
1 Definitions and Notation

A graph G = (V,E) is an ordered pair of vertices V = {v1, v2, . . . v|V |} and edges
E. Here, we only consider undirected graphs without loops, i.e., E ⊆ {{v, w} :
v, w ∈ V, v 6= w}. Two vertices v and w are called connected in case there
exists a path between them. A graph is called connected in case any pair of
vertices (v, w) is connected. For a subset V ′ of the vertex set V , we refer to
GV ′ = (V ′, E′), E′ := {{v, w} ∈ E : v, w ∈ V ′} as the V ′-induced subgraph of
G.

As the k-Neighborhood Nk(e) of an edge e = {a, b}, we denote the set of all
(k − 2)-tuples of vertices v ∈ V, a 6= v 6= b that are connected to vertices a or b
in the induced subgraph. We call each element N ∈ Nk(e) a neighbor set of e.
Each of them corresponds to the subgraph G{a,b}∪N of G that contains a and b
as well as k − 2 other vertices.

For a graph G, its adjacency matrix A(G) = Ai,j is an n× n matrix defined
as follows:

Au
ij =

 1 (true) if i > j ∧ {vi, vj} ∈ E
0 (false) if i > j ∧ {vi, vj} /∈ E

undefined otherwise

We denote the set of all adjacency matrices of size k as Ak, |Ak| = 2
n·(n−1)

2 .
The set of the adjacency matrices of connected graphs of size k is denoted as
Acon

k ⊂ Ak. As examples consider the following adjacency matrices:

0 1 2 3
0 - 0 1 1
1 - 0 1
2 - 0
3 -

0

1

2

3

(a) Gi, |Ei| = 3, n(Gi) = 22

0 1 2 3
0 - 1 0 0
1 - 0 1
2 - 1
3 -

0

1

2

3

(b) Gj , |Ej | = 3, n(Gj) =
49

0 1 2 3
0 - 1 1 0
1 - 1 1
2 - 1
3 -

0

1

2

3

(c) Gk, |Ek| = 5, n(Gk) =
59

Figure 1: Examples of connected 4-vertex graphs

Assume a to be the sequence of all defined entries of an adjacency matrix A,
i.e., a = (a1, a2, . . . a k·(k−1)

2
) := (A1,2, A1,3, . . . Ak−1,k) Then, we define the key

of an adjacency matrix A and the corresponding graph G as follows:
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n(A) = n(G) :=

k·(k−1)
2∑

i=1

ai · 2i−1

Then, N con
k ⊂ [0, 2

k·(k−1)
2 ] denotes the set of all keys of connected graphs of

size k.
As a dynamic graph, we consider a graph whose set of edges E changes over

time. We assume that in each time step, a single edge is either added to or
removed from E. This change is denoted as an update: either add(e) or rm(e).
A graph is transformed from Gi to Gi+1 by the application of update ui+1. add exam-

ple of graph
transforma-
tion over
time...

add exam-
ple of graph
transforma-
tion over
time...

2 Motifs

As motifs of size k, also called k-vertex motifs or k-motifs, we consider the
equivalence classes of isomorph connected k-vertex graphs which we denote as
Mk.

Therefore, each connected adjacency matrix A ∈ Acon
k is element of exactly

one equivalence class represented by a motif m ∈Mk. We express this property
as a function that maps the key n(A) of a connected adjacency matrix A to a
motif m ∈Mk, i.e.,

r : N con
k →Mk

This assignment can be computed by enumerating all connected adjacency
matrices and determining their equivalence class by performing an isomorphism
check with all existing motifs.

M-3-1 M-3-2

(a) 3-vertex motifs: M3

M-4-1 M-4-2 M-4-3

M-4-4 M-4-5 M-4-6

(b) 4-vertex motifs: M4

Figure 2: Examples for the set of motifs Mk for different sizes
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3 Implementation

For simplicity, we store the function r as integer pairs (n,m) where n is the key
of a connected adjacency matrix and m the index of the equivalence class, or
motif, it belongs to.

4 Algorithm

Whenever an edge e = {a, b} is added to or removed from a graph Gi, each

subgraph G
{a,b}∪N
i , N ∈ Nk(e) represents a motif that is created, transformed,

or dissolved.
In case ui = rm(e), n(A

{a,b}∪N
i ) is the key of the adjacency matrix for

N ∈ Nk(e) before the removal. After the removal, the key will be n(A
{a,b}∪N
i+1 ) =

n(A
{a,b}∪N
i )− 1, i.e., the same adjacencies except for the missing edge between

the first two vertices. If n(A
{a,b}∪N
i ) − 1 /∈ N con

k , the existing motif will be
dissolved and is transformed otherwise.

Similarly, in case e is added to the graph Gi, n(A
{a,b}∪N
i+1 ) = n(A

{a,b}∪N
i )+1

is the key of the adjacency matrix for the neighbor set N ∈ N(a, b) afterwards.

If n(A
{a,b}∪N
i ) /∈ N con

k , a new motif is created and an existing one transformed
otherwise.

From this, we can define an algorithm that updates the motif frequency F
for the application of an update ui. In addition, all changes to motifs in the
graph can be listed:

5 Complexity of Algorithm

define dmax

here?!?
define dmax

here?!?When processing an update ui+1, i.e., add({a, b}) or rm({a, b}), we must
iterate over all elements of Nk(a, b) with |Nk(a, b)| ≤ dk−2max. Processing each
neighborhood N ∈ Nk(a, b) can be done in O(1) as it only requires the gen-
eration of the key n(A{a,b}∪N ), its lookup in the pre-computed assignment r,
and the adaptation of F . Therefore, the complexity for the execution of the
algorithms is O(dk−2max).

6 Statistics about motifs
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Data: Gi, e = {a, b}, type ∈ {add, rm}, print ∈ {true, false}
begin

for N ∈ Nk(e) do

ni = n(A
{a,b}∪N
i ) ; /* key before */

if type = add then
ni+1 = ni + 1 ; /* key after addition */

else
ni+1 = ni − 1 ; /* key after removal */

if ni ∈ N con
k then

F(r(ni))− = 1 ; /* decr old motif */

if ni+1 ∈ N con
k then

F(r(ni+1))+ = 1 ; /* incr new motif */

if print then
if ni ∈ N con

k ∧ ni+1 ∈ N con
k then

print ‘transformed: a, b, N (r(ni)→ r(ni+1))’
else if ni ∈ N con

k then
print ‘dissolved: a, b, N (r(ni))’

else
print ‘created: a, b, N (r(ni+1))’

end

end
Algorithm 1: StreaMk for maintaining F in dynamic graphs

k 2 3 4 5 6 7

|Ak| 2 8 64 1,024 32,768 2,097,152
|Acon

k | 1 4 38 827 26,704 1,866,256
|Mk| 1 2 6 21 112 853

Table 1: Statistics about adjacency matrices and motifs of different sizes
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