
Package ‘phyloscannerR’
April 25, 2023

Title Phylogenetics between and within hosts at once, all along the genome
Version 1.8.2
Author Matthew Hall [aut, cre],

Oliver Ratmann [aut]
Maintainer Matthew Hall <matthew.hall@bdi.ox.ac.uk>
Description An R package for the second half of phyloscanner (tree analysis).
Depends R (>= 4.0.0)
Imports ape, argparse, dplyr, extraDistr, ff, GGally, ggtree, glue, gg-

plot2, grid, gtable, igraph, kimisc, magrittr,network, pegas, phangorn, phy-
tools, prodlim, purrr, RColorBrewer, RBGL, readr, reshape2, scales, sna, tib-
ble, tidyr, treeio (>= 1.6.2), viridis

License GPL
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3

R topics documented:
assign.groups.for.batched.phyloscanner.analysis . 2
classify.pairwise.relationships . 2
cmd.phyloscanner.analyse.trees . 4
cmd.phyloscanner.analyse.trees.valid.args . 7
count.pairwise.relationships . 7
draw.summary.statistics . 8
find.bam.and.references . 9
find.networks . 10
find.pairs.in.networks . 11
gather.summary.statistics . 12
multipage.summary.statistics . 13
phyloscanner.analyse.trees . 14
produce.pairwise.graphs . 22
produce.pairwise.graphs2 . 23
reconstruct.ancestral.sequences . 24
reconstruct.host.ancestral.sequences . 25
select.windows.by.read.and.tip.count . 26
simplified.transmission.summary . 27
transmission.summary . 28
write.annotated.tree . 29

1

2 classify.pairwise.relationships

Index 30

assign.groups.for.batched.phyloscanner.analysis

Group individuals for batched phyloscanner analysis

Description

This function groups individuals for phyloscanner analyses, so that phylogenetic linkage between
every pair of individuals is assessed at least once. Specifically, individuals are grouped into batches
of specified size, and then, all possible pairs of batches are formed. Each of these pairs of batches
defines a group of individuals between whom phylogenetic linkages are assessed in one phyloscan-
ner run. The number of individuals in each group is twice the batch size.

Usage

assign.groups.for.batched.phyloscanner.analysis(x, batch.size = 50)

Arguments

x Character vector of individual identifiers.

batch.size Batch size. Default is 50.

Value

tibble with rows ’IND’ (individual identifiers), ’PTY_RUN’ group for phyloscanner analysis, and
’BATCH’ batch of individuals (not used further, but there should be two batches of individuals in
each phyloscanner analysis).

Author(s)

Oliver Ratmann

Examples

x <- c("15-01402","15-04719","16-00616","16-00801","16-01173","16-01191","16-01302","16-01408","16-01414","16-01465","16-01581","16-01663","16-03259","16-03499","16-03516","16-03644","16-03807")
pty.runs <- phyloscannerR::assign.groups.for.batched.phyloscanner.analysis(x, batch.size=50)

classify.pairwise.relationships

Classify pairwise host relationships in deep sequence phylogenies

Description

Classify pairwise host relationships in deep sequence phylogenies

classify.pairwise.relationships 3

Usage

classify.pairwise.relationships(
ptrees,
close.threshold = 0.025,
distant.threshold = 0.05,
relationship.types = c("proximity.3.way", "any.ancestry", "close.x.contiguous",
"close.and.contiguous", "close.and.adjacent", "close.and.contiguous.and.directed",
"close.and.adjacent.and.directed", "close.and.contiguous.and.ancestry.cat",
"close.and.adjacent.and.ancestry.cat"),

verbose = FALSE
)

Arguments

ptrees A list of class phyloscanner.trees produced by phyloscanner.analyse.trees.
close.threshold

The (potentially normalised) patristic threshold used to determine if two pa-
tients’ subgraphs are "close".

distant.threshold

If present, a second distance threshold determines hosts that are "distant" from
each other, with those lying between close.threshold and dist.threshold
classed as "intermediate". The default is the same as close.threshold, so the
intermediate class does not exist.

relationship.types

Classification types.
• "proximity.3.way"Classify individuals by phylogenetic distance between

subgraphs. Suggested use: to exclude phylogenetic linkage based on dis-
tance alone.

• "close.and.contiguous"Classify individuals by phylogenetic distance and
contiguity of subgraphs. Suggested use: to identify phylogenetically linked
pairs.

• "close.and.adjacent"Classify individuals by phylogenetic distance and ad-
jacency of subgraphs. Suggested use: to identify phylogenetically linked
pairs.

• "close.and.contiguous.and.directed"Classify ancestry among contiguous sub-
graphs. Suggested use: to identify direction of transmission based on con-
tiguous subgraphs.

• "close.and.adjacent.and.directed"Classify ancestry among adjacent subgraphs.
Suggested use: to identify direction of transmission based on adjacent sub-
graphs.

• "close.and.contiguous.and.ancestry.cat"Classify contiguity and ancestry be-
tween individuals. Suggested use: to determine probabilities for transmis-
sion networks.

• "close.and.adjacent.and.ancestry.cat"Classify adjacency and ancestry between
individuals. Suggested use: to determine probabilities for transmission net-
works.

verbose Verbose output

Value

A data frame with viral phylogenetic classifications of pairwise host relationships in each deep
sequence phylogeny

4 cmd.phyloscanner.analyse.trees

Author(s)

Oliver Ratmann, Matthew Hall

Examples

Not run:
require(phyloscannerR)
#
Example on data from Rakai Community Cohort Study
load phyloscanner output from 'phyloscanner.analyse.trees'
#
file <- system.file(file.path('extdata','ptyr192_phsc_analyse_trees_output.RData'),package='phyloscannerR')
load(file) #loads 'phsc', output from 'phyloscanner.analyse.trees'
use distance thresholds found in analysis of Rakai couples
close.threshold <- 0.025
distant.threshold <- 0.05
use relationship types based on adjacency
this also considers linkage etc between individuals who have dual infections, recombinants etc
..and thus may not have *all* their subgraphs adjacent to each other
relationship.types <- c('close.and.adjacent',
'close.and.adjacent.and.directed',
'close.and.adjacent.and.ancestry.cat')
dwin <- classify.pairwise.relationships(phsc,

close.threshold=close.threshold,
distant.threshold=distant.threshold,
relationship.types=relationship.types,
verbose=TRUE)

End(Not run)

cmd.phyloscanner.analyse.trees

Make script file for a phyloscanner analysis on a tree or set of trees

Description

This function makes a UNIX script file to call phyloscanner_analyse_trees.R. Usually, this is
useful to parallelise computations; see the Examples.

Usage

cmd.phyloscanner.analyse.trees(
prog.phyloscanner_analyse_trees,
tree.input,
control,
valid.input.args =
cmd.phyloscanner.analyse.trees.valid.args(prog.phyloscanner_analyse_trees)

)

cmd.phyloscanner.analyse.trees 5

Arguments

prog.phyloscanner_analyse_trees

The full file name of phyloscanner_analyse_trees.R.

tree.input One of the following: the name of a single tree file (Newick or NEXUS format);
the directory containing all input trees; a zip file containing input trees.

control List of input arguments to phyloscanner.analyse.trees.
valid.input.args

Vector of valid input arguments.

Value

A character string of UNIX commands.

Author(s)

Oliver Ratmann

See Also

phyloscanner.analyse.trees, cmd.phyloscanner.analyse.trees.valid.args

Examples

Not run:
require(data.table)
require(tidyverse)
require(phyloscannerR)

specify path to phyloscanner_analyse_trees
prog.phyloscanner_analyse_trees <- '/Users/Oliver/git/phyloscanner/phyloscanner_analyse_trees.R'
specify out directory
outdir <- '/Users/Oliver/sandbox/DeepSeqProjects/RakaiPopSample_phsc_out190512'
specify valid input arguments to phyloscanner_analyse_trees
valid.input.args <- cmd.phyloscanner.analyse.trees.valid.args(prog.phyloscanner_analyse_trees)

set phyloscanner variables
arguments as used for the Rakai population-based analysis
control <- list()
control$allow.mt <- TRUE
control$alignment.file.directory = NULL
control$alignment.file.regex = NULL
control$blacklist.underrepresented = FALSE
control$count.reads.in.parsimony = TRUE
control$distance.threshold <- '0.025 0.05'
control$do.dual.blacklisting = FALSE
control$duplicate.file.directory = NULL
control$duplicate.file.regex = NULL
control$file.name.regex = "^\\D*([0-9]+)_to_([0-9]+)\\D*$"
control$guess.multifurcation.threshold = FALSE
control$max.reads.per.host = 50
control$min.reads.per.host <- 30
control$min.tips.per.host <- 1
control$multifurcation.threshold = 1e-5
control$multinomial= TRUE
control$norm.constants = NULL

6 cmd.phyloscanner.analyse.trees

control$norm.ref.file.name = system.file('HIV_DistanceNormalisationOverGenome.csv',package='phyloscannerR')
control$norm.standardise.gag.pol = TRUE
control$no.progress.bars = TRUE
control$outgroup.name = "REF_CPX_AF460972"
control$output.dir = outdir
control$parsimony.blacklist.k = 20
control$prune.blacklist = FALSE
control$post.hoc.count.blacklisting= TRUE
control$ratio.blacklist.threshold = 0
control$raw.blacklist.threshold = 20
control$recombination.file.directory = NULL
control$recombination.file.regex = NULL
control$relaxed.ancestry = TRUE
control$sankoff.k = 20
control$sankoff.unassigned.switch.threshold = 0
control$seed = 42
control$splits.rule = 's'
control$tip.regex = "^(.*)_fq[0-9]+_read_([0-9]+)_count_([0-9]+)$"
control$tree.file.regex = "^ptyr[0-9]+_InWindow_([0-9]+_to_[0-9]+)\\.tree$"
control$use.ff = FALSE
control$user.blacklist.directory = NULL
control$user.blacklist.file.regex = NULL
control$verbosity = 1

#
Example 1: make bash for one file
#
tree.input <- system.file(file.path('extdata','Rakai_run192_trees.zip'),package='phyloscannerR')
control$output.string <- 'Rakai_run192'
cmd <- cmd.phyloscanner.analyse.trees(prog.phyloscanner_analyse_trees,
tree.input,
control,
valid.input.args=valid.input.args)
cat(cmd)

#
Example 2: make bash for many files
#
download the phyloscanner tree of the Rakai population-based analysis
tmp <- "https://datadryad.org/bitstream/handle/10255/dryad.208473/Dataset_S1.tar?sequence=1"
specify directory to untar public data
tree.dir <- "RakaiPopSample_deepseqtrees"
download and untar
download.file(tmp, destfile="Dataset_S1.tar", method="curl")
untar("Dataset_S1.tar", exdir=tree.dir, extras='-xvf')
list zipped tree files. One zip file contains the viral trees of individuals in one putative transmission network.
df <- tibble(F=list.files(tree.dir))
df <- df %>%
mutate(TYPE:= gsub('ptyr([0-9]+)_(.*)','\\2', F),
RUN:= as.integer(gsub('ptyr([0-9]+)_(.*)','\\1', F))) %>%
mutate(TYPE:= gsub('^([^\\.]+)\\.[a-z]+$','\\1',TYPE)) %>%
spread(TYPE, F) %>%
set_names(~ str_to_upper(.))
make one bash script for processing the viral trees of individuals in one putative transmission network.
cmds <- vector('list',nrow(df))
for(i in seq_len(nrow(df)))
{

cmd.phyloscanner.analyse.trees.valid.args 7

control$output.string <- paste0('ptyr',df$RUN[i])
tree.input <- file.path(indir, df$TREES_NEWICK[i])
cmd <- cmd.phyloscanner.analyse.trees(prog.phyloscanner_analyse_trees,
tree.input,
control,
valid.input.args=valid.input.args)
cmds[[i]] <- cmd
}
output
cat(cmds[[100]])

End(Not run)

cmd.phyloscanner.analyse.trees.valid.args

Obtain valid input arguments for a phyloscanner analysis on a tree or
set of trees

Description

Obtain valid input arguments for a phyloscanner analysis on a tree or set of trees

Usage

cmd.phyloscanner.analyse.trees.valid.args(prog.phyloscanner_analyse_trees)

Arguments

prog.phyloscanner_analyse_trees

The full file name of phyloscanner_analyse_trees.R.

See Also

cmd.phyloscanner.analyse.trees

count.pairwise.relationships

Count pairwise relationships across deep-sequence trees

Description

Count pairwise relationships across deep-sequence trees

Usage

S3 method for class 'pairwise.relationships'
count(dwin, w.slide = NA, verbose = TRUE)

8 draw.summary.statistics

Arguments

dwin A data frame produced by classify.pairwise.relationships.

w.slide Increment between genomic windows. Default: NA.

verbose Verbose output. Default: TRUE.

Value

A data frame with counts of viral phylogenetic classifications between pairs of individuals.

Author(s)

Oliver Ratmann, Matthew Hall

Examples

Not run:
require(phyloscannerR)
#
continue Rakai example,
load phyloscanner output from 'phyloscanner.analyse.trees'
#
file <- system.file(file.path('extdata','ptyr192_phsc_analyse_trees_output.R'),package='phyloscannerR')
load(file) #loads 'phsc', output from 'phyloscanner.analyse.trees'
use distance thresholds found in analysis of Rakai couples
close.threshold <- 0.025
distant.threshold <- 0.05
use relationship types based on adjacency
this also considers linkage etc between individuals who have dual infections, recombinants etc
..and thus may not have *all* their subgraphs adjacent to each other
relationship.types <- c('proximity.3.way',
'close.and.adjacent',
'close.and.adjacent.and.directed',
'close.and.adjacent.and.ancestry.cat')
dwin <- classify.pairwise.relationships(phsc, close.threshold=close.threshold, distant.threshold=distant.threshold,relationship.types=relationship.types, verbose=TRUE)
tip.regex <- "^(.*)_fq[0-9]+_read_([0-9]+)_count_([0-9]+)$"
min.reads <- 30
min.tips <- 1
dwin <- select.windows.by.read.and.tip.count(phsc, dwin, tip.regex, min.reads, min.tips)
count phylogenetic relationships across deep-sequence trees
dc <- count.pairwise.relationships(dwin)
#
end of Rakai example
#

End(Not run)

draw.summary.statistics

Graph summary statistics for a single host

Description

Graph summary statistics for a single host

find.bam.and.references 9

Usage

draw.summary.statistics(phyloscanner.trees, sum.stats, host, verbose = F)

Arguments

phyloscanner.trees

A list of class phyloscanner.trees

sum.stats The output of a call to gather.summary.statistics.

host The host to obtain graphs for.

verbose Verbose output

find.bam.and.references

Find bam and corresponding reference files

Description

This function finds bam and corresponding reference files in a given directory, and groups them by
a common sample ID as well as by an individual ID.

Usage

find.bam.and.references(
data.dir,
regex.person = "^([A-Z0-9]+-[A-Z0-9]+)-.*$",
regex.bam = "^(.*)\\.bam$",
regex.ref = "^(.*)_ref\\.fasta$",
verbose = 1

)

Arguments

data.dir Full path of data directory

regex.person Regular expression with one set of round brackets, which identifies the person
ID in the file name of bams and references

regex.bam Regular expression that identifies bam files, with one set of round brackets that
identifies the sample ID.

regex.ref Regular expression that identifies ref files, with one set of round brackets that
identifies the sample ID.

Value

tibble with rows ’IND’ (individual identifier), ’SAMPLE’ (sample identifier), ’BAM’ (bam file),
and ’REF’ (reference file).

10 find.networks

find.networks Find phylogenetic transmission networks and most likely transmission
chain

Description

This function computes transmission networks from phyloscanner output of a population-based
deep sequence sample. A transmission network is defined as a set of individuals between whom
phylogenetic linkage is not excluded. Every individual in the network has at least one partner in
the network between whom evidence for being phylogenetically unlinked is below a threshold.
These pairs of individuals are identified with a separate function, find.pairs.in.networks. Due
to the nature of the deep-sequence data, there are up to three edges between pairs of individuals,
giving the strength of evidence of spread in each direction (two possibilities) and the strength of
evidence for phylogenetic linkage with the direction remaining unclear. Some of these pairs have
limited evidence for phylogenetic linkage. The networks are best interpreted as partially sampled
transmission chain.

This function also finds the most likely transmission chain among all chains spanning the nodes in a
specified transmission network. The transmission network consists of at most three edges between
a set of individuals (directed edge in either direction, and undirected edge). Chains are defined as
spanning graphs through the set of nodes, without loops and with in-degree equal to one for all
nodes, except the start node. Each directed edge in a chain has a weight, which corresponds to
the phylogenetic evidence of transmission in this direction. It is set to the phyloscanner score for
transmission in this direction plus half the phyloscanner score of the undirected edge, for trans-
mission with direction unclear. The probability of the entire chain is given by the product of the
phyloscanner scores along each edge in the chain.

Usage

find.networks(
dc,
control = list(linked.group = "close.and.adjacent.cat", linked.no =
"not.close.or.nonadjacent", linked.yes = "close.and.adjacent", dir.group =

"close.and.adjacent.and.directed.cat", neff.cut = 3, weight.complex.or.no.ancestry =
0.5),

verbose = TRUE
)

Arguments

dc Summary of phylogenetic relationship counts for each pair, stored as tibble.

control List of control variables:

• linked.group Phyloscanner classification used to identify pairs in net-
works. Default ’close.and.adjacent.cat’.

• linked.no Phyloscanner classification type quantifying that pairs are not
linked. Default ’not.close.or.nonadjacent’.

• linked.yes Phyloscanner classification type quantifying that pairs are linked.
Default ’close.and.adjacent’.

• neff.cut Threshold on the minimum number of deep-sequence phyloge-
nies with sufficient reads from two individuals to make any phylogenetic
inferences. Default: 3.

find.pairs.in.networks 11

• weight.complex.or.no.ancestry Weight given to score complex.or.no.ancestry.
Default: 50

verbose Flag to switch on/off verbose mode. Default: TRUE.

Value

list of two R objects

• transmission.networks is a tibble that describes the edge list of pairs of individuals in a
network, and corresponding phyloscanner scores

• most.likely.transmission.chains is a tibble that describes the edge list of pairs of indi-
viduals in the most likely chain, and corresponding phyloscanner scores

See description.

Author(s)

Oliver Ratmann

See Also

find.pairs.in.networks, plot.network, plot.chain

find.pairs.in.networks

Find pairs of individuals between whom linkage is not excluded phy-
logenetically

Description

This function identifies pairs of individuals between whom linkage is not excluded phylogenetically
in a large number of phyloscanner analyses, and provides detailed information on them.

Usage

find.pairs.in.networks(
dwin,
dc,
control = list(linked.group = "close.and.adjacent.cat", linked.no =
"not.close.or.nonadjacent", linked.yes = "close.and.adjacent", conf.cut = 0.6,
neff.cut = 3),

dmeta = NULL,
verbose = TRUE

)

12 gather.summary.statistics

Arguments

dwin A data.frame describing pairwise relationships between the hosts in each tree;
normally output of classify.pairwise.relationships

dc A data.frame summarising pairwise relationships between the hosts across all
trees; normally output of count.pairwise.relationships

control List of control variables:

• linked.group Phyloscanner classification used to identify pairs in net-
works. Default ’close.and.adjacent.cat’.

• linked.no Phyloscanner classification type quantifying that pairs are not
linked. Default ’not.close.or.nonadjacent’.

• linked.yes Phyloscanner classification type quantifying that pairs are linked.
Default ’close.and.adjacent’.

• conf.cut Threshold on the proportion of deep-sequence phylogenies with
distant/disconnected subgraphs above which pairs are considered phyloge-
netically unlinked. Default: 0.6

• neff.cut Threshold on the minimum number of deep-sequence phyloge-
nies with sufficient reads from two individuals to make any phylogenetic
inferences. Default: 3.

dmeta Optional individual-level meta-data that is to be added to output. Can be NULL.

verbose Flag to switch on/off verbose mode. Default: TRUE.

Value

Three R objects are generated:

• network.pairs is a tibble that describes pairs of individuals between whom linkage is not
excluded phylogenetically.

• relationship.counts is a tibble that summarises the phylogenetic relationship counts for
each pair.

• windows is a tibble that describes the basic phyloscanner statistics (distance, adjacency, paths
between subgraphs) in each deep-sequence phylogeny for each pair.

Author(s)

Oliver Ratmann

See Also

phyloscanner.analyse.trees, cmd.phyloscanner.analyse.trees

gather.summary.statistics

Make a tibble of per-window host statistics

Description

This function collects per-window statistics on hosts

multipage.summary.statistics 13

Usage

S3 method for class 'summary.statistics'
gather(
ptrees,
hosts = all.hosts.from.trees(ptrees),
tip.regex = "^(.*)_read_([0-9]+)_count_([0-9]+)$",
verbose = F

)

Arguments

ptrees A list of class phyloscanner.trees

hosts A list of hosts to record statistics for. If not specified, every identifiable host in
phyloscanner.trees

tip.regex Regular expression identifying tips from the dataset. This expects up to three
capture groups, for host ID, read ID, and read count (in that order). If the latter
two groups are missing then read information will not be used. The default
matches input from the phyloscanner pipeline where the host ID is the BAM file
name.

verbose Produce verbose output

Value

A tibble

multipage.summary.statistics

Draw summary statistics to file for many hosts as a multipage file

Description

Draw summary statistics to file for many hosts as a multipage file

Usage

multipage.summary.statistics(
ptrees,
sum.stats,
hosts = all.hosts.from.trees(phyloscanner.trees),
file.name,
height = 11.6929,
width = 8.26772,
verbose = F

)

14 phyloscanner.analyse.trees

Arguments

ptrees A list of class phyloscanner.trees

sum.stats The output of a call to gather.summary.statistics.

hosts A vector of hosts to obtain graphs for. By default, all hosts detected in ptrees.

file.name Output file name (expected to be a PDF)

height The height of each page of the output file in inches (defaults to A4 size)

width The width of each page of the output file in inches (defaults to A4 size)

verbose Verbose output

phyloscanner.analyse.trees

Perform a phyloscanner analysis on a tree or set of trees

Description

These functions perform a parsimony reconstruction and classification of pairwise host relation-
ships.

Usage

phyloscanner.analyse.trees(
tree.file.directory,
tree.file.regex = "^RAxML_bestTree.InWindow_([0-9]+_to_[0-9]+)\\.tree$",
splits.rule = c("s", "r", "f"),
sankoff.k = 0,
sankoff.unassigned.switch.threshold = 0,
continuation.unassigned.proximity.cost = 1000,
outgroup.name = NULL,
multifurcation.threshold = -1,
guess.multifurcation.threshold = F,
user.blacklist.directory = NULL,
user.blacklist.file.regex = NULL,
duplicate.file.directory = NULL,
duplicate.file.regex = "^DuplicateReadCountsProcessed_InWindow_([0-9]+_to_[0-9]+).csv$",
recombination.file.directory = NULL,
recombination.file.regex = "^RecombinantReads_InWindow_([0-9]+_to_[0-9]+).csv$",
alignment.file.directory = NULL,
alignment.file.regex = NULL,
tip.regex = "^(.*)_read_([0-9]+)_count_([0-9]+)$",
file.name.regex = "^(?:.*\\D)?([0-9]+)_to_([0-9]+).*$",
seed = sample(1:1e+07, 1),
norm.ref.file.name = NULL,
norm.standardise.gag.pol = F,
norm.constants = NULL,
allow.mt = F,
n.mt = Inf,
p.mt = Inf,
zero.length.adjustment = F,

phyloscanner.analyse.trees 15

relaxed.ancestry = F,
parsimony.blacklist.k = 0,
raw.blacklist.threshold = 0,
ratio.blacklist.threshold = 0,
do.dual.blacklisting = F,
max.reads.per.host = Inf,
blacklist.underrepresented = F,
min.reads.per.host = 1,
min.tips.per.host = 1,
use.ff = F,
prune.blacklist = F,
count.reads.in.parsimony = T,
verbosity = 0,
no.progress.bars = F

)

phyloscanner.analyse.tree(
tree.file.name,
splits.rule = c("s", "r", "f"),
sankoff.k = 0,
sankoff.unassigned.switch.threshold = 0,
continuation.unassigned.proximity.cost = 1000,
outgroup.name = NULL,
multifurcation.threshold = -1,
guess.multifurcation.threshold = F,
user.blacklist.file.name = NULL,
duplicate.file.name = NULL,
recombination.file.name = NULL,
alignment.file.name = NULL,
tip.regex = "^(.*)_read_([0-9]+)_count_([0-9]+)$",
file.name.regex = "^(?:.*\\D)?([0-9]+)_to_([0-9]+).*$",
seed = sample(1:1e+07, 1),
norm.ref.file.name = NULL,
norm.standardise.gag.pol = F,
norm.constants = NULL,
allow.mt = F,
n.mt = Inf,
p.mt = Inf,
zero.length.adjustment = F,
relaxed.ancestry = F,
parsimony.blacklist.k = 0,
raw.blacklist.threshold = 0,
ratio.blacklist.threshold = 0,
do.dual.blacklisting = F,
max.reads.per.host = Inf,
blacklist.underrepresented = F,
min.reads.per.host = 1,
min.tips.per.host = 1,
use.ff = F,
prune.blacklist = F,
count.reads.in.parsimony = T,
verbosity = 0,

16 phyloscanner.analyse.trees

no.progress.bars = F
)

phyloscanner.generate.blacklist(
tree.file.directory,
tree.file.regex = "^RAxML_bestTree.InWindow_([0-9]+_to_[0-9]+)\\.tree$",
outgroup.name = NULL,
multifurcation.threshold = -1,
guess.multifurcation.threshold = F,
user.blacklist.directory = NULL,
user.blacklist.file.regex = NULL,
duplicate.file.directory = NULL,
duplicate.file.regex = "^DuplicateReadCountsProcessed_InWindow_([0-9]+_to_[0-9]+).csv$",
alignment.file.directory = NULL,
alignment.file.regex = NULL,
tip.regex = "^(.*)_read_([0-9]+)_count_([0-9]+)$",
file.name.regex = "^.*([0-9]+)_to_([0-9]+).*$",
seed = sample(1:1e+07, 1),
norm.ref.file.name = NULL,
norm.standardise.gag.pol = F,
norm.constants = NULL,
parsimony.blacklist.k = 0,
raw.blacklist.threshold = 0,
ratio.blacklist.threshold = 0,
do.dual.blacklisting = F,
max.reads.per.host = Inf,
blacklist.underrepresented = F,
min.reads.per.host = 1,
min.tips.per.host = 1,
count.reads.in.parsimony = F,
verbosity = 0

)

Arguments

tree.file.directory

The directory containing all input trees.
tree.file.regex

A regular expression identifying every file in tree.file.directory that is to
be included in the analysis. The first capture group, if present, gives a unique
string identifying each tree. If this is NULL then phyloscanner will attempt to
open every file in tree.file.directory.

splits.rule The rules by which the sets of hosts are split into groups in order to ensure
that all groups can be members of connected subgraphs without causing con-
flicts. Options: s=Sankoff with optional within-host diversity penalty (slow, rig-
orous, recommended), r=Romero-Severson (quick, less rigorous with >2 hosts),
f=Sankoff with continuation costs (experimental).

sankoff.k For splits.rule = s or f only. The k parameter in the Sankoff reconstruction,
representing the within-host diversity penalty.

sankoff.unassigned.switch.threshold

For splits.rule = s only. Threshold at which a lineage reconstructed as in-
fecting a host will transition to the unassigned state, if it would be equally par-

phyloscanner.analyse.trees 17

simonious to remain in that host.
continuation.unassigned.proximity.cost

For splits.rule = f only. The branch length at which an node is reconstructed
as unassigned if all its neighbouring nodes are a greater distance away. The de-
fault is 1000, intended to be effectively infinite, such a node will never normally
receive the unassigned state.

outgroup.name The name of the tip in the phylogeny/phylogenies to be used as outgroup (if
unspecified, trees will be assumed to be already rooted). This should be suffi-
ciently distant to any sequence obtained from a host that it can be assumed that
the MRCA of the entire tree was not a lineage present in any sampled individual.

multifurcation.threshold

If specified, branches shorter than this in the input tree will be collapsed to
form multifurcating internal nodes. This is recommended; many phylogenet-
ics packages output binary trees with short or zero-length branches indicating
multifurcations.

guess.multifurcation.threshold

Whether to guess the multifurcation threshold from the branch lengths of the
trees and the width of the genomic window (if that information is available). It
is recommended that trees are examined by eye to check that they do appear to
have multifurcations if using this option.

user.blacklist.directory

An optional path for a folder containing pre-existing blacklist files. These tips
are specified by the user to be excluded from the analysis.

user.blacklist.file.regex

A regular expression identifying every file in user.blacklist.directory that
contains a blacklist. If a capture group is specified then its contents will uniquely
identify the tree it belongs to, which must matches the IDs found by tree.file.regex.
If these IDs cannot be identified then matching will be attempted using genome
window coordinates.

duplicate.file.directory

An optional path for a folder containing information on duplicate reads, to be
used for duplicate blacklisting. Normally this is produced by phyloscanner_make_trees.py.

duplicate.file.regex

A regular expression identifying every file in duplicate.file.directory that
contains a duplicates file. If a capture group is specified then its contents will
uniquely identify the tree it belongs to, which must matches the IDs found by
tree.file.regex. If these IDs cannot be identified then matching will be at-
tempted using genome window coordinates.

recombination.file.directory

An optional path for a folder containing results of the phyloscanner_make_trees.py
recombination metric analysis.

recombination.file.regex

A regular expression identifying every file in recombination.file.directory
that contains a recombination file. If a capture group is specified then its contents
will uniquely identify the tree it belongs to, which must matches the IDs found
by tree.file.regex. If these IDs cannot be identified then matching will be
attempted using genome window coordinates.

alignment.file.regex

A regular expression identifying every file in alignment.directory that is an
alignment. If a capture group is specified then its contents will uniquely identify
the tree it belongs to, which must matches the IDs found by tree.file.regex.

18 phyloscanner.analyse.trees

If these IDs cannot be identified then matching will be attempted using genome
window coordinates.

tip.regex Regular expression identifying tips from the dataset. This expects up to three
capture groups, for host ID, read ID, and read count (in that order). If the latter
two groups are missing then read information will not be used. The default
matches input from the phyloscanner pipeline where the host ID is the BAM file
name.

file.name.regex

Regular expression identifying window coordinates. Two capture groups: start
and end; if the latter is missing then the first group is a single numerical identifier
for the window. The default matches input from the phyloscanner pipeline.

seed Random number seed; used by the downsampling process, and also ties in some
parsimony reconstructions can be broken randomly.

norm.ref.file.name

Name of a file giving a normalisation constant for every genome position. Can-
not be used simultaneously with norm.constants. If neither is given then no
normalisation will be performed.

norm.standardise.gag.pol

Use only if norm.ref.file.name is given. An HIV-specific option: if true, the
normalising constants are standardised so that the average on gag+pol equals 1.
Otherwise they are standardised so the average on the whole genome equals 1.

norm.constants Either the path of a CSV file listing the file name for each tree (column 1) and
the respective normalisation constant (column 2) or a single numerical normali-
sation constant to be applied to every tree. Cannot be used simultaneously with
norm.ref.file.name. If neither is given then no normalisation will be per-
formed.

allow.mt If FALSE (the default0), directionality is only inferred between pairs of hosts
where a single clade from one host is nested in one from the other; this is more
conservative.

relaxed.ancestry

If TRUE, then an ancestry call requires only that at least one subgraph from
one host is descended from the other, and that there are no subgrapghs in the
opposite arrangement. If TRUE (the default), then it requires that all subgraphs
from one host are descended from one from the other.

parsimony.blacklist.k

The k parameter of the single-host Sankhoff parsimony reconstruction used to
identify probable contaminants. A value of 0 is equivalent to not performing
parsimony blacklisting.

raw.blacklist.threshold

Used to specify a read count to be used as a raw threshold for duplicate or parsi-
mony blacklisting. Use with parsimony.blacklist.k or duplicate.file.regex
or both. Parsimony blacklisting will blacklist any subgraph with a read count
strictly less than this threshold. Duplicate blacklisting will black list any dupli-
cate read with a count strictly less than this threshold. The default value of 0
means nothing is blacklisted.

ratio.blacklist.threshold

Used to specify a read count ratio (between 0 and 1) to be used as a threshold
for duplicate or parsimony blacklisting. Use with parsimony.blacklist.k or
duplicate.file.regex or both. Parsimony blacklisting will blacklist a sub-
graph if the ratio of its read count to the total read count from the same host is

phyloscanner.analyse.trees 19

strictly less than this threshold. Duplcate blacklisting will blacklist a duplicate
read if the ratio of its count to the count of the duplicate (from another host) is
strictly less than this threshold.

do.dual.blacklisting

Blacklist all reads from the minor subgraphs for all hosts established as dual by
parsimony blacklisting (which must have been done for this to do anything).

max.reads.per.host

Used to turn on downsampling. If given, tips will be blacklisted such that read
counts (or tip counts if no read counts are identified) from each host are equal
(although see blacklist.underrepresented).

blacklist.underrepresented

If TRUE and max.reads.per.host is given, blacklist hosts from trees where
their total tip count does not reach the maximum.

min.reads.per.host

If given, hosts will be entirely blacklisted from a given tree if they have fewer
than this number of reads on it (after all other blacklisting except downsam-
pling).

min.tips.per.host

If given, hosts will be entirely blacklisted from a given tree if they have fewer
than this number of tips on it (after all other blacklisting except downsampling).

use.ff Use the ff package to store parsimony reconstruction matrices. Use if you run
out of memory.

prune.blacklist

If TRUE, all blacklisted and reference tips (except the outgroup) are pruned
away before starting parsimony-based reconstruction.

count.reads.in.parsimony

If TRUE, read counts on tips will be taken into account in parsimony recon-
structions at the parents of zero-length terminal branches. Not applicable for the
Romero-Severson-like reconstruction method.

verbosity The type of verbose output. 0=none, 1=minimal, 2=complete
no.progress.bars

Hide the progress bars from verbose output.

tree.file.name The name of a single tree file (Newick or NEXUS format).
user.blacklist.file.name

The path of a single text file containing the user-specified list of tips to be black-
listed

duplicate.file.name

The path of a single .csv file specifying which tree tips are from duplicate reads.
Normally this is produced by phyloscanner_make_trees.py.

recombination.file.name

The path for a single file containing the results of the phyloscanner_make_trees.py
recombination metric analysis.

alignment.directory

The directory containing the alignments used to construct the phylogenies.

Details

phyloscanner.analyse.tree is for a single phylogeny and phyloscanner.analyse.trees for a
collection, while phyloscanner.generate.blacklist performs the blacklisting steps only.

20 phyloscanner.analyse.trees

Value

A list of class phyloscanner.trees. Each element of this list is itself a list of class phyloscanner.tree
and corresponds to a single tree, recording details of the phyloscanner reconstruction. The names
of the phyloscanner.trees object are the tree IDs, usually derived from file suffixes. A list of
class phyloscanner.tree may, depending on exact circumstances, have the following items:

• id The tree ID.

• tree The tree as a phylo object. This will have been rooted and have multifurcations collapsed
as requested, but branch lengths are original. It may have been pruned of blacklisted tips if
prune.blacklist was specified.

• alignment The alignment as a DNAbin object.

• tree.file.name The file name from which the tree was loaded.

• alignment.file.name The file name for the alignment.

• user.blacklist.file.name The file name for the user-specified blacklist.

• duplicate.file.name The file name for the list of between-host duplicate tips.

• recombination.file.name The file name for the results of the phyloscanner_make_trees.py
recombination metric analysis.

• index The index of this tree in the phyloscanner.trees list.

• bl.report A data.frame outlining the blacklisted tips in this tree and the reasons they were
blacklisted.

• window.coords A vector giving the start and end of the genome cooardinates of the window
from which the tree was built (if the windowed approach was used).

• xcoord A single genome position to locate this tree along the genome; generally the window
midpoint in the windowed approach.

• duplicate.file.name The file name used to determine between-host duplicate tips

• original.tip.labels Blacklisting may lead to the pruinig of tips from the tree or their
renaming. The original tip labels read from the tree file are recorded here.

• hosts.for.tips A vector mapping each tip onto its correspoinding hosts. Blacklisted tips
are given NA.

• normalisation.constant The normalisation constant for this tree. This will be 1 if no nor-
malisation was requested.

• duplicate.tips A list whose entries are vectors of tips whose sequences are exactly alike.

• blacklist A vector of numbers for all tips blacklisted for whatever reason. If the blacklist
was pruned away, this will be empty.

• dual.detection.splits A data.frame determining the multiplicity of infection for each
host as determined by parsimony blacklisting.

• duals.info A data.frame describing the subgraphs that each tip belong to in the dual infec-
tion detection, prior to parsimony and dual blacklisting.

• tips.for.hosts A list giving the tips numbers corresponding to each host

• read.counts A vector giving the read counts for each tip. Blacklisted tips and the outgroup
have NAs. All non-NAs will be 1 if the data has no read count.

• splits.table A data frame giving the host and subgraph containing each tip, according to
the parsimony reconstruction.

• clades.by.host A list of lists of tips, each determining a monophyletic clade from one host.

• clade.mrcas.by.host A list of vectors containing the MRCA nodes of those clades.

phyloscanner.analyse.trees 21

• classification.results A data.frame desribing the pairwise topological classification of
each pair of hosts in the tree.

A phyloscanner.trees object has the following attributes:

• readable.coords TRUE if genome window coordinates could be obtained from file names.

• match.mode Either "ID" (tree IDs were identified using tree.file.regex), "coords" (tree
IDs were identified from what appear to be genome window coordinates in file names) or
"none" (string IDs could not be determined).

• has.read.counts TRUE if phyloscanner detected read counts in tip labels.

• outgroup.name The tip label of the outgroup.

Examples

#
Example on data from Rakai Community Cohort Study
#
Not run:

require(phyloscannerR)

extract RCCS example data
tree.file.zip <- system.file(file.path('extdata','Rakai_run192_trees.zip'),package='phyloscannerR')
tree.file.directory <- tempdir()
unzip(tree.file.zip, exdir=tree.file.directory, junkpaths=TRUE)

arguments used for RCCS analysis
file.name.regex <- "^\\D*([0-9]+)_to_([0-9]+)\\D*$"
max.reads.per.host <- 50
multifurcation.threshold <- 1e-5
norm.ref.file.name <- system.file('HIV_DistanceNormalisationOverGenome.csv',package='phyloscannerR')

outgroup.name <- "REF_CPX_AF460972"
raw.blacklist.threshold <- 20
sankoff.k <- 20
sankoff.unassigned.switch.threshold <- 0
seed <- 42
splits.rule <- 's'
relaxed.ancestry <- TRUE
allow.mt <- TRUE
tip.regex <- "^(.*)_fq[0-9]+_read_([0-9]+)_count_([0-9]+)$"
tree.file.regex <- "^ptyr192_InWindow_([0-9]+_to_[0-9]+)\\.tree$"
verbosity <- 1

analyse deep sequence trees
phsc <- phyloscanner.analyse.trees(tree.file.directory,

allow.mt=allow.mt,
alignment.file.directory = NULL,
alignment.file.regex = NULL,
blacklist.underrepresented = FALSE,
count.reads.in.parsimony = TRUE,
do.dual.blacklisting = FALSE,
duplicate.file.directory = NULL,
duplicate.file.regex = NULL,
file.name.regex = file.name.regex,
guess.multifurcation.threshold = FALSE,

22 produce.pairwise.graphs

max.reads.per.host = max.reads.per.host,
multifurcation.threshold = multifurcation.threshold,
norm.constants = NULL,
norm.ref.file.name = NULL,
norm.standardise.gag.pol = TRUE,
no.progress.bars = FALSE,
outgroup.name = outgroup.name,
parsimony.blacklist.k = sankoff.k,
prune.blacklist = FALSE,
ratio.blacklist.threshold = 0,
raw.blacklist.threshold = raw.blacklist.threshold,
recombination.file.directory = NULL,
recombination.file.regex = NULL,
relaxed.ancestry = relaxed.ancestry,
sankoff.k = sankoff.k,
sankoff.unassigned.switch.threshold = sankoff.unassigned.switch.threshold,
seed = seed,
splits.rule = splits.rule,
tip.regex = tip.regex,
tree.file.regex = tree.file.regex,
use.ff = FALSE,
user.blacklist.directory = NULL,
user.blacklist.file.regex = NULL,
verbosity = verbosity
)

End(Not run)

produce.pairwise.graphs

Draw bar graphs of pairwise topological/distance relationships

Description

Draw bar graphs of pairwise topological/distance relationships

Usage

produce.pairwise.graphs(
ptrees,
dist.thresh = 0.025,
hosts = all.hosts.from.trees(ptrees),
contiguous.pairs = F,
inclusion = c("both", "either")

)

Arguments

ptrees A list of class phyloscanner.trees

dist.thresh The distance threshold used to select likely transmission pairs

hosts A list of hosts (as a vector) to obtain graphs for. By default, all pairs of hosts
detected in ptrees.

produce.pairwise.graphs2 23

contiguous.pairs

If TRUE pairs require contiguous (rather than ajacent) subgraphs to be identified
as likely transmissions

inclusion If "both", then only pairs in which both individuals are members of hosts are
included. If "either" then pairs only need have one member from hosts

Value

A list whose elements are data, the underlying data frame for the graph, and graph, the graph itself.

Examples

#
Example on data from Rakai Community Cohort Study
#
Not run:
file <- system.file(file.path('extdata','ptyr192_phsc_analyse_trees_output.RData'),package='phyloscannerR')
load(file) #loads 'phsc', output from 'phyloscanner.analyse.trees'
hosts <- c('RkA05868F','RkA05968M','RkA00369F','RkA01344M')
inclusion <- "both"
tmp <- produce.pairwise.graphs(phsc, hosts=hosts, inclusion = "both")
tmp$graph

End(Not run)

produce.pairwise.graphs2

Draw bar graphs of pairwise topological/distance relationships, ver-
sion 2

Description

This function generates scan plots that summarize reconstructed viral phylogenetic relationships
of two individuals. Several pairs of individuals can be processed simultaneously. For each pair of
individuals, the scan plot shows the phylogenetic distance on the y-axis and topological relationship
in colours between subgraphs from both individuals in each deep-sequence phylogeny across the
genome. The genomic position on the x-axis indicates the start of each read alignment.

Usage

produce.pairwise.graphs2(
ptrees,
hosts = all.hosts.from.trees(ptrees),
inclusion = c("both", "either"),
dwin = NULL,
control = list(yintercept_close = 0.025, yintercept_dist = 1, breaks_x = seq(0, 10000,
500), minor_breaks_x = seq(0, 10000, 100), breaks_y = c(0.001, 0.0025, 0.005, 0.01,
0.025, 0.05, 0.1, 0.25), limits_y = c(0.001, 0.4), fill.topology = c(ancestral =
"deepskyblue1", descendant = "deepskyblue4", intermingled = "#FDB863", sibling =
"#8073AC", other = "grey80"))

)

24 reconstruct.ancestral.sequences

Arguments

ptrees A list of class phyloscanner.trees

hosts A list of hosts (as a vector) to obtain graphs for. By default, all pairs of hosts
detected in ptrees.

inclusion If "both", then only pairs in which both individuals are members of hosts are
included. If "either" then pairs only need have one member from hosts

dwin Optional output of classify.pairwise.relationships. This can be specified
to avoid double calculations.

control List of plotting attributes.

Value

A list whose elements are data, the underlying data frame for the graph, and graph, the graph itself.

Author(s)

Oliver Ratmann

See Also

classify.pairwise.relationships

Examples

#
Example on data from Rakai Community Cohort Study
remember that you can specify dwin to save computing time, if you have it already computed
#
Not run:
file <- system.file(file.path('extdata','ptyr192_phsc_analyse_trees_output.RData'),package='phyloscannerR')
load(file) #loads 'phsc', output from 'phyloscanner.analyse.trees'
hosts <- c('RkA05868F','RkA05968M','RkA00369F','RkA01344M')
inclusion <- "both"
tmp <- produce.pairwise.graphs2(phsc, hosts=hosts, inclusion = "both")
tmp$graph

End(Not run)

reconstruct.ancestral.sequences

Reconstruct the ancestral sequence at every node of the tree

Description

Reconstruct the ancestral sequence at every node of the tree

Usage

reconstruct.ancestral.sequences(ptree, verbose = F, default = F, ...)

reconstruct.host.ancestral.sequences 25

Arguments

ptree A list of class phyloscanner.tree (usually an item in a list of class phyloscanner.trees)

verbose Verbose output

default If TRUE, the reconstruction is done according to the default model used in
RAxML to build trees for phyloscanner. The ... below will be ignored.

... Further arguments to be passed to pml and optim.pml

Value

An alignment of the sequences at all nodes (in DNAbin format)

reconstruct.host.ancestral.sequences

Find the ancestral sequence at the MRCA of the tips from this host, or,
if a dual infection was previously identified, of the MRCA of the tips
making up each infection event

Description

Find the ancestral sequence at the MRCA of the tips from this host, or, if a dual infection was
previously identified, of the MRCA of the tips making up each infection event

Usage

reconstruct.host.ancestral.sequences(
ptree,
host,
individual.duals = F,
verbose = F

)

Arguments

ptree A list of class phyloscanner.tree (usually an item in a list of class phyloscanner.trees).
This must have an ancestral.alignment element (see reconstruct.ancestral.sequences)

host The host ID
individual.duals

Whether to output multiple sequences for host based on the results of a previous
dual infection analysis

verbose Verbose output

26 select.windows.by.read.and.tip.count

select.windows.by.read.and.tip.count

Select for further analysis relationship classifications by read and tip
counts

Description

Select for further analysis relationship classifications by read and tip counts

Usage

S3 method for class 'windows.by.read.and.tip.count'
select(ptrees, dwin, tip.regex, min.reads, min.tips, verbose = F)

Arguments

ptrees A list of class phyloscanner.trees produced by phyloscanner.analyse.trees.

dwin A data frame produced by classify.pairwise.relationships.

tip.regex The regular expression used to identify host IDs in tip names

min.reads The minimum number of reads from a host in a window needed in order for that
window to count in determining relationships involving that patient

min.tips The minimum number of tips from a host in a window needed in order for that
window to count in determining relationships involving that patient

verbose Verbose output

Value

A data frame with viral phylogenetic classifications of pairwise host relationships in each deep
sequence phylogeny

Author(s)

Oliver Ratmann, Matthew Hall

Examples

Not run:
require(phyloscannerR)
#
continue Rakai example,
load phyloscanner output from 'phyloscanner.analyse.trees'
#
file <- system.file(file.path('extdata','ptyr192_phsc_analyse_trees_output.R'),package='phyloscannerR')
load(file) #loads 'phsc', output from 'phyloscanner.analyse.trees'
use distance thresholds found in analysis of Rakai couples
close.threshold <- 0.025
distant.threshold <- 0.05
use relationship types based on adjacency
this also considers linkage etc between individuals who have dual infections, recombinants etc
..and thus may not have *all* their subgraphs adjacent to each other
relationship.types <- c('proximity.3.way',

simplified.transmission.summary 27

'close.and.adjacent',
'close.and.adjacent.and.directed',
'close.and.adjacent.and.ancestry.cat')
dwin <- classify.pairwise.relationships(phsc, allow.mt=TRUE, close.threshold=close.threshold, distant.threshold=distant.threshold,relationship.types=relationship.types, verbose=TRUE)
tip.regex <- "^(.*)_fq[0-9]+_read_([0-9]+)_count_([0-9]+)$"
min.reads <- 30
min.tips <- 1
dwin <- select.windows.by.read.and.tip.count(phsc, dwin, tip.regex, min.reads, min.tips)
#
end of Rakai example
#

End(Not run)

simplified.transmission.summary

Simplfy and visually display the pairwise host relationships across all
trees

Description

Simplfy and visually display the pairwise host relationships across all trees

Usage

simplified.transmission.summary(
ptrees,
transmission.summary,
arrow.threshold,
plot = F

)

Arguments

arrow.threshold

The proportion of trees in which a pair of hosts need to show a direction of
transmission for that direction to be indicated as an arrow. If both directions
meet this threshold, the arrow is in the direction with the larger proportion of
trees.

plot If TRUE, the returned list has an item called simp.diagram, a ggplot object
plotting the simplified relationship diagram.

phyloscanner.trees

A list of class phyloscanner.trees

trans.summary The output of transmission.summary; a tibble.

28 transmission.summary

transmission.summary Summarise the pairwise host relationships across all trees

Description

Summarise the pairwise host relationships across all trees

Usage

transmission.summary(
ptrees,
win.threshold = 0,
dist.threshold = Inf,
tip.regex,
min.tips = 1,
min.reads = 1,
close.sib.only = F,
verbose = F

)

Arguments

win.threshold The proportion of windows that a pair of hosts need to be related (adjacent and
within dist.threshold of each other) in order for them to appear in the sum-
mary.

dist.threshold The patristic distance within which the subgraphs from two hosts need to be in
order for them to be declared related (default is infinity, so adjacent hosts are
always related).

tip.regex Regular expression identifying tips from the dataset. This expects up to three
capture groups, for host ID, read ID, and read count (in that order). If the latter
two groups are missing then read information will not be used. The default
matches input from the phyloscanner pipeline where the host ID is the BAM file
name.

min.tips The minimum number of tips that a host must have in each tree for it to be
counted in that tree (A legacy option - we recommend using the blacklist func-
tionality.)

min.reads The minimum number of reads that a host must have in each tree for it to be
counted in that tree (A legacy option - we recommend using the blacklist func-
tionality.)

close.sib.only If TRUE, then the distance threshold applies only to hosts in sibling clades. Any
ancestry is automatically a relationship.

verbose Give verbose output
phyloscanner.trees

A list of class phyloscanner.trees

Value

A tibble, every line of which counts the number of pairwise relationships of a particular type
between a pair of hosts

write.annotated.tree 29

write.annotated.tree Write the phylogeny with reconstructed host annotations to file

Description

Write the phylogeny with reconstructed host annotations to file

Usage

write.annotated.tree(
ptree,
file.name,
format = c("pdf", "nex"),
pdf.scale.bar.width = 0.01,
pdf.w = 50,
pdf.hm = 0.15,
verbose = F

)

Arguments

file.name The name of the output file

format The format - PDF or NEXUS - in which to write the output.
pdf.scale.bar.width

The width, in substitutions per site, of the scale bar in PDF output

pdf.w The width of the output PDF file, in inches

pdf.hm The height, in inches per tip, of the output PDF file

verbose Verbose output
phyloscanner.tree

A list of class phyloscanner.tree (usually an item in a list of class phyloscanner.trees)

Index

assign.groups.for.batched.phyloscanner.analysis,
2

classify.pairwise.relationships, 2, 24
cmd.phyloscanner.analyse.trees, 4, 7, 12
cmd.phyloscanner.analyse.trees.valid.args,

5, 7
count.pairwise.relationships, 7

draw.summary.statistics, 8

find.bam.and.references, 9
find.networks, 10
find.pairs.in.networks, 10, 11, 11

gather.summary.statistics, 12

multipage.summary.statistics, 13

phyloscanner.analyse.tree
(phyloscanner.analyse.trees),
14

phyloscanner.analyse.trees, 5, 12, 14
phyloscanner.generate.blacklist

(phyloscanner.analyse.trees),
14

plot.chain, 11
plot.network, 11
produce.pairwise.graphs, 22
produce.pairwise.graphs2, 23

reconstruct.ancestral.sequences, 24
reconstruct.host.ancestral.sequences,

25

select.windows.by.read.and.tip.count,
26

simplified.transmission.summary, 27

transmission.summary, 28

write.annotated.tree, 29

30

	assign.groups.for.batched.phyloscanner.analysis
	classify.pairwise.relationships
	cmd.phyloscanner.analyse.trees
	cmd.phyloscanner.analyse.trees.valid.args
	count.pairwise.relationships
	draw.summary.statistics
	find.bam.and.references
	find.networks
	find.pairs.in.networks
	gather.summary.statistics
	multipage.summary.statistics
	phyloscanner.analyse.trees
	produce.pairwise.graphs
	produce.pairwise.graphs2
	reconstruct.ancestral.sequences
	reconstruct.host.ancestral.sequences
	select.windows.by.read.and.tip.count
	simplified.transmission.summary
	transmission.summary
	write.annotated.tree
	Index

