
phyloflows: Estimating transmission flows under heterogeneous
sampling - a first example

Xiaoyue Xi and Oliver Ratmann

2019-09-10

This vignette gives a basic first introduction to estimating transmission flows with the phyloflows package.

Input data
phyloflows expects input data in a specific format.

• dobs a data.frame of observed transmission counts within and between population groups.
• dprior a data.frame that summarises prior information on how population groups were sampled.

To get you started, phyloflows comes with a small simulated example data set of transmission counts and
sampling information between two population groups, denoted by “1” and “2”:
required R packages
require(phyloflows)
require(ggplot2)
require(bayesplot)
require(data.table)
require(coda)

#
load transmission flow data "twoGroupFlows1"
data(twoGroupFlows1, package="phyloflows")
observed transmission counts
dobs <- twoGroupFlows1$dobs
sampling information
dprior <- twoGroupFlows1$dprior

Input data: observed transmission flows

dobs

dobs specifies observed counts of transmissions from a transmitter group to a recipient group.
It must contain the following columns:

• TR_TRM_CATEGORY name of transmitter group.
• REC_TRM_CATEGORY name of recipient group.
• TRM_CAT_PAIR_ID identifier of transmitter-recipient pair
• TRM_OBS observed transmission counts

Let us look at the data. The first row contains counts of transmission flows from group “1” to group “1”, and
there are 139 of them. The next row contains counts of transmission flows from group “1” to group “2”, and
there are 15 of them. Here is a barplot of our input data:

1

1−>1

1−>2

2−>1

2−>2

0 50 100

observed counts

tr
an

sm
is

si
on

 fl
ow

s
(f

ro
m

 −
>

 to
)

Input data: sampling information
dobs also must contain information about how each group was sampled. This is stored in the
following columns:

• TR_SAMPLING_CATEGORY sampling strata of transmitter group
• REC_SAMPLING_CATEGORY sampling strata of recipient group

Each transmitter/recipient group is associated to a sampling category. This can be “sampling group a” for
both “1” and “2”, or “a” and “b” respectively for “1” and “2”. In our little data set, we gave the same name
to transmitter/recipient and sampling groups.

dprior specifies the probability of sampling an individual from each sampling group. To keep
this as flexible as possible, samples from the sampling distribution, rather than say the mean and standard
deviation, need to be given. This information is stored in the following columns:

• SAMPLING_CATEGORY name of sampling strata
• SAMPLE identifier of sample from the sampling distribution
• P sampling probability
• LP log density of the sampling probability under the sampling distribution.

Let us look at the sampling information:
head(dprior)

Here is a histogram of the sampling distribution from sampling groups “1” and “2”. Notice that in our
example, the probability of sampling individuals in group “1” is higher than that among individuals in group
“2”.

2

1 2

40% 50% 60% 40% 50% 60%

0

50

100

150

200

sampling distribution in group 1 and 2

ob
se

rv
ed

 c
ou

nt
s

To capture different sampling probabilities for sources and recipients, the variable WHO can be used in our
algorithm. As we don’t distinguish sampling probabilities for sources and recipients in the simple example,
we would set fractions to be the same regardless of source recipient status.
tmp= copy(dprior)
tmp[,WHO:='REC_SAMPLING_CATEGORY']
dprior[,WHO:='TR_SAMPLING_CATEGORY']
dprior <- rbind(dprior,tmp)
head(dprior)

Statistical model
phyloflows uses a Bayesian approach to estimate the proportion of transmissions between the
two population groups,

π = (π11, π12, π21, π22).

The model can be motivated as follows. Suppose the actual, unobserved number of transmissions from group
i to group j are zij . Denote the vector of actual transmission counts by

z = (z11, z12, z21, z22).

We assume that transmission events occurred independently of each other. Then the likelihood of the actual
transmission counts can be modelled by

p(z|Z, π) = Multinomial(z;Z, π),

where Z is the total number of transmissions, Z =
∑

kl zkl. Next, we specify a model for observing one actual
transmission event. We assume that sampling occurred at random within each of the sampling groups i and
j. We then obtain

p(nij |zij , si, sj) = Binomial(nij ; zij , si ∗ sj),

3

where si is the probability of sampling an individual from group i, and similary for si.

These equations suggest that one approach to infer the proportion of transmissions π could be via data
augmentation. In data augmentation, we would consider the unobserved, actual transmission counts z as
latent variables, and then infer the joint posterior distribution of the parameters (z, Z, π) with a Monte Carlo
algorithm.

However there is a more efficient approach for the particular model above. Inference of π under
the Multinomial likelihood Multinomial(z;Z, π) is equivalent to inference of Poisson mean rates λ

λ = (λ11, λ12, λ21, λ22)

in the system of independent Poisson likelihoods

p(zij |λij) = Poisson(z;λij),

where λij > 0, i = 1, 2 and j = 1, 2. The proportion of transmissions π are recovered via the equations

πij = λij/
∑

k=1,2;l=1,2
λkl.

for i = 1, 2 and j = 1, 2. This is known as the Poisson trick. The advantage of this model parameterisation is
that sampled Poisson random variables are again Poisson random variables, which allows us to integrate out
analytically the unknown, actual transmission counts zij . We obtain

p(n|λ, s) =
∏

i=1,2;j=1,2
Poisson(nij ;λij ∗ si ∗ sj).

The free parameters of the model are (λ, s), and the posterior distribution of the free parameters is given by

p(λ, s|n) ∝ p(n|λ, s)p(λ, s)

=
∏

i=1,2;j=1,2
Poisson(nij ;λij ∗ si ∗ sj)p(λij)p(si)p(sj).

For the prior distributions, we specify for p(λij), i = 1, 2; j = 1, 2 uninformative prior distributions. We
use a Gamma distribution with parameters αi = 0.8/4 and β = 0.8/Z with Z =

∑
ij|nij>0 nij/(si ∗ sj) +∑

ij|nij>0(1− si ∗ sj)/(si ∗ sj). This choice implies for π a Dirichlet prior distribution with parameters αi,
which is considered to be an objective choice. For p(si), we use a strongly informative prior distribution,
based on the available data as illustrated above.

MCMC
MCMC syntax
We use a Markov Chain Monte Carlo algorithm to sample from the posterior distribution

p(λ, s|n) ∝
∏

i=1,2;j=1,2
Poisson(nij ;λij ∗ si ∗ sj)p(λij)p(si)p(sj).

Then, we calculate the main quantity of interest, π, via

πij = λij/
∑

k=1,2;l=1,2
λkl.

for i = 1, 2 and j = 1, 2. The syntax for running the algorithm is as follows.

4

specify a list of control variables:
seed random number seed
mcmc.n number of MCMC iterations
verbose flag for verbose output
outfile output file name if you like to have the results
written to an *.rda* file
control <- list(seed=42, mcmc.n=1000, verbose=0)
run MCMC
ans <- source.attribution.mcmc(dobs, dprior, control)
#>
#> Setting seed to 42
#> Number of parameters: 8
#> Dimension of PI: 4
#> Sweep length: 8
#> Number of sweeps: 125
#> Number of iterations: 1000
#> Sweeps done: 100
#> Sweeps done: 125

MCMC messages
Let s have a look at the output messages.

• Setting seed to 42: This tells us the random number seed that was used, so we can re-run the
algorithm to get identical results.

• Number of parameters: 8: The total number of unknown parameters in the MCMC is the length of λ
plus length of the sampling probabilities s. Here, the number of flows between the two subpopulation is
4, and sampling was different in each subpopulation and by source recipient status, adding 4 parameters.

• Dimension of PI: 4: the number of flows between the two subpopulations is 4.
• Sweep length: 8: the MCMC updates in turn a subset of the sampling probabilities of transmission

groups
ξ = (ξ11, ξ12, ξ21, ξ22), ξij = si ∗ sj ,

which is followed by an update of the entire vector of Poisson transmission rates λ. The subset of ξ
that is updated is specified as follows. For each population group i, we determine all components of ξ
that involve si. In our example, for i = 1, the components of ξ to update are (ξ11, ξ12, ξ21); and for
i = 2, the components of ξ to update are (ξ12, ξ21, ξ22). An MCMC sweep counts the number of MCMC
iterations needed in order to update all parameters at least once. In our case, we have 2 updates on
components of ξ, and after each we update λ, so the sweep length is 4.

• Number of sweeps: 125: The total number of sweeps is determined from control[['mcmc.n']], by
dividing control[['mcmc.n']] with the sweep length, and possibly rounding up.

• Number of iterations: 1000: The total number of iterations is set to the number of sweeps (given
above), multiplied by the sweep length. This may differ slightly from control[['mcmc.n']] because
we round up the number of sweeps to the next integer.

MCMC output
Let us have a look at the output:
str(ans)
#> List of 13
#> $ with.sampling: logi TRUE
#> $ time : 'difftime' num 7.63822102546692
#> ..- attr(*, "units")= chr "secs"

5

#> $ dlu :Classes 'data.table' and 'data.frame': 4 obs. of 3 variables:
#> ..$ WHO : Factor w/ 2 levels "TR_SAMPLING_CATEGORY",..: 1 1 2 2
#> ..$ SAMPLING_CATEGORY: num [1:4] 1 2 1 2
#> ..$ UPDATE_ID : int [1:4] 1 2 3 4
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> ..- attr(*, "sorted")= chr "UPDATE_ID"
#> $ dlt :Classes 'data.table' and 'data.frame': 4 obs. of 4 variables:
#> ..$ TRM_CAT_PAIR_ID: int [1:4] 1 2 3 4
#> ..$ TRM_OBS : int [1:4] 139 15 20 129
#> ..$ TR_UPDATE_ID : int [1:4] 1 1 2 2
#> ..$ REC_UPDATE_ID : int [1:4] 3 4 3 4
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> ..- attr(*, "sorted")= chr "TRM_CAT_PAIR_ID"
#> ..- attr(*, "index")= int(0)
#>- attr(*, "__TR_UPDATE_ID")= int(0)
#>- attr(*, "__REC_UPDATE_ID")= int [1:4] 1 3 2 4
#> $ nprior : int 1000
#> $ sweep : int 8
#> $ nsweep : num 125
#> $ n : num 1000
#> $ sweep_group : num 125
#> $ pars :List of 7
#> ..$ ALPHA : num [1, 1:4] 0.2 0.2 0.2 0.2
#> ..$ BETA : num [1:126, 1] 0.000746 0.000701 0.000668 0.000677 0.0007 ...
#> ..$ XI : num [1:126, 1:4] 0.612 0.585 0.591 0.602 0.597 ...
#> ..$ XI_LP : num [1:126, 1:4] 3.04 2.62 3.29 3.58 3.54 ...
#> ..$ S : num [1:126, 1:4] 0.374 0.342 0.348 0.356 0.362 ...
#> ..$ S_LP : num [1:126, 1:4] 6.07 5.26 6.28 6.89 6.96 ...
#> ..$ LOG_LAMBDA: num [1:126, 1:4] 6.04 5.98 5.96 6.17 5.97 ...
#> $ it.info :Classes 'data.table' and 'data.frame': 1001 obs. of 7 variables:
#> ..$ IT : int [1:1001] 0 1 2 3 4 5 6 7 8 9 ...
#> ..$ PAR_ID : int [1:1001] 0 1 1 2 2 3 3 4 4 1 ...
#> ..$ BLOCK : chr [1:1001] "INIT" "XI" "LOG_LAMBDA" "XI" ...
#> ..$ MHRATIO : num [1:1001] 1 1 1 0.494 1 ...
#> ..$ ACCEPT : int [1:1001] 1 1 1 1 1 1 1 0 1 1 ...
#> ..$ LOG_LKL : num [1:1001] -13.6 -12.8 -13.2 -13.9 -13.2 ...
#> ..$ LOG_PRIOR: num [1:1001] -20.6 -21 -20.9 -18.5 -18.6 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> $ curr.it : int 1001
#> $ curr.it.adj : int 1001

We are mostly interested in the marginal posterior distribution

p(π|n),

and the algorithm returns samples of log λ. Let us calculate the transmission flows π from the log Poisson
rates, and make a trace plot:
transform lambda to pi
tmp <- exp(ans[['pars']][['LOG_LAMBDA']])
posterior.pi <- t(apply(tmp, 1, function(rw) rw/sum(rw)))
make column names
setkey(dobs, TRM_CAT_PAIR_ID) #order by pair IDs
post.pi.colnames <- paste0('PI ',dobs$TR_TRM_CATEGORY,'->',dobs$REC_TRM_CATEGORY)
colnames(posterior.pi) <- post.pi.colnames

6

plot mcmc trajectories
bayesplot:::mcmc_trace(posterior.pi,

pars=colnames(posterior.pi),
facet_args = list(ncol = 1),
n_warmup=0)

PI 2−>2

PI 2−>1

PI 1−>2

PI 1−>1

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0.30

0.35

0.40

0.45

0.03

0.05

0.07

0.04

0.06

0.08

0.10

0.12

0.45

0.50

0.55

0.60

Notice that the posterior estimate for transmissions within group “2” is about 55%. This is considerably
larger than the raw estimate from the observed transmission counts, 129/303=43%, because individuals in
group “2” have lower probability of being sampled than those in group “1”.

That’s it for now. Of course we would like to run the MCMC chain for longer, perhaps 10,000 sweeps.
We would also like to check for convergence, calculate effective sample sizes, and quantiles of the posterior
distribution. But this is for later. Use your R wizadry to process the output further, and have a look at the
other vignettes.

7

	Input data
	Input data: observed transmission flows
	Input data: sampling information

	Statistical model
	MCMC
	MCMC syntax
	MCMC messages
	MCMC output

