
1 Counting motifs in dynamic graphs

In this Secion, we describe basic insights regarding motifs in dynamic graphs.
Then, we describe StreaM, a new stream-based algorithm for counting undi-
rected 4-vertex motifs in dynamic graphs, and discuss its runtime complexity.

1.0.1 Basic insights

Whenever an edge e = {a, b} is added to a graph Gt, i.e., update ut+1 = add(e),
two things happen: existing motifs are changed and new motifs are formed.
First, consider an existing motif mi that consists of a, b, and 2 other vertices.
The addition of e causes the motif to change into a different motif mj which
contains one more edge. We denote this operation as (i → j). Its execution
decreases the occurrences of mi and increases the occurrences of mj , i.e.,

(i→ j) : Ft+1(mi) := Ft(mi)− 1, Ft+1(mj) := Ft(mj) + 1

Second, consider vertices c and d that do not form a connected component with
a and b without e’s existence. In case e connects the four vertices, a new motif
mk is formed. We denote this operation as +(k). Its execution increases the
occurrences of mk, i.e.,

+(k) : Ft+1(mk) := Ft(mk) + 1

In case an existing edge is removed, i.e., ut+1 = rm(e), the inverse happens:
some motifs are changed and others are dissolved. We denote these operation
as (i→ j)−1 and +(i)−1.

(i→ j)−1 : Ft+1(mi) := Ft(mi) + 1, Ft+1(mj) := Ft(mj)− 1

+(k)−1 : Ft+1(mk) := Ft(mk)− 1

Adding or removing a vertex with degree 0 has no effect on the motif count.
Each motif mi ∈ M contains at least 3 and at most 6 edges. The addition

and removal of edges leads to transitions between them (cf. Figure 1). For
example, adding the missing edge to m5 changes it to m6 ((5 → 6)) while
removing any edge from m6 changes it to m5 ((5 → 6)−1). Adding edge {b, d}
to the disconnected set of nodes x creates a new motif m1 (+(1)) which is
dissolved by the removal of any of its 3 edges (+(1)−1).

The main idea behind our new stream-based algorithm is to find and apply
these operations to correctly update F for each edge addition and removal.

1.0.2 StreaM

Assume an update (addition or removal) of edge e = {a, b}. To correctly adapt
F , we need to consider all 2-vertex sets {c, d} ∈ CD(a, b) such that a, b, c, and
d form a motif if e exists. Either both vertices are connected to a or b directly
or d is a neighbor of c which is connected to a or b. With

N(a, b) := (n(a) ∪ n(b))\{a, b},

1

4 edges 5 edges 6 edges3 edges

a b

c d
m1

a b

c d
m2

a b

c d
m3

a b

c d
m4

a b

c d
m5

a b

c d
m6

2 edges

a b

c d

x

a b

c d

y

+ + + +

- - - -

Figure 1: Transitions between the motifs mi ∈ M when adding and removing
edges

Table 1: Operation mapping O from signatures S(a, b, c, d) to operations

S 10010
01100

10001
01001
00101
00011

11000
00110

11001
00111

10011
01101

11100
11010
10110
01110

10101
01011

11110

11101
11011
10111
01111

11111

O +(1) +(1) +(2) +(4) (1→ 3) (1→ 4) (2→ 4) (3→ 5) (4→ 5) (5→ 6)

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

we can define CD(a, b) as follows:

CD(a, b) = {{c, d} : (c, d ∈ N(a, b), c 6= d) ∨ (c ∈ N(a, b), d ∈ n(c)\{a, b})}

Besides {a, b}, 5 edges are possible between a, b, c, and d. We denote their
existence as a quintuple S(a, b, c, d) = (ac, ad, bc, bd, cd), called their signature.
At least two distinct edges must exist, the first connecting c and the second
connecting d. Therefore, there are 25 − 2 · 22 = 24 possible signatures.

Each signature corresponds to a specific operation that must be executed to
update F . We define a function O that maps a signature S on the correspond-
ing operation. The complete assignment of signatures to operations is given in
Table 1. In case the edge {a, b} is removed instead of added, the inverse opera-
tion must be executed. As an example consider the signature (10010) which is
isomorph to (01100). The addition of {a, b} creates the motif m1. Its removal
dissolves the motif as a, b, c, and d are no longer connected.

Based on S and O, we can now describe the stream-based algorithm StreaM
for updating the motif frequency in an undirected graph (cf. Algorithm 1). For
an edge {a, b} that is added or removed (described by type), we first determine
the set CD(a, b) of all pairs of vertices connected to a and b. For each pair
{c, d} ∈ CD(a, b), the required operation o = O(S(a, b, c, d)) is determined from

2

the signature of a, b, c, and d. If {a, b} is added, the operation o is executed.
Otherwise, the inverse operation o−1 is executed.

Data: G, {a, b}, type ∈ {add, rm}
begin

for {c, d} ∈ CD(a, b) do
o = O(S(a, b, c, d)) ; /* operation */

if type = add then
execute o ; /* edge is added */

else if type = rm then
execute o−1 ; /* edge is removed */

end

end
Algorithm 1: StreaM for maintaining F in dynamic graphs

1.0.3 Complexity discussion

StreaM iterates over the |CD(a, b)| ≤ 5 · (dmax)2 elements of CD(a, b). For each
element {c, d}, it computes the signature which can be done in 5 · O(1) time,
assuming hash-based datastructures are used for adjacency lists. In addition,
F is incremented or decremented which has time complexity of O(1) as well.
Therefore, processing a single edge addition or removal with StreaM has time
complexity of

O((dmax)2) · (O(1) + O(1)) = O((dmax)2)

3

