverOptions.Optimization.
Genetic.
number_of_generations

integer 15 Number of generations in genetic optimization.

SolverOptions.Optimization.
Genetic.
range_reduction_factor

double 0.5 Reduction of range of possible mutations.

SolverOptions.Optimization.
Genetic.
randomizer_initialization

double 0 Initialization of random function.

SolverOptions.Optimization.
Genetic.
min_allowed_distance_factor

double 0.5 Set to value greater than zero (distance is allowed
radius of (hyper-)sphere in the normed parameter
space (min=0)). Only the best parameter in the
inner of the (hyper-)sphere is furtile.

SolverOptions.Sensitivity
SolverOptions.Sensitivity.
activate

integer 0 (0)1...(Don't) analyze sensitivity of sensor values
with respect to parameters.

SolverOptions.Sensitivity.
method

string "Forward" df/dx: Forward: use forward di�erence, Backward:
use backward di�erence, Central: use central di�er-
ence.

SolverOptions.Sensitivity.
num_di�_parameter_absolute

double 0.0001 Absolute value D for computation of df/dx,
dx=K*x+D.

SolverOptions.Sensitivity.
num_di�_parameter_relative

double 0.0001 Relative factor K for computation of df/dx,
dx=K*x+D.

SolverOptions.Sensitivity.
use_�nal_sensor_values

bool 0 (0)1...(Don't) use �nal sensor values.

SolverOptions.Sensitivity.
use_optimization_parameters

bool 0 1|(0) ... (Don't) get parameters from Optimiza-
tion.Parameters.

SolverOptions.Sensitivity.Parameters
SolverOptions.Sensitivity.
Parameters.
number_of_params

integer 0 Number of parameters.

SolverOptions.Sensitivity.
Parameters.param_name1

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name2

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name3

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name4

string "" Parameter name.

346 CHAPTER 3. HOTINT REFERENCE MANUAL

SolverOptions.Sensitivity.
Parameters.param_name5

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name6

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name7

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name8

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name9

string "" Parameter name.

SolverOptions.Sensitivity.
Parameters.param_name10

string "" Parameter name.

3.13.2 LoggingOptions

Data objects of LoggingOptions:

Data name type default description

Solver
Solver.general_information bool 0 Print general solver information. This includes:

Newtons relative error goal, contractivity, iteration
error, and qualitative information about Jacobian-
updates, as well as iteration error and number of
newton iterations at each post newton step, and
post newton iterations at each time step.

Solver.new-
ton_iteration_jacobi_condition

bool 0 Print condition number of Jacobi matrix in New-
tons method whenever it is updated.

Solver.new-
ton_iteration_jacobi_matrix

bool 0 Print Jacobi matrix of Newtons method whenever
it is updated.

Solver.new-
ton_iteration_residual_vector

bool 0 Print iterated residual vector at each Newton step.

Solver.new-
ton_iteration_solution_vector

bool 0 Print iterated solution vector at each Newton step.

Solver.
post_newton_iteration_data_vector

bool 0 Print data vector at each nonlinear iteration step.

Solver.
step_solution_vector_increment

bool 0 Print solution increment of each step (dynamic sim-
ulation: time step, static simulation: load step).

Solver.step_solution_vector bool 0 Print solution vector of each step (dynamic simula-
tion: time step, static simulation: load step).

EDCParser
EDCParser.
general_information

bool 0 Print general information on parsed objects (e.g.,
while reading modeldata or con�guration �les).

output_level integer 6 0..no output; 1..necessary output (Errors, start/end
simulation); 2..almost necessary output (Warn-
ings); 3..multiple simulation output (parame-
ter variation/optimization); 4..simulation output
(solver); 5..extended output (useful information);
6..complete information; 7..debug level 1; 8..debug
level 2; 9..max output.

output_precision_double integer 8 number of signi�cant digits of a double in output
window and log�le.

output_precision_vector integer 6 number of signi�cant digits of a vector in output
window and log�le.

output_precision_matrix integer 10 number of signi�cant digits of a matrix in output
window and log�le.

3.13. OPTIONS 347

max_error_messages integer 100 Number of displayed error messages.
max_warning_messages integer 100 Number of displayed warning messages.
computation_output_every_x_secdouble 2 Write computation output every x seconds; notice:

if solver logs are printed, then this option does not
take e�ect.

write_mass_and_sti�ness_matrixbool 0 Write the initial mass and sti�ness matrices in Mat-
lab format to �les Mmat.dat and Kmat.dat, in Mat-
lab directory.

default_log_�lename string "hotint.log" Default �lename for hotint log �le.
critical_log_�le_size double 10 critical log �le size, after which a warning is dis-

played; in megabytes.
�le_output_level integer 7 0..no output; 1..necessary output (Errors, start/end

simulation); 2..almost necessary output (Warn-
ings); 3..multiple simulation output (parame-
ter variation/optimization); 4..simulation output
(solver); 5..extended output (useful information);
6..complete information; 7..debug level 1; 8..debug
level 2; 9..max output.

3.13.3 GeneralOptions

Data objects of GeneralOptions:

Data name type default description

Application
Application.
close_application_when_�nished

bool 0 1|(0) ... (Don't) automatically close application af-
ter computation.

Application.
show_hotint_window

bool 1 1|(0) ... 1 .. show HOTINT window (minimized).

Application.
start_computation_automatically

bool 0 immediately start computation on program start

Application.slim_menu integer 0 0..full menu, otherwise several menu items removed.
Application.reload_last_model bool 0 1|(0) ... (Don't) reload the last saved model on

program start
Application.activate_autosave bool 1 1|(0) ... (Don't) save the model automatically be-

fore each change of an object
Paths
Paths.application_path string "d:\cpp3\HotInt_V1\hotintx64\Release\"

Path of the application.
Paths.
hotint_input_data_path

string "" Path of Hotint Input Data �le.

Paths.rela-
tive_paths_relative_to_application

bool 1 1.. relative paths are relative to
hotint.exe(application_path)| 0..relative to hid-�le
(hotint_input_data_path)

Paths.single_image_path string "" Path to store single images (record frame dialog)
Paths.video_image_path string "" Path to store video images series (recoed frame di-

alog)
Paths.plottool_image_path string "" Path to store plottool images (plottool dialog
Paths.sensor_output_path string "..\..\output\"

Relative or absolute path to output directory.
ModelFile
ModelFile.
hotint_input_data_�lename

string "" Name of Hotint Input Data �le.

ModelFile.inter-
nal_model_function_name

string "Generate
Tex Files For
Docu"

Name of internal model function (cpp).

348 CHAPTER 3. HOTINT REFERENCE MANUAL

ModelFile.recent_�le1 string "" Recent �le �lename 1.
ModelFile.recent_�le2 string "" Recent �le �lename 2.
ModelFile.recent_�le3 string "" Recent �le �lename 3.
ModelFile.recent_�le4 string "" Recent �le �lename 4.
ModelFile.recent_�le5 string "" Recent �le �lename 5.
ModelFile.ac-
cept_txt_�le_as_model_�le

bool 1 Enable this function to allow
'hotint_input_data_�lename' with ending '.txt'
as �rst argument (for drag and drop).

Measurement
Measurement.use_degrees bool 1 1|(0) ... (Don't) use degrees instead of radiant in

edit dialogs for bodies and joints.
Measurement.angle_mode integer 0 Rotation input mode: 0=Euler angles, 1=Rotation

X/Y/Z, 2=Euler parameters.
Measurement.units_of_legend integer 0 Units of legend: 0=SI(m,N, etc.); 1=mm, N, etc.
OutputWindow
OutputWindow.
max_text_length

integer 50000 Maximum text length (number of characters) for
output text window, use -1 for no limit

SavedViewingOptions
SavedViewingOptions.
�lename_1

string "savedViewingOptions1.txt"
Filename (including absolute path if not equal to
application_path) of saved viewing options access-
able via button '1' in GUI. (Use Ctrl+Click on this
button to store the viewing options)

SavedViewingOptions.
�lename_2

string "savedViewingOptions2.txt"
Filename (including absolute path if not equal to
application_path) of saved viewing options access-
able via button '2' in GUI. (Use Ctrl+Click on this
button to store the viewing options)

SavedViewingOptions.
�lename_3

string "savedViewingOptions3.txt"
Filename (including absolute path if not equal to
application_path) of saved viewing options access-
able via button '3' in GUI. (Use Ctrl+Click on this
button to store the viewing options)

3.13.4 ViewingOptions

Data objects of ViewingOptions:

Data name type default description

Animation
Animation.
animate_from_beginning

bool 1 1|(0) ... (Don't) start animation from beginning.

Animation.
animate_every_N_frame

integer 1 Animation frames: show every N'th frame at ani-
mation.

Animation.
animate_deformation

bool 0 1|(0) ... (Don't) animate deformation scaling.

Animation.
animate_deformation_once

bool 0 1 ... animate deformation (eigenmodes) only for
one cycle - for recording; 0 ... endless animate

Animation.RecordSingleFrames
Animation.RecordSingleFrames.
record

bool 0 1|(0) ... (Don't) record frames

Animation.RecordSingleFrames.
show_frame_numbers

bool 0 1|(0) ... (Don't) show frame numbers in images);

Animation.RecordSingleFrames.
record_every_x_frame

integer 1 record every x frames

3.13. OPTIONS 349

Animation.RecordSingleFrames.
single_�le_name

string "snapshot" name of the single frame �le without extensions

Animation.RecordSingleFrames.
video_�le_name

string "frame" name of the video frame �le without extensions and
number

Animation.RecordSingleFrames.
default_image_format

integer 0 format of the exported �le (default setting for ra-
diobutton) 0..JPG, 1..PNG, 2..BMP

Animation.RecordSingleFrames.
include_output_window

bool 0 includes the output window to the screenshot

Misc
Misc.redraw_frequency integer 4 Redraw frequency: 0..o�, 1..draw last frame,

2..100sec, 3..20sec, 4..2sec, 5..200ms, 6..50ms,
7..20ms, 8..every 10 frames, 9..every frame.

Misc.global_line_thickness double 1 Global_line_thickness (coord system, etc.) ****.
Misc.global_point_size double 2 Global point size (coord system, grid, etc.) ****.
Misc.show_3D_text_in_front bool 1 1|(0) ... (Don't) show 3D texts in front.
Misc.axes_position integer 0 position of axes: bottom left (0), bottom right (1),

top right (2), top left (3), center (4), no axes (5)
Misc.lock_rotation bool 0 lock rotation of model (for 2D models)
GeomElements
GeomElements.line_thickness double 2 GeomElement (outline) line thickness ****.
Origin
Origin.show bool 1 1|(0) ... (Don't) draw coordinate system in origin

(X0, Y0, Z0).
Origin.size_of_origin double 0.5 Size of origin.
Grid
Grid.show integer 0 Show Grid and Background planes (add up),

1=XY, 2=XZ, 4=YZ.
Grid.pos_x double 0 X-position for interesction point of planes
Grid.pos_y double 0 Y-position for interesction point of planes
Grid.pos_z double 0 Z-position for interesction point of planes
Grid.size_1 double 2 X-size of background plane
Grid.size_2 double 2 Y-size of background plane
Grid.size_3 double 2 Z-size of background plane
Grid.step_1 double 0.1 Grid discretization X-direction
Grid.step_2 double 0.1 Grid discretization Y-direction
Grid.step_3 double 0.1 Grid discretization Z-direction
Grid.Colors
Grid.Colors.
transparency_factor

double 0.1 Transparency factor for the backgruond planes

Grid.Colors.plane1_col_r double 0.85 Red color channel for XY plane
Grid.Colors.plane1_col_g double 0.85 Green color channel for XY plane
Grid.Colors.plane1_col_b double 0.85 Blue color channel for XY plane
Grid.Colors.plane2_col_r double 0.95 Red color channel for XZ plane
Grid.Colors.plane2_col_g double 0.95 Green color channel for XZ plane
Grid.Colors.plane2_col_b double 0.95 Blue color channel for XZ plane
Grid.Colors.plane3_col_r double 0.95 Red color channel for YZ plane
Grid.Colors.plane3_col_g double 0.95 Green color channel for YZ plane
Grid.Colors.plane3_col_b double 0.95 Blue color channel for YZ plane
CuttingPlane
CuttingPlane.1
CuttingPlane.1.activate bool 0 1|(0) ... Use (Don't use) cutting plane.
CuttingPlane.1.normal_X double 1 Cutting plane normal-X.
CuttingPlane.1.normal_Y double 0 Cutting plane normal-Y.
CuttingPlane.1.normal_Z double 0 Cutting plane normal-Z.
CuttingPlane.1.distance double 0 Cutting plane distance.
CuttingPlane.2
CuttingPlane.2.activate bool 0 1|(0) ... Use (Don't use) cutting plane.

350 CHAPTER 3. HOTINT REFERENCE MANUAL

CuttingPlane.2.normal_X double 1 Cutting plane 2 normal-X.
CuttingPlane.2.normal_Y double 0 Cutting plane 2 normal-Y.
CuttingPlane.2.normal_Z double 0 Cutting plane 2 normal-Z.
CuttingPlane.2.distance double 0 Cutting plane 2 distance.
CuttingPlane.cut_bodies bool 1 1|(0) ... (Don't) cut bodies.
CuttingPlane.
cut_bodies_altshapes

bool 1 1|(0) ... (Don't) cut alternative shapes of bodies.

CuttingPlane.cut_ground bool 1 1|(0) ... (Don't) cut background.
CuttingPlane.
cut_whole_scene_by_open_gl

bool 0 1|(0) ... (Don't) use OpenGL for handling cutting
planes.

CuttingPlane.nosurfaceupdate bool 0 use of cutting plane does trigger a change of drawn
surfaceelements

StandardView
StandardView.
angle_rot_axis_1

integer 1 Rotation axis for standard view angle_1 (rotation
axis 1, 2 or 3).

StandardView.
angle_rot_axis_2

integer 2 Rotation axis for standard view angle_2 (rotation
axis 1, 2 or 3).

StandardView.
angle_rot_axis_3

integer 3 Rotation axis for standard view angle_3 (rotation
axis 1, 2 or 3).

StandardView.angle_1 double 0 Standard view angle_1.
StandardView.angle_2 double 0 Standard view angle_2.
StandardView.angle_3 double 0 Standard view angle_3.
Bodies
Bodies.Rigid
Bodies.Rigid.show_outline bool 1 1|(0) ... (Don't) show bodies outline.
Bodies.Rigid.show_faces bool 1 1|(0) ... (Don't) show bodies faces.
Bodies.Rigid.line_thickness double 1 Rigid body (outline) line thickness ****.not used

yet.
Bodies.Rigid.
draw_center_of_gravity

bool 1 1|(0) ... (Don't) draw center of gravity

Bodies.Rigid.draw_resolution integer 12 Draw resolution for Rigid3D.
Bodies.Rigid.COG_sizefactor double 1 Cog_factor for Rigid3D (default: 1).
Bodies.show_element_numbers bool 0 1|(0) ... (Don't) show element body numbers.
Bodies.show_local_frame bool 0 1|(0) ... (Don't) show local body frame.
Bodies.transparent bool 1 1|(0) ... (Don't) draw bodies transparent.
Bodies.local_frame_size double 0 Body local frame size.
Bodies.
deformation_scale_factor

double 1 Deformation scale factor.

Bodies.
scale_rigid_body_displacements

integer 0 1|(0) ... (Don't) use deformation scale factor in an-
imation.

Bodies.show_velocity_vector bool 0 1|(0) ... (Don't) show velocity vector, e.g. for par-
ticles.

Bodies.veloc-
ity_vector_just_for_particles

bool 0 1|(0) ... (Don't) show velocity vector for particles
only.

Bodies.
velocity_vector_scaling_mode

integer 1 1: constant scaling (a), 2: linear scaling (ax), 3:
exponential scaling (a(1-exp(-x/b))).

Bodies.
velocity_vector_scaling_a

double 1 magni�cation factor; e.g., if veloc-
ity_vector_scaling_mode == 2: velocity vector
length = v*velocity_vector_scaling_a.

Bodies.
velocity_vector_scaling_b

double 1 knee factor; e.g., if velocity_vector_scaling_mode
== 3: velocity vector length =
velocity_vector_scaling_a*(1-exp(-
v/velocity_vector_scaling_b)).

Bodies.veloc-
ity_vector_scaling_thickness

double 1 thickness scaling factor; independent from mode.

Bodies.Particles

3.13. OPTIONS 351

Bodies.Particles.
displacement_scale_factor

double 1 factor for scaling the displacements.

Bodies.Particles.
draw_size_factor

double 1 factor for adjusting the size of particles while draw-
ing.

Bodies.Particles.
draw_every_nth

integer 1 draw every n-th particle only.

FiniteElements
FiniteElements.Contour
FiniteElements.Contour.
activate

bool 1 1|(0) ... (Don't) show solution in mesh as contour
plot.

FiniteElements.Contour.
max_stress_active

bool 0 1|(0) ... Max. stress is (not) updated during com-
putation.

FiniteElements.Contour.
max_stress

double 0 Value of max. stress.

FiniteElements.Contour.
min_stress_active

bool 0 1|(0) ... Min. stress is (not) updated during com-
putation.

FiniteElements.Contour.
min_stress

double 0 Value of min. stress.

FiniteElements.Contour.
post_processing_variable_name

string "" Name of the �eld variable, which is currently se-
lected for contour plotting.

FiniteElements.Contour.
variable_range_auto_update

bool 0 1|(0) ... (Don't) update the range of the variable
each time a new scene is plotted.

FiniteElements.Contour.
color_tiling

integer 10 Color tiling (used for FE-color texture).

FiniteElements.Contour.
label_precision

integer 3 number of digits for the numbers in label.

FiniteElements.Contour.
plot_interpolated

bool 0 1|(0) ... (Don't) draw Stress/strain/etc. interpo-
lated at nodes.

FiniteElements.Contour.
grey_mode

bool 0 1|(0) ... (Don't) draw grey colors for �nite elements.

FiniteElements.Contour.
invert_colors

bool 0 1|(0) ... (Don't) invert colors.

FiniteElements.Contour.
nonlinear_color_legend

bool 0 1|(0) ... (Don't) create nonlinear distributed color
legend.

FiniteElements.Contour.
hide_legend

bool 0 1|(0) ... (Don't) hide color legend.

FiniteElements.Contour.
axis_tiling

integer 16 Axis tiling (for element face and outline, beams and
plates).

FiniteElements.Contour.
resolution_axis

integer 8 Axis resolution: contour plot resolution along axis,
beams and plates.

FiniteElements.Contour.
resolution_cross_section

integer 4 Cross-section resolution: contour plot resolution at
cross-section, beams and plates.

FiniteElements.Contour.
resolution_solid_elements

integer 2 Contour plot resolution for solid �nite elements.

FiniteElements.Nodes
FiniteElements.Nodes.show bool 1 1|(0) ... (Don't) draw nodes.
FiniteElements.Nodes.
show_node_numbers

bool 0 1|(0) ... (Don't) show node numbers.

FiniteElements.Nodes.
node_resolution

integer 3 Node resolution for drawing.

FiniteElements.Nodes.
node_size

double 0.001 Draw node size.

FiniteElements.Mesh
FiniteElements.Mesh.show bool 1 1|(0) ... (Don't) show mesh of �nite element.
FiniteElements.Mesh.
draw_�at_elements

bool 0 1|(0) ... (Don't) draw Plate elements �at, only mid-
plane (view from top only).

352 CHAPTER 3. HOTINT REFERENCE MANUAL

FiniteElements.Mesh.
draw_only_surface_elements

bool 1 1|(0) ... (Don't) draw surface elements only.

FiniteElements.Mesh.
element_line_thickness

double 1 Finite element line thickness (outline of 2D and 3D
beam, plate).

FiniteElements.Mesh.
shrinking_factor

double 1 Shrinking factor.

Connectors
Connectors.show_constraints bool 1 1|(0) ... (Don't) show joints/connectors.
Connectors.
show_control_elements

bool 0 1|(0) ... (Don't) draw control elements in 3D Win-
dow..

Connectors.
show_constraint_numbers

bool 0 1|(0) ... (Don't) show constraint number.

Connectors.show_faces bool 1 1|(0) ... (Don't) show constraint faces �> show con-
straint faces.

Connectors.transparent bool 1 1|(0) ... (Don't) draw constraints transparent.
Connectors.draw_outline bool 0 1|(0) ... (Don't) draw constraints outline **** �>

faces is IOption 114.not used yet.
Connectors.line_thickness double 1 Constraint (outline) line thickness ****.not used

yet.
Connectors.Contact
Connectors.Contact.
show_contact_as_circle

bool 1 1|(0) ... (Don't) draw circles at contact of bodies.

Connectors.Contact.
show_contact_points

bool 1 1|(0) ... (Don't) show contact points.

Connectors.
global_draw_scalar_size

double 0.1 global scalar constraint draw size (e.g.radius)

Connectors.
global_draw_resolution

double 16 global constraint draw resolution

Connectors.Autosize bool 0 1|(0) Autogenerate a global scalar constraint draw
size

Loads
Loads.show_loads bool 0 1|(0) ... (Don't) show loads.
Loads.arrow_size double 0.1 Size of arrow for drawing of loads.
Loads.color_red double 0.6 Red-value for drawing of loads (use values between

0. and 1.).
Loads.color_green double 0.6 Green-value for drawing of loads (use values be-

tween 0. and 1.).
Loads.color_blue double 0 Blue-value for drawing of loads (use values between

0. and 1.).
Sensors
Sensors.show_sensors bool 0 1|(0) ... (Don't) show sensors.
Sensors.transparent bool 1 1|(0) ... (Don't) draw sensors transparent.
Sensors.sensor_origin_size double 0.2 Sensor origin size.
OpenGL
OpenGL.enable_lighting bool 1 OpenGL lighting.
OpenGL.smooth_model bool 1 OpenGL SMOOTH ShadeModel smooth.
OpenGL.
immediate_apply_dialog

bool 1 Immediate apply in openGL dialog.

OpenGL.global_culling integer 0 OpenGL cull (means: exclude) 1=front 2=back or
3=both views on faces of polygons; 0=don't cull
any view.

OpenGL.global_transparency double 0.8 Global transparency for SetColor, 1=no translu-
cency, 0=fully transparent.

OpenGL.material_shininess double 60 Material shininess (0..128).
OpenGL.
material_color_intensity

double 1 Material specular color intensity.

OpenGL.Light1

3.13. OPTIONS 353

OpenGL.Light1.enable bool 1 OpenGL enable light1.
OpenGL.Light1.
use_light_position

bool 0 OpenGL light1 mode (0=standard, 1=use light po-
sition).

OpenGL.Light1.ambient double 0.25 Light1 ambient parameter.
OpenGL.Light1.di�use double 0.4 Light1 di�use parameter.
OpenGL.Light1.specular double 0.4 Light1 specular parameter.
OpenGL.Light1.pos_x double 1 Light1 posx.
OpenGL.Light1.pos_y double 1 Light1 posy.
OpenGL.Light1.pos_z double -1 Light1 posz.
OpenGL.Light2
OpenGL.Light2.enable bool 1 OpenGL enable light2.
OpenGL.Light2.
use_light_position

bool 0 OpenGL light2 mode (0=standard, 1=use light po-
sition).

OpenGL.Light2.ambient double 0.25 Light2 ambient parameter.
OpenGL.Light2.di�use double 0.4 Light2 di�use parameter.
OpenGL.Light2.specular double 0 Light2 specular parameter.
OpenGL.Light2.pos_x double 0 Light2 posx.
OpenGL.Light2.pos_y double 3 Light2 posy.
OpenGL.Light2.pos_z double 2 Light2 posz.
ApplicationWindow
ApplicationWindow.rect_left integer 795 left coordinate of application window
ApplicationWindow.rect_top integer 595 top coordinate of application window
ApplicationWindow.rect_width integer 700 width of application window
ApplicationWindow.
rect_height

integer 700 left coordinate of application window

DataManager
DataManager.dialog_open bool 1 open data manager on startup
DataManager.
store_data_to_�les

bool 0 if checked, then solution data (for data manager) is
stored in �les, instead of memory; these �les are lo-
cated in subdirectory solution_data of 'GeneralOp-
tions.Paths.sensor_output_path'.

DataManager.
store_data_every

double 0.01 Store data with data-manager, redraw and create
animations: # -2 == always, -1 == at max step-
size, 0 = never, x.x = at every time x.x.

OutputWindow
OutputWindow.dialog_open bool 1 open output dialog on startup
OutputWindow.stored_width integer 200 stored width of output dialog
OutputWindow.
enable_output_text

bool 1 enable output text in output dialog

View3D
View3D.Center_point
View3D.Center_point.xpos double 0 Centerpoint x-position
View3D.Center_point.ypos double 0 Centerpoint y-position
View3D.Center_o�set
View3D.Center_o�set.xpos double 0 Centero�set x-position
View3D.Center_o�set.ypos double 0 Centero�set y-position
View3D.Center_o�set.zpos double 0 Centero�set z-position
View3D.scene_o�set double 1.5 Scene o�set
View3D.zoom_factor double 2.8 zoom factor of 3D view
View3D.aspect_ratio double 1 current aspect ratio in OpenGL view
View3D.
maximum_scene_coordinates

double 1 stored maximum scene coordinates in OpenGL view

View3D.Mouse
View3D.Mouse.
zoom_factor_mouse_inc

double 0.005 increment of zoom factor per mousemove of 3D view
on mousemove

View3D.Mouse.
translation_mouse_inc

double 0.01 increment of translation per mousemove of 3D view
on mousemove

354 CHAPTER 3. HOTINT REFERENCE MANUAL

View3D.Mouse.
rotation_mouse_inc

double 0.5 increment of rotation per mousemove of 3D view on
mousemove

View3D.Mouse.
perspective_mouse_inc

double 0.01 increment of perspective per mousemove of 3D view
on mousemove

View3D.ModelViewMatrix
View3D.ModelViewMatrix.a11 double 1 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a12 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a13 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a21 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a22 double 1 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a23 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a31 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a32 double 0 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.a33 double -1 rotation parameter in open GL model view matrix
View3D.ModelViewMatrix.tx double 0 translation parameter in open GL model view ma-

trix
View3D.ModelViewMatrix.ty double 0 translation parameter in open GL model view ma-

trix
View3D.ModelViewMatrix.tz double 0 translation parameter in open GL model view ma-

trix

3.13.5 PlotToolOptions

Data objects of PlotToolOptions:

Data name type default description

auto_redraw bool 0 1|(0) .. (Don't) redraw in regular intervals
auto_redraw_interval double 30 redraw every x seconds
auto_rescale bool 1 1|(0) .. (Don't) rescale to fully �t the whole data

when updated
title_size_factor double 1.25 factor to in-/decrease font size of title in respect to

axis font
ticks_size_factor double 0.7 factor to in-/decrease font size of ticks in respect to

axis font
line_thickness_border integer 4 line thickness (border) in logical points
line_thickness_factor double 1 scaling factor for all plotted lines
status_bar_info bool 0 1|(0) .. (Don't) show status bar information.
DataPoints
DataPoints.
�ag_draw_every_nth

bool 0 1|(0) .. (Don't) skip several datapoints in draw rou-
tine)

DataPoints.draw_every_nth integer 100 draw every nth datapoint (0 for every)
DataPoints.
�ag_mark_every_nth

bool 0 1|(0) .. (Don't) skip marking of several datapoints
in draw routine)

DataPoints.mark_every_nth integer 100 mark every nth datapoint (0 for every)
DataPoints.vertical_marker bool 0 1|(0) .. (Don't)mark current time in plot with a

special marker
DataPoints.
draw_only_to_time

bool 0 1|(0) .. (Don't) draw the data only up to the time
from datamanager

DataPoints.use_time_interval bool 0 1|(0) .. (Don't) use t_min and t_max as bound-
aries for drawing in plottool

DataPoints.t_min double 0 Lower boundary for time interval plot. Only used
if use_time_interval = 1.

DataPoints.t_max double 0 Upper boundary for time interval plot. Only used
if use_time_interval = 1.

View

3.13. OPTIONS 355

View.initial_size_horizontal integer 640 initial size of the CView holding the plot
View.initial_size_vertical integer 480 initial size of the CView holding the plot
View.plot_horizontal integer 3000 size in logical units for the plot - �xed aspect ratio
View.plot_vertical integer 2000 size in logical units for the plot - �xed aspect ratio
View.distance_left double 15 surplus in %plotwidth from left border of the plot

to left border of the window
View.distance_top double 15 surplus in %plotheight from upper border of the

plot to the upper border of the window
View.distance_bottom double 20 surplus in %plotheight from lower border of the plot

to the lower border of the window
View.distance_right double 15 surplus in %plotheight from lower border of the plot

to the lower border of the window
Watches
Watches.initial_size_horizontal integer 300 initial size of the CView holding the plot
Watches.initial_size_vertical integer 200 initial size of the CView holding the plot
Axis
Axis.draw_at_origin bool 0 1|(0) .. (Don't) draw axis at origin
Axis.label_major bool 1 1|(0) .. (Don't) write lables for major ticks
Axis.label_minor bool 1 1|(0) .. (Don't) write lables for minor ticks
Axis.overdraw double 3 percentage the axis are longer than the graph
Axis.ticksize double 2 size in percent of major ticks, minor are half size
Axis.minor_ticks_x integer 0 minor ticks for x-axis
Axis.minor_ticks_y integer 0 minor ticks for y-axis
Axis.digits_x_labels integer 3 maximum digits for x-axis labels
Axis.digits_y_labels integer 3 maximum digits for y-axis labels
Grid
Grid.shading double 0.5 Linecolor of grid lines: black if 0, white if 1, and

grey scales in between
Grid.linetype_major_x integer 2 Linetype for major gridlines, x axis (0 = no line, 1

= solid, 2 = dash, 3 = dot)
Grid.linetype_minor_x integer 3 Linetype for minor gridlines, x axis (0 = no line, 1

= solid, 2 = dash, 3 = dot)
Grid.linetype_major_y integer 2 Linetype for major gridlines, y axis (0 = no line, 1

= solid, 2 = dash, 3 = dot)
Grid.linetype_minor_y integer 3 Linetype for minor gridlines, y axis (0 = no line, 1

= solid, 2 = dash, 3 = dot)
Legend
Legend.show bool 0 1|(0) .. (Don't) draw axis at origin
Legend.left double 75 position in % of the legend's left border
Legend.right double 100 position in % of the legend's right border
Legend.top double 100 position in % of the legend's upper border
Legend.bottom double 75 position in % of the legend's lower border
SavePicture
SavePicture.�lename string "snap" �lename for the picture without extensions
SavePicture.size_horizontal integer 1600 size in pixels of the saved BMP
SavePicture.size_vertical integer 1200 size in pixels of the saved BMP
SavePicture.jpg_quality integer 10 quality setting for the JPG encoder
SavePicture.store_jpg bool 1 1|(0) .. (Don't) store image as jpg
SavePicture.store_png bool 0 1|(0) .. (Don't) store image as png
SavePicture.store_bmp bool 0 1|(0) .. (Don't) store image as bmp
SavePicture.store_emf bool 1 1|(0) .. (Don't) store image as emf

356 CHAPTER 3. HOTINT REFERENCE MANUAL

Bibliography

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Prob-
lems in Di�erential-Algebraic Equations. SIAM, Philadelphia, 1996.

[2] E. Eich-Soellner, C. Führer, Numerical Methods in Multibody Dynamics, Teubner, Stuttgart,
1998.

[3] J. Gerstmayr, M. Stangl, High-Order Implicit Runge-Kutta Methods for Discontinuous
Multibody Systems, Proceedings of the APM 2004, St. Petersburg, Russia, submitted.

[4] J. Gerstmayr, J. Schöberl, An Implicit Runge-Kutta Based Solver for 3-Dimensional Multi-
body Systems, PAMM, Volume 3(1), 2003, pp. 154-155.

[5] E. Hairer and G. Wanner, Sti� di�erential equations solved by Radau methods or the
RADAU5-code, available via WWW at ftp://ftp.unige.ch/pub/doc/math/stiff/radau5.f
(1996)

[6] E. Hairer, (Nørsett) and G. Wanner, Solving ordinary di�erential equations I (II), Springer
Verlag Berlin Heidelberg, 1991.

[7] E. Hairer and Ch. Lubich, and M. Roche, The numerical solution of di�erential-algebraic
systems by Runge-Kutta methods, Lecture Notes in Math. 1409, Springer�Verlag, (1989).

[8] A. Shabana Dynamics of Multibody Systems, Third Edition, Cambridge University Press,
2005.

[9] R. R. Craig Jr. and M. C. C. Bampton, Coupling of substructures for dynamic analyses,
AIAA Journal, 6(7), pp. 1313�1319, 1968

[10] J. Gerstmayr and A. Pechstein, A generalized component mode synthesis approach for
multibody system dynamics leading to constant mass and sti�ness matrices, Proceedings of
the ASME 2011 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2011, Washington, DC, USA, 2011.
Paper No. DETC2011/MSNDC-47826, submitted.

[11] Masarati, P, Direct eigenanalysis of constrained system dynamics, Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2009.

[12] R. Ludwig and J. Gerstmayr, Automatic Parameter Identi�cation for Generic Robot Mod-
els, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body
Dynamics, 2011.

[13] H. Bremer, Elastic Multibody Dynamics, Springer, 2008

[14] Denavit, Jacques; Hartenberg, Richard Scheunemann (1955). A kinematic notation for
lower-pair mechanisms based on matrices. Trans ASME J. Appl. Mech 23: 215�221.

357

358 BIBLIOGRAPHY

[15] K. Nachbagauer, P. Gruber, J. Gerstmayr. Structural and Continuum Mechanics Ap-
proaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to static
and linearized dynamic examples. Journal for Computational and Nonlinear Dynamics, 8,
021004, DOI:10.1115/1.4006787, 2012.

[16] K. Nachbagauer. Development of shear and cross section deformable beam �nite elements
applied to large deformation and dynamics problems, Johannes Kepler University Linz,
2012.

[17] K. Nachbagauer, P. Gruber, Yu. Vetyukov, J. Gerstmayr. A spatial thin beam �nite ele-
ment based on the absolute nodal coordinate formulation without singularities. Proceedings
of the ASME 2011 International Design Engineering Technical Conferences, Computers and
Information in Engineering Conference IDETC/CIE 2011, Paper No. DETC2011/MSNDC-
47732, Washington, DC, USA, 2011.

[18] P. Gruber, K. Nachbagauer, Yu. Vetyukov, J. Gerstmayr. A novel director-based
Bernoulli-Euler beam �nite element in absolute nodal coordinate formulation free of ge-
ometric singularities. Mechanical Science, 2013 (to appear).

[19] R. Schneiders, Algorithms for Quadrilateral and Hexahedral Mesh Generation,
www.robertschneiders.de/papers/vki.pdf - Proceedings of the VKI Lecture Series on Com-
putational Fluid Dynamics , 2000.

	General Information
	HOTINT User Manual
	Multibody formulation
	Solution vector
	Main structure of the multibody kernel
	Object library
	The dynamic solver – implicit time integration
	The static solver – incremental loading
	Eigenmode computation
	Parameter Variation, Sensitivity Analysis, Identification and Optimization
	The Element Concept
	Nodes for Direct Connection of Finite Elements
	The Concept of Loads
	Sensors for Measuring
	Geometric Elements for Bodies with Complex Geometry

	Getting started
	Instructions for installing HOTINT on a MS-Windows computer
	First steps
	Command Line Usage
	Configure Notepad++ for HOTINT

	HOTINT Windows User Interface
	Using the graphics window
	Mouse control
	HOTINT main application window
	Specific buttons
	HOTINT Main Menu

	Creating your model in HOTINT
	Introduction
	Model setup via the script language
	Model setup via the graphical user interface

	Options Dialogs
	Introduction
	Hotint Options
	Viewing Options
	OpenGL Drawing Options
	Finite Element Drawing Options
	Body / Joint Options
	Data Manager
	Solver Options

	Data visualization and graphics export
	Visualization Tool
	How to record a video

	HOTINT File and Folder Structure
	Input Files
	Folder Structure

	HOTINT Reference Manual
	Preface
	Examples
	Data objects
	Observable FieldVariables
	Observable special values
	Controllable special values

	Element
	Mass1D
	Rotor1D
	Mass2D
	Rigid2D
	Mass3D
	NodalDiskMass3D
	Rigid3D
	Rigid3DKardan
	Rigid3DMinCoord
	LinearBeam3D
	RotorBeamXAxis
	ANCFBeamShear3DLinear
	ANCFBeamShear3DQuadratic
	ANCFBeam3DTorsion

	Connector
	PointJoint
	CoordinateConstraint
	VelocityCoordinateConstraint
	MultiCoordConstraint
	SlidingPointJoint
	SlidingPrismaticJoint
	Rope3D
	FrictionConstraint
	Contact1D
	GenericBodyJoint
	RevoluteJoint
	PrismaticJoint
	UniversalJoint
	RigidJoint
	CylindricalJoint
	SpringDamperActuator
	RigidLink
	RotatorySpringDamperActuator
	SpringDamperActuator2D
	PointJoint2D

	Control elements
	IODiscreteTransferFunction
	IODigitalFilter
	IORandomSource
	IOLinearTransformation
	IOQuantizer
	IOContinuousTransferFunction
	IOLinearODE
	IOMathFunction
	IOSaturate
	IODeadZone
	IOProduct
	IOTime
	IOPulseGenerator
	IOTimeWindow
	IOStopComputation
	IOElementDataModifier
	IODisplay
	IOMinMax
	IOTCPIPBlock
	IOX2C
	IOLinearTransducer

	Material
	Material

	BeamProperties
	Beam3DProperties

	Node
	Node3DS1rot1
	Node3DS2S3
	Node3DRxyz
	Node3DR123
	Node3DS1S2
	Node3DThermoMechanic
	Node3DThermo

	Load
	GCLoad
	BodyLoad
	ForceVector2D
	ForceVector3D
	MomentVector3D
	Gravity
	SurfacePressure

	Sensor
	FVElementSensor
	ElementSensor
	LoadSensor
	MultipleSensor
	SystemSensor

	GeomElement
	GeomMesh3D
	GeomCylinder3D
	GeomSphere3D
	GeomCube3D
	GeomOrthoCube3D

	Set
	ElementSet
	GlobalNodeSet
	LocalNodeSetA
	LocalNodeSetB
	GlobalCoordSet
	LocalCoordSetA
	LocalCoordSetB

	Command
	AddElement
	AddGeomElement
	AssignGeomElementToElement
	AddConnector
	AddLoad
	AddSensor
	AddMaterial
	AddBeamProperties
	AddNode
	Include
	Print
	ReadSTLFile
	LoadVectorFromFile
	TransformPoints
	ComputeInertia
	Sum
	Product
	Transpose
	CrossProduct
	for
	if
	DoesEntryExist
	GetByName
	SetByName
	Compare
	StrCat
	Zeros
	AddSet
	GenerateConstraints
	AssignMaterial
	AssignLoad
	ChangeProperties
	SetInitialCondition

	Options
	SolverOptions
	LoggingOptions
	GeneralOptions
	ViewingOptions
	PlotToolOptions

	Bibliography

