1 Definitions and Notation

A graph G = (V, E) is an ordered pair of vertices V = {v1,v2,... vy} and edges
E. Here, we only consider undirected graphs without loops, i.e., E C {{v,w} :
v,w € Vv # w}. Two vertices v and w are called connected in case there
exists a path between them. A graph is called connected in case any pair of
vertices (v,w) is connected. For a subset V' of the vertex set V, we refer to
GV' = (V',E),E' = {{v,w} € E : v,w € V'} as the V'-induced subgraph of
G.

As the k-Neighborhood Ni(e) of an edge e = {a, b}, we denote the set of all
(k — 2)-tuples of vertices v € V,a # v # b that are connected to vertices a or b
in the induced subgraph. We call each element N € Ng(e) a neighbor set of e.
Each of them corresponds to the subgraph G1¢?YN of G that contains a and b
as well as k — 2 other vertices.

For a graph G, its adjacency matriz A(G) = A, ;j is an n x n matrix defined
as follows:

1 (true) ifi>jA{v,v;}€F
Al = 0 (false) ifi>jA{v,v;} ¢ E
undefined otherwise

We denote the set of all adjacency matrices of size k as Ay, |Ax| = 95
The set of the adjacency matrices of connected graphs of size k is denoted as

Ae™ C Ap. As examples consider the following adjacency matrices:

o 1 2 3 o 1 2 3 |[o 1 2 3
0 - 0 1 1 0 - 1 0 0 0 - 1 1 0
1 - 0 1 1 - 0 1 1 1 1
2 - 0 2 - 1 2 - 1
3 - 3 - 3 -
@ 3 1
®
(a) Gi, |Bs| = 3,n(Gi) =22 (b) Gj,|E;| = 3,n(Gj) = (c) Gy, |Ex| = 5,n(Gy) =
49 59

Figure 1: Examples of connected 4-vertex graphs

Assume a to be the sequence of all defined entries of an adjacency matrix A,
Le., a = (a1,a2,...axk-1 ) = (A12,A13,... Ay_1 %) Then, we define the key
2
of an adjacency matrix A and the corresponding graph G as follows:



n(A) = n(G) = Z a; -2t

k-(k—1)

Then, N C (0,2
size k.

As a dynamic graph, we consider a graph whose set of edges F changes over
time. We assume that in each time step, a single edge is either added to or
removed from E. This change is denoted as an update: either add(e) or rm(e).
A graph is transformed from G; to G;41 by the application of update ;1.

] denotes the set of all keys of connected graphs of

2 Motifs

As motifs of size k, also called k-vertex motifs or k-motifs, we consider the
equivalence classes of isomorph connected k-vertex graphs which we denote as
M.

Therefore, each connected adjacency matrix A € A" is element of exactly
one equivalence class represented by a motif m € M. We express this property
as a function that maps the key n(A) of a connected adjacency matrix A to a
motif m € My, i.e.,

T NEO — My

This assignment can be computed by enumerating all connected adjacency
matrices and determining their equivalence class by performing an isomorphism
check with all existing motifs.

D] [Mse] | ! ! |
(a) 3-vertex motifs: M3y (b) 4-vertex motifs: My

Figure 2: Examples for the set of motifs M, for different sizes



3 Implementation

For simplicity, we store the function r as integer pairs (n, m) where n is the key
of a connected adjacency matrix and m the index of the equivalence class, or
motif, it belongs to.

4 Algorithm

Whenever an edge e = {a,b} is added to or removed from a graph G;, each
subgraph Gi{a’b}UN, N € Ng(e) represents a motif that is created, transformed,
or dissolved.

In case u; = rm(e), n( is the key of the adjacency matrix for

N € Ni(e) before the removal. After the removal, the key will be n(Az{_t’lb}UN) =

n(A;-{a’b}UN) — 1, i.e., the same adjacencies except for the missing edge between
the first two vertices. If n(A;-{a’b}UN) — 1 ¢ Ngo, the existing motif will be
dissolved and is transformed otherwise.

Similarly, in case e is added to the graph G, n(Ai{i’lb}UN) = n(Ai{a’b}UN) +1
is the key of the adjacency matrix for the neighbor set N € N(a,b) afterwards.

Ai{a,b}UN)

If n(A;-{a’b}UN) ¢ N, a new motif is created and an existing one transformed
otherwise.

From this, we can define an algorithm that updates the motif frequency F
for the application of an update w;. In addition, all changes to motifs in the
graph can be listed:

5 Complexity of Algorithm

When processing an update u;11, i.e., add({a,b}) or rm({a,b}), we must
iterate over all elements of N (a,b) with |N(a,b)| < d*-2. Processing each
neighborhood N € Ni(a,b) can be done in O(1) as it only requires the gen-
eration of the key 71(141{‘1’1’}“]\[)7 its lookup in the pre-computed assignment r,
and the adaptation of F. Therefore, the complexity for the execution of the
algorithms is O(d%2).

max

6 Statistics about motifs

define d,,q0
here?!?



Data: G;,e = {a,b}, type € {add, rm},print € {true, false}
begin
for N € Ni(e) do

n; = n(Ai{a’b}UN) ; /* key before
if type = add then

‘ Niy1 =n; +1; /* key after addition
else

‘ Ni41 =n; —1; /* key after removal
if n, € Nf°" then

| Fr(ni))—=1; /* decr old motif
if n;41 € N{°" then

‘ F(r(nip1))+=1; /* incr new motif

if print then
if n; € N Aniyq € N then
| print ‘transformed: a, b, N (r(n;) = r(nit1))’
else if n; € N¢°" then
| print ‘dissolved: a, b, N (r(n;))’
else
| print ‘created: a, b, N (r(n;11))’

end

end
Algorithm 1: StreaM}, for maintaining F in dynamic graphs

k 2 3 4 5 6 7
Al 2 8 64 1,024 32,768 2,097,152
|Agm| 1 4 38 827 26,704 1,866,256
M| 1 2 6 21 112 853

*/

*/

*/

*/

*/

Table 1: Statistics about adjacency matrices and motifs of different sizes



