
Arm® SBSA Architecture Compliance
Revision: r3p0

Validation Methodology

Copyright © 2016–2020 Arm Limited or its affiliates. All rights reserved.
101544_0300_01_en

Arm® SBSA Architecture Compliance
Validation Methodology
Copyright © 2016–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 30 November 2016 Non-Confidential Alpha release

B 31 March 2017 Non-Confidential Beta release

C 13 July 2017 Non-Confidential REL 1.0

D 19 January 2018 Non-Confidential Alpha release for REL 2.0

E 11 May 2018 Non-Confidential REL 2.0

0200-01 27 December 2018 Non-Confidential REL 2.1. The document now follows a new numbering format.

0200-02 26 April 2019 Non-Confidential REL 2.2

0200-03 18 September 2019 Non-Confidential REL 2.3

0200-04 20 March 2020 Non-Confidential REL 2.4

0300-01 30 September 2020 Non-Confidential REL 3.0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

 Arm® SBSA Architecture Compliance

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Arm® SBSA Architecture Compliance

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://developer.arm.com

Contents
Arm® SBSA Architecture Compliance Validation
Methodology

Preface
About this book 7

Chapter 1 Introduction
1.1 Abbreviations 1-10
1.2 Server Base System Architecture ACS 1-11
1.3 Compliance tests 1-12
1.4 Layered software stack .. 1-13
1.5 Exerciser .. 1-16
1.6 GIC ITS .. 1-18
1.7 Test platform abstraction 1-19

Chapter 2 Execution model and flow control
2.1 Execution model and flow control .. 2-21
2.2 Test build and execution flow 2-22

Chapter 3 Platform Abstraction Layer
3.1 Overview of PAL API 3-25
3.2 API definitions .. 3-26

Appendix A NIST Statistical Test Suite
A.1 NIST Statistical Test Suite Appx-A-51

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Appendix B Revisions
B.1 Revisions Appx-B-53

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® SBSA Architecture Compliance Validation Methodology.

It contains the following:
• About this book on page 7.

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book describes the architecture compliance validation methodology for Arm® SBSA architecture.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an introduction to the Arm SBSA Architecture Compliance Suite.

Chapter 2 Execution model and flow control
This chapter describes the execution model and the flow control used for SBSA ACS.

Chapter 3 Platform Abstraction Layer
This chapter provides an overview of PAL API and its categories.

Appendix A NIST Statistical Test Suite
This appendix describes the integration of NIST Statistical Test Suite with SBSA ACS.

Appendix B Revisions
This appendix describes the technical changes between released issues of this book.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Preface
 About this book

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

https://developer.arm.com/support/arm-glossary

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• Arm® Server Base System Architecture Specification (ARM-DEN-0029 Version 6.0).
• Arm® Server Base Boot Requirements (ARM-DEN-0044B).
• Arm® Architecture Reference Manual ARMv8, for Armv8-A architecture profile (ARM DDI

0487F.a (ID021920)).
• Arm® Generic Interrupt Controller Architecture Specification for GIC architecture version

3.0 and version 4.0 ARM IHI 0069C (ID070116).
• GICv3 and GICv4 Software Overview (DAI 0492).

Other publications

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to support-enterprise-acs@arm.com. Give:

• The title Arm SBSA Architecture Compliance Validation Methodology.
• The number 101544_0300_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Documentation.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

mailto:support-enterprise-acs@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Introduction

This chapter provides an introduction to the Arm SBSA Architecture Compliance Suite.

It contains the following sections:
• 1.1 Abbreviations on page 1-10.
• 1.2 Server Base System Architecture ACS on page 1-11.
• 1.3 Compliance tests on page 1-12.
• 1.4 Layered software stack on page 1-13.
• 1.5 Exerciser on page 1-16.
• 1.6 GIC ITS on page 1-18.
• 1.7 Test platform abstraction on page 1-19.

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-9

Non-Confidential

1.1 Abbreviations
The following table lists the abbreviations used in this document.

Table 1-1 Abbreviations and expansions

Abbreviation Expansion

ACPI Advanced Configuration and Power Interface

ELx Exception Level x (where x can be 0 to 3)

GIC Generic Interrupt Controller

ITS Interrupt Translation Service

LPI Locality-specific Peripheral Interrupt

MSI Message-Signaled Interrupt

PAL Platform Abstraction Layer

PCIe Peripheral Component Interconnect Express

PE Processing Element

PSCI Power State Coordination Interface

SBSA Server Base System Architecture

SMC Secure Monitor Call

SoC System on Chip

UART Universal Asynchronous Receiver and Transmitter

UEFI Unified Extensible Firmware Interface

VAL Validation Abstraction Layer

1 Introduction
1.1 Abbreviations

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-10

Non-Confidential

1.2 Server Base System Architecture ACS
Server Base System Architecture (SBSA) specification specifies hardware system architecture that is
based on Arm 64-bit architecture. Server system software such as operating systems, hypervisors, and
firmware can rely on it. It addresses PE features and key aspects of system architecture.

The primary goal is to ensure enough standard system architecture to enable a suitably built single OS
image to run on all hardware that is compliant with this specification. It also specifies features that
firmware can rely on, allowing for some commonality in firmware implementation across platforms.

The SBSA architecture that is described in the Arm® Server Base System Architecture Specification
defines the behavior of an abstract machine, referred to as an SBSA system. Implementations compliant
with the SBSA architecture must conform to the behavior described in the specification.

The Architecture Compliance Suite (ACS) is a set of examples of the specified invariant behaviors. Use
this suite to verify that these behaviors are implemented correctly in your system.

1 Introduction
1.2 Server Base System Architecture ACS

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.3 Compliance tests
SBSA compliance tests are self-checking, portable C-based tests with directed stimulus.

The following table describes the compliance test components.

Table 1-2 Compliance test components

Components Description

PE Tests to verify PE compliance.

GIC Tests to verify GIC compliance.

Timer Tests to verify PE timers and system timers compliance.

Watchdog Tests to verify watchdog timer compliance.

PCIe Tests to verify PCIe subsystem compliance.

Peripherals Tests to verify USB, SATA, and UART compliance.

Power states Tests to verify system power states compliance.

SMMU Tests to verify SMMU subsystem compliance.

Secure Tests to verify Secure hardware.

Exerciser Tests to verify PCIe subsystem with a custom stimulus generator.

NIST Tests to determine the suitability of a generator for a cryptographic application.

1 Introduction
1.3 Compliance tests

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.4 Layered software stack
Compliance tests use the layered software stack approach to enable porting across different test
platforms.

The layered stack contains:
• Test suite
• Validation Abstraction Layer (VAL)
• Platform Abstraction Layer (PAL)

SBSA ACS

VAL

PAL

Linux UEFI Arm
Trusted FW

Hardware

Figure 1-1 Layered software stack

The following table describes the different layers of a compliance test.

Table 1-3 Compliance test layers

Layer Description

Test suite Collection of targeted tests that validate the compliance of the target system. These tests use interfaces that are provided by
the VAL.

VAL Provides a uniform view of all the underlying hardware and test infrastructure to the test suite.

PAL Is a C-based, Arm-defined API that you can implement. It abstracts features whose implementation varies from one target
system to another. Each test platform requires a PAL implementation of its own. PAL APIs are meant for the compliance
test to reach or use other abstractions in the test platform such as the UEFI infrastructure and bare-metal abstraction.

This section contains the following subsections:
• 1.4.1 Compliance test software stack with UEFI application on page 1-13.
• 1.4.2 Compliance test software stack with Linux application on page 1-14.
• 1.4.3 Coding guidelines on page 1-14.

1.4.1 Compliance test software stack with UEFI application

The following figure illustrates the compliance test software stack interplay with UEFI shell application
as an example.

1 Introduction
1.4 Layered software stack

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

UEFI application
wrapper

Test pool

VAL library

PAL library

Figure 1-2 UEFI shell application

1.4.2 Compliance test software stack with Linux application

The following figure shows the compliance test software stack with Linux application as an example.

The stack is spread across user mode and kernel mode space. The Linux command-line application
running in the user mode space and the kernel module communicate using a procfs interface. The test
pool, VAL, and PAL layers are built as a kernel module.

Linux application

Procfs interface

Test pool

VAL

PAL
AHCI module

IOMMU module

SBSA ACS KO

Figure 1-3 Linux application

The SBSA command-line application initiates the tests and queries for status of the test using the
standard procfs interface of the Linux OS. To avoid multiple data transfers between the kernel and user
modes, the test suite, VAL, and PAL are together built as a kernel module.

Further, the PAL layer might need information from modules such as AHCI driver and the IOMMU
driver which are outside the SBSA ACS kernel module. A separate patch file is provided to patch the
drivers appropriately to export the required information. For details, see the Arm® SBSA ACS User Guide.

1.4.3 Coding guidelines

The coding guidelines followed for the implementation of the test suite are described in this section.

• All the tests call VAL APIs.
• VAL APIs might call PAL APIs depending on the requested functionality.
• A test does not directly interface with PAL functions.

1 Introduction
1.4 Layered software stack

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

• The test layer does not need any code modifications when porting from one platform to another.
• All the platform porting changes are limited to PAL.
• The VAL might require changes if there are architectural changes impacting multiple platforms.

1 Introduction
1.4 Layered software stack

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.5 Exerciser
Exerciser is a PCIe endpoint device that can be programmed to generate custom stimuli for verifying the
SBSA compliance of PCIe IP integration into an Arm SoC. The stimulus is used in verifying the
compliance of PCIe functionality like IO coherency, snoop behavior, address translation, PASID
transactions, DMA transactions, MSI and legacy interrupt behavior.

The following figure shows a PCIe hierarchy consisting of various endpoints, switches, and bridges.

CPU

Root Complex

Switch
Exerciser
instance 1

SMMU

Memory

Exerciser
instance 2

PCIe
endpoint

PCIe
endpoint

PCIe device downstream port
PCIe device upstream port

PCIe
bridge to

PCI/PCI-X

PCI/PCI-X

RCiEP Root Port

PCIe
endpoint

Figure 1-4 Exerciser in a SoC

Root Complex integrated EndPoint (RCiEP) and Root Complex Event Collector (RCEC) are endpoints
connected directly to Root Complex. PCIe endpoints are connected either to the Root Port or
downstream ports. Bridges are used to connect PCI devices into PCIe hierarchy while switches are used
to connect multiple PCIe devices to single downstream port. PCIe devices access GIC, memory, and PE
through the Root Complex, also called the host bridge.

The figure shows two instances of the exerciser instantiated. Instance 1 is connected directly to the Root
Complex as a RCiEP and instance 2 is connected to the downstream port of a switch as a PCIe endpoint
device.

 Note

The number of exercisers instantiated is platform-specific. To achieve higher coverage, Arm
recommends that you present multiple exercisers to the ACS.

To generate custom stimuli, the exerciser must provide functionality to configure interrupt and DMA
attributes, trigger them, and know the status of these operations, the details of which are implementation-
specific. This can be done by providing a set of BAR-mapped registers as shown in the following figure,
and writing specific values to them to trigger the necessary operations.

1 Introduction
1.5 Exerciser

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

Exerciser hardware

Exerciser interface

Exerciser functionality

PCIe
configuration

space

BAR-
mapped
registers

Figure 1-5 Reference implementation of exerciser hardware

1.5.1 Compliance test software stack for exerciser with UEFI shell application

The following figure shows the compliance test software stack for exerciser with UEFI shell application.
The exerciser tests validate device interrupts (legacy interrupt and MSI-X interrupt), DMA (address
translation and memory access), and coherency behavior. The exerciser PCIe configuration space is
accessed using UEFI or MMIO APIs and exerciser functionality like interrupt generation and DMA
transactions can be accessed using exerciser APIs.

Exerciser test

MSI DMA Coherency

VAL

PAL

UEFI

Exerciser

PCIe
configuration

register

Memory
transaction
generator

and
Interrupt

generator

Hardware

Figure 1-6 Exerciser with UEFI shell application

1 Introduction
1.5 Exerciser

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.6 GIC ITS
The Interrupt Translation Service (ITS) translates an input EventID from a device, identified by its
DeviceID, and determines:

• The corresponding INTID for this input.
• The target Redistributor and, through this, the target PE for that INTID.

Endpoint device 1 triggers a write on MSI address from the MSI table, which gets converted to an LPI
using the ITS tables. To generate an MSI, ITS must be configured before running the ACS. The software
must allocate memory for different ITS tables. ITS table mappings must be updated using the ITS
commands, Device ID, LPI Interrupt ID, and Redistributor Base.

For more information, see Arm® GIC Architecture Specification and Arm® GICv3 Software Overview.

The following figure shows the flow of how an MSI is converted to an LPI using ITS.

GICR_ID1

GICR_ID0

GICR_ID2

GICR_ID3

Distributor

Interconnect

PEPE PEPE

Host
bridge

RCEC

RCiEP

RC

Endpoint
device 2

Endpoint
device 1

Switch

GIC

Device ID + Event ID

Msg Addr
+ Data

1

EP BAR view
MSI-X table

Vector control
Vector control

Msg Data
Msg Data

Msg Upper Addr
Msg Upper Addr

Msg Addr
Msg Addr

2

3

4LPIs

Redistributor

CPU interface

Device table

Device_ID0 ITT_ADDR0

ITT_ADDR1Device_ID1

Collection table

ICID0 GICR_ID0

GICR_ID1ICID1

Interrupt translation table –
ITT_ADDR Entry 0

EventID0 INTID, ICID0

INTID, ICID1EventID1GITS_TRANSLATOR
ITS

Figure 1-7 Routing MSI-X from Endpoint to PE through GIC ITS

1 Introduction
1.6 GIC ITS

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

1.7 Test platform abstraction
The compliance suite defines and uses the test platform abstraction that is illustrated in the figure below.

SBSA ACS

VAL

PAL

UEFI/OS

Trusted
firmware

Baremetal

Non-secure
MMIO

ACPI tables

PE PE PE PE

GIC Watchdog Timers SMMU PCIe

Server hardware

Figure 1-8 Test platform abstraction

The following table describes the SBSA abstraction terms.

Table 1-4 Abstraction terms and descriptions

Abstraction Description

UEFI or OS UEFI Shell application or operating system provides infrastructure for console and memory management. This
module runs at EL2.

Trusted firmware Firmware which runs at EL3.

ACPI Interface layer which provides platform-specific information, removing the need for the test suite to be ported on a
per platform basis.

Shared memory Memory that is visible to all the PE and test peripherals.

Hardware PE and controllers that are specified as part of the SBSA specification.

1 Introduction
1.7 Test platform abstraction

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

Chapter 2
Execution model and flow control

This chapter describes the execution model and the flow control used for SBSA ACS.

It contains the following sections:
• 2.1 Execution model and flow control on page 2-21.
• 2.2 Test build and execution flow on page 2-22.

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

2.1 Execution model and flow control
The following figure describes the execution model and flow control of the compliance suite.

Test suite entry

Test start

Print status

Test end

Test suite exit

Figure 2-1 Execution model and flow control

The process that is followed for the flow control is:
1. The execution environment, like the UEFI shell, invokes the test entry point.
2. Start the test iteration loop.
3. Print status during the test execution as required.
4. Reboot or put the system to sleep as required.
5. Loop until all the tests are completed.

2 Execution model and flow control
2.1 Execution model and flow control

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.2 Test build and execution flow
This section describes the source code directory structure and provides references for building the tests.

This section contains the following subsections:
• 2.2.1 Source code directory on page 2-22.
• 2.2.2 Building the tests on page 2-23.

2.2.1 Source code directory

The following figure shows the source code directory for the SBSA ACS.

sbsa/

platform/

pal_uefi/

test_pool/

gic/

pcie/

timer_wd/

pe/

tools/
scripts/

secure_fw/
arm_tf/

io_virt/

peripherals/
power_wakeup/
secure/

exerciser/

linux_app/
docs/

pal_baremetal/
pal_linux/

patches/
nist_sbsa_sts.patch

nist_sts/
test_n001.c
sts-2.1.2

uefi_app/

sts-2.1.2

val/
include/
src/avs_nist.c
sys_arch_src/

Figure 2-2 SBSA ACS directory structure

The following table describes all the directories.

Table 2-1 SBSA ACS directory structure description

Directory name Description

pal_uefi Platform code targeting UEFI implementation.

pal_baremetal Example PAL bare-metal reference code.

arm_tf Example of Arm Trusted Firmware code which must be integrated into the EL3 Secure firmware to run Secure
tests.

val Common code that is used by the tests. Makes calls to PAL as necessary.

2 Execution model and flow control
2.2 Test build and execution flow

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

Table 2-1 SBSA ACS directory structure description (continued)

Directory name Description

uefi_app UEFI application source to call into the tests entry point.

test_pool Test case source files for the test suite.

linux_app Linux command-line executable source code.

docs Documentation.

scripts Scripts written for this suite.

patches Contains the SBSA NIST Statistical Test Suite (STS) patch.

2.2.2 Building the tests

This section provides reference information for building SBSA ACS as a UEFI Shell application and
SBSA ACS kernel module.

Prerequisites
• To build SBSA ACS as a UEFI Shell application, a UEFI EDK2 source tree is required.
• To build the SBSA ACS kernel module, Linux kernel tree version 4.10 or above is required.

For details, see the README.

Test build for UEFI

The build steps for the compliance suite to be compiled as a UEFI shell application are available in the
README. To execute the Secure tests, the EL3 firmware directory from the platform/secure_sw must
be integrated into the platform-specific EL3 code base. As a reference implementation, the example code
that is based on Arm Trusted Firmware is included as part of the ACS. The steps to port the reference
implementation and build EL3 firmware are beyond the scope of this document.

Test build for OS-based tests

The build steps for the Linux application-driven compliance suite and SBSA ACS kernel module, which
is a dependency for the SBSA ACS Linux application, are available in the Arm® SBSA User Guide.

2 Execution model and flow control
2.2 Test build and execution flow

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

https://github.com/ARM-software/sbsa-acs/blob/master/README.md
https://github.com/ARM-software/sbsa-acs/blob/master/README.md

Chapter 3
Platform Abstraction Layer

This chapter provides an overview of PAL API and its categories.

It contains the following sections:
• 3.1 Overview of PAL API on page 3-25.
• 3.2 API definitions on page 3-26.

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-24

Non-Confidential

3.1 Overview of PAL API
The PAL is a C-based, Arm-defined API that you can implement.

Each test platform requires a PAL implementation of its own. The PAL APIs are meant for the
compliance test to reach or use other abstractions in the test platform such as the UEFI infrastructure and
Linux OS modules. PAL implementation can also be bare-metal code.

The reference PAL implementations are available in the following locations:
• UEFI
• Linux

 Note

The PAL bare-metal reference code provides a reference implementation for a subset of APIs. The
current version of the repository contains the reference code for creation of information tables like PE,
GIC, timer, and watchdog. Additional code must be implemented to match the target SoC
implementation under test.

3 Platform Abstraction Layer
3.1 Overview of PAL API

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-25

Non-Confidential

https://github.com/ARM-software/sbsa-acs/tree/master/platform/pal_uefi
http://www.linux-arm.org/git?p=linux-acs.git;a=tree;f=sbsa-acs-drv/files/platform/pal_linux;h=b313763e4aed7b17963659a856773a00f28c02da;hb=HEAD

3.2 API definitions
The PAL API interface contains APIs that:

• Are called by the VAL and implemented by the platform.
• Begin with the prefix pal.
• Have a second word on the API name that indicates the module which implements this API.
• Have the mapping of the module as per the table below.
• Create and fill structures needed as prerequisites for the test suite, named as

pal_<module>_create_info_table.

This section contains the following subsections:
• 3.2.1 API naming convention on page 3-26.
• 3.2.2 PE APIs on page 3-26.
• 3.2.3 GIC APIs on page 3-27.
• 3.2.4 Timer APIs on page 3-29.
• 3.2.5 PCIe APIs on page 3-30.
• 3.2.6 IO-Virt APIs on page 3-33.
• 3.2.7 SMMU APIs on page 3-34.
• 3.2.8 Peripheral APIs on page 3-36.
• 3.2.9 DMA APIs on page 3-40.
• 3.2.10 Exerciser on page 3-42.
• 3.2.11 Miscellaneous APIs on page 3-45.
• 3.2.12 NIST API on page 3-49.

3.2.1 API naming convention

The PAL API interface <module> names are mapped as shown in the following table.

Table 3-1 Modules and corresponding API names

Module API name

PE pe

GIC gic

Timer timer

Watchdog wd

PCIE pcie

IOVirt iovirt

SMMU smmu

Peripheral per

DMA dma

Memory memory

Exerciser exerciser

Miscellaneous print, mem, mmio

NIST nist

3.2.2 PE APIs

These APIs provide the information and functionality required by the test suite that accesses features of a
PE.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-26

Non-Confidential

Table 3-2 PE APIs and their descriptions

API name Function prototype Description

get_num uint32_t pal_pe_get_num(); Returns the number of PEs in the system.

create_info_table void pal_pe_create_info_table(PE_INFO_TABLE
*PeTable);

Gathers information about the PEs in the
system and fills the info_table with the
relevant data.

For related definitions, see Note.

call_smc void pal_pe_call_smc(ARM_SMC_ARGS *args); Abstracts the smc instruction. The input
arguments to this function are x0 to x7
registers filled in with the appropriate
parameters.

execute_payload void pal_pe_execute_payload(ARM_SMC_ARGS
*args);

Abstracts the PE wakeup and execute
functionality. Ideally, this function calls the
PSCI_ON SMC command.

update_elr void pal_pe_update_elr(void *context,
uint64_t offset);

Updates the ELR to return from exception
handler to a required address.

get_esr uint64_t pal_pe_get_esr(void *context); Returns the exception syndrome from
exception handler.

data_cache_ops_by_va void pal_pe_data_cache_ops_by_va(uint64_t
addr, uint32_t type);

Performs cache maintenance operation on
an address.

get_far uint64_t pal_pe_get_far(void *context); Returns the FAR from exception handler.

install_esr uint32_t pal_pe_install_esr(uint32_t
exception_type, void (*esr)(uint64_t, void
*));

Abstracts the exception handler installation
steps. The input arguments are exception
type and function pointer of the handler
that has to be called when the exception of
the given type occurs. It returns zero on
success and nonzero on failure.

 Note

Each PE information entry structure can hold information for a PE in the system. The types of
information are:

typedef struct {
UINT32 pe_num; ///< PE Index
UINT32 attr; ///< PE attributes
UINT64 mpidr; ///< PE MPIDR
UINT32 pmu_gsiv; ///< PMU Interrupt ID
}PE_INFO_ENTRY;

3.2.3 GIC APIs

These APIs provide the information and functionality required by the test suite that accesses features of a
GIC.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-27

Non-Confidential

Table 3-3 GIC APIs and their descriptions

API name Function prototype Description

create_info_table void
pal_gic_create_info_table(GIC_INFO_TABLE
*gic_info_table);

Gathers information about the GIC subsystem
and fills the gic_info_table with the
relevant data.

install_isr uint32_t pal_gic_install_isr(uint32_t
int_id, void (*isr)(void));

Abstracts the steps required to register an
interrupt handler to an IRQ number. It also
enables the interrupt in the GIC CPU interface
and Distributor. It returns 0 on success and -1
on failure.

end_of_interrupt uint32_t pal_gic_end_of_interrupt(uint32_t
int_id);

Indicates completion of interrupt processing
by writing to the end of interrupt register in
the GIC CPU interface. It returns 0 on success
and -1 on failure.

request_irq uint32_t pal_gic_request_irq(unsigned int
irq_num, unsigned int mapped_irq_num, void
*isr);

Registers the interrupt handler for a given
IRQ.

irq_num: hardware IRQ number

mapped_irq_num: mapped IRQ number

isr: Interrupt Service Routine that returns the
status

free_irq void pal_gic_free_irq(unsigned int irq_num,
unsigned int mapped_irq_num);

Frees the registered interrupt handler for a
given IRQ.

irq_num: hardware IRQ number

mapped_irq_num: mapped IRQ number

set_intr_trigger uint32_t pal_gic_set_intr_trigger (uint32_t
int_id, INTR_TRIGGER_INFO_TYPE_e
trigger_type);

Sets the trigger type to edge or level.

int_id: interrupt ID which must be enabled
and the service routine installed for

trigger_type: interrupt trigger type edge
or level

request_msi uint32_t pal_gic_request_msi(uint32_t
its_id, uint32_t device_id, uint32_t IntID,
uint32_t msi_index, uint32_t *msi_addr,
uint32_t *msi_data);

Creates the MSI mappings for an LPI with
interrupt ID IntID in ITS tables and assigns
the msi_addr and msi_data.

its_id: ITS ID for the current device.

Device_id: Device ID of the endpoint

IntID: LPI interrupt ID

*msi_addr: MSI address

*msi_data: MSI data

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-28

Non-Confidential

Table 3-3 GIC APIs and their descriptions (continued)

API name Function prototype Description

free_msi uint32_t pal_gic_free_msi(uint32_t its_id,
uint32_t device_id, uint32_t IntID, uint32_t
msi_index);

Deletes the MSI mappings for an LPI with
interrupt ID IntID from the ITS tables.

its_id: ITS ID for the current device.

device_id: PCIe bus, device, function.

IntID: LPI interrupt ID

msi_index: MSI index in the MSI table

its_configure uint32_t pal_gic_its_configure(); Configures the ITS, allocates memory for
different ITS tables, LPI configuration tables,
and enables the ITS.

get_max_lpi_id pal_gic_get_max_lpi_id(); Returns the maximum LPI ID supported.

 Note

Each GIC info entry structure can hold information for any of the four types of GIC components. The
four types of entries are:

typedef enum {
ENTRY_TYPE_CPUIF = 0x1000,
ENTRY_TYPE_GICD,
ENTRY_TYPE_GICRD,
ENTRY_TYPE_GICITS
}GIC_INFO_TYPE_e;

In addition to the type, each entry contains the base address of the component.

typedef struct {
uint32_t type;
uint64_t base;
}GIC_INFO_ENTRY;

3.2.4 Timer APIs

These APIs provides the information and functionality required by the test suite that accesses features of
local and system timers, and watchdog timer.

Table 3-4 Timer APIs and their descriptions

API name Function prototype Description

create_info_table void
pal_timer_create_info_table(TIMER_INFO_TABLE
*timer_info_table);

Abstracts the steps to discover and fill
in the timer_info_table with
information about the available local
and system timers in the system.

wd_create_info_table void pal_wd_create_info_table(WD_INFO_TABLE
*wd_table);

Abstracts the steps to gather
information about watchdogs in the
platform and fills the wd_table.

 Note

• This structure holds the timer-related information of the system. All the timer tests depend on the
information in this structure.

typedef struct {
uint32_t s_el1_timer_flag;

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-29

Non-Confidential

uint32_t ns_el1_timer_flag;
uint32_t el2_timer_flag;
uint32_t el2_virt_timer_flag;
uint32_t el2_virt_timer_flag;
uint32_t s_el1_timer_gsiv;
uint32_t ns_el1_timer_gsiv;
uint32_t el2_timer_gsiv;
uint32_t virtual_timer_flag;
uint32_t virtual_timer_gsiv;
uint32_t el2_virt_timer_gsiv;
uint32_t num_platform_timer;
uint32_t num_watchdog;
uint32_t sys_timer_status;
}TIMER_INFO_HDR;

• This data structure contains information that is specific to system timer.

typedef struct {
uint32_t type;
uint32_t timer_count;
uint64_t block_cntl_base;
uint8_t frame_num[8];
uint64_t GtCntBase[8];
uint64_t GtCntEl0Base[8];
uint32_t gsiv[8];
uint32_t virt_gsiv[8];
uint32_t flags[8];
}TIMER_INFO_GTBLOCK;

• This data structure holds the watchdog information.

typedef struct {
uint64_t wd_ctrl_base; ///< Watchdog Control Register Frame
uint64_t wd_refresh_base; ///< Watchdog Refresh Register Frame
uint32_t wd_gsiv; ///< Watchdog Interrupt ID
uint32_t wd_flags;
}WD_INFO_BLOCK;

3.2.5 PCIe APIs

These APIs provide the information and functionality required by the test suite that accesses features of
PCIe subsystem.

Table 3-5 PCIe APIs and their descriptions

API name Function prototype Description

create_info_table void
pal_pcie_create_info_table(PCIE_INFO_TA
BLE *PcieTable);

Abstracts the steps to gather PCIe
information in the system and fills
the PCIe info_table. Ideally,
this function reads the ACPI
MCFG table to retrieve the
ECAM base address.

io_read_cfg uint32_t pal_pcie_io_read_cfg(uint32_t
bdf, uint32_t offset, uint32_t *data);

Abstracts the configuration space
read of a device identified by BDF
(Bus, Device, and Function). This
is used only in peripheral tests and
need not be implemented in
Linux. It returns success or
failure.

io_write_cfg void pal_pcie_io_write_cfg(uint32 Bdf,
uint32 offset, uint32 data)

Abstracts the configuration space
write of a device identified by
BDF (Bus, Device, and Function).
Writes 32-bit data to the
configuration space of the device
at an offset.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-30

Non-Confidential

Table 3-5 PCIe APIs and their descriptions (continued)

API name Function prototype Description

get_mcfg_ecam uint64_t pal_pcie_get_mcfg_ecam(); Returns the PCI ECAM address
from the ACPI MCFG table
address.

get_msi_vectors uint32_t pal_get_msi_vectors(uint32_t
seg, uint32_t bus, uint32_t dev,
uint32_t fn, PERIPHERAL_VECTOR_LIST
**mvector);

Creates a list of MSI(X) vectors
for a device. It returns the number
of MSI(X) vectors.

scan_bridge_devices_and_check_
memtype

uint32_t
pal_pcie_scan_bridge_devices_and_check_
memtype (uint32_t seg, uint32_t bus,
uint32_t dev, uint32_t fn);

Scans the bridge devices and
checks the memory type.

seg: PCI segment number

bus: PCI bus address

dev: PCI device address

fn: PCI function number

get_pcie_type uint32_t
pal_pcie_get_pcie_type(uint32_t seg,
uint32_t bus, uint32_t dev, uint32_t
fn);

Gets the PCIe device or port type.

bus: PCI bus address

dev: PCI device address

fn: PCI function number

p2p_support uint32_t pal_pcie_p2p_support(); Checks P2P support in the PCIe
hierarchy.

Returns 1 if P2P feature is not
supported and 0 if it is supported.

dev_p2p_support uint32_t
pal_pcie_dev_p2p_support(uint32_t seg,
uint32_t bus, uint32_t dev, uint32_t
fn);

Checks the PCIe device P2P
support.

seg: PCI segment number

bdf: PCI Bus, Device, and
Function

Returns 1 if P2P feature is not
supported and 0 if P2P feature is
supported.

is_cache_present uint32_t pal_pcie_is_cache_present
(uint32_t seg, uint32_t bus, uint32_t
dev, uint32_t fn);

Checks whether the PCIe device
has an Address Translation Cache
(ATC).

seg: PCI segment number

bus: PCI bus address

dev: PCI device address

fn: PCI function number

Returns 0 if the device does not
have ATC, or else 1.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-31

Non-Confidential

Table 3-5 PCIe APIs and their descriptions (continued)

API name Function prototype Description

read_ext_cap_word void
pal_pcie_read_ext_cap_word(uint32_t
seg, uint32_t bus, uint32_t dev,
uint32_t fn, uint32_t ext_cap_id,
uint8_t offset, uint16_t *val);

Reads the extended PCIe
configuration space at an offset
for a capability.

seg: PCI segment number

bus: PCI bus number

dev: PCI device number

fn: PCI function number

ext_cap_id: PCI capability ID

offset: offset of the word in the
capability configuration space

val: return value

multifunction_support uint32_t
pal_pcie_multifunction_support(uint32_t
seg, uint32_t bus, uint32_t dev,
uint32_t fn);

Checks the PCIe multifunction
support.

bdf: PCIe Bus, Device, and
Function

Returns 1 if multifunction feature
is not supported and 0 if
multifunction feature is supported.

get_bdf_wrapper uint32 pal_pcie_get_bdf_wrapper (uint32
ClassCode, uint32 StartBdf);

Returns the Bus, Device, and
Function for a matching class
code.

ClassCode: 32-bit value of
format ClassCode << 16 |
sub_class_code

StartBdf:

0: start enumeration from host
bridge.

1: start enumeration from the
input segment, Bus, Device.

This is needed since multiple
controllers with the same class
code are potentially present in a
system.

bdf_to_dev void *pal_pci_bdf_to_dev(uint32_t bdf); Returns the PCI device structure
for the given bdf.

bdf: PCI Bus, Device, and
Function.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-32

Non-Confidential

Table 3-5 PCIe APIs and their descriptions (continued)

API name Function prototype Description

read_config_byte void pal_pci_read_config_byte(uint32_t
bdf, uint8_t offset, uint8_t *val);

Reads 1 byte from the PCI
configuration space for the current
BDF at given offset.

bdf: PCI Bus, Device, and
Function

offset: offset in the PCI
configuration space for that BDF

val: return value

write_config_byte void pal_pci_write_config_byte(uint32_t
bdf, uint8_t offset, uint8_t val);

Writes 1 byte from the PCI
configuration space for the current
BDF at a given offset.

bdf: PCI Bus, Device, and
Function

offset: offset in the PCI
configuration space for that BDF

val: return value

read_msi_vector void pal_pci_read_msi_vector (struct
pci_dev *dev, struct msi_desc *entry,
PERIPHERAL_VECTOR_BLOCK *vector);

Reads the MSI capability structure
in PCIe configuration space.

dev: PCI device structure

entry: MSI description table

vector: MSI controllers
information structure

 Note

This data structure holds the PCIe subsystem information.

/**
@brief PCI Express Info Table
**/
typedef struct {
addr_t ecam_base; ///< ECAM Base address
uint32_t segment_num; ///< Segment number of this ECAM
uint32_t start_bus_num; ///< Start Bus number for this ecam space
uint32_t end_bus_num; ///< Last Bus number
}PCIE_INFO_BLOCK;

The structure is repeated for the number of ECAM ranges in the system.

typedef struct {
uint32_t num_entries;
PCIE_INFO_BLOCK block[];
}PCIE_INFO_TABLE;

3.2.6 IO-Virt APIs

These APIs provide the information and functionality required by the test suite that accesses features of
IO Virtualization system.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

Table 3-6 IO-Virt APIs and their descriptions

API name Function prototype Description

create_info_table void
pal_iovirt_create_info_table(IOVIRT_INFO_TABLE
*iovirt);

Abstracts the steps to fill in the
iovirt table with the details of
the Virtualization subsystem in
the system.

unique_rid_strid_map uint32_t
pal_iovirt_unique_rid_strid_map(uint64_t
rc_block);

Abstracts the mechanism to check
if a Root Complex node has
unique requestor ID to Stream ID
mapping.

0 indicates a fail since the
mapping is not unique.

1 indicates a pass since the
mapping is unique.

check_unique_ctx_initd uint32_t
pal_iovirt_check_unique_ctx_intid(uint64_t
smmu_block);

Abstracts the mechanism to check
if a given SMMU node has
unique context bank interrupt
IDs.

0 indicates fail and 1 indicates
pass.

get_rc_smmu_base uint64_t pal_iovirt_get_rc_smmu_base
(IOVIRT_INFO_TABLE *iovirt, uint32_t
rc_seg_num);

Returns the base address of
SMMU if a Root Complex is
behind an SMMU, otherwise
returns NULL.

 Note

The following data structure is filled in by the above function. This data structure captures all the
information related to SMMUs, PCIe root complex, GIC-ITS and any other named components involved
in the Virtualization subsystem of the SoC.

The information captured includes interrupt routing tables, memory maps, and the base addresses of the
various components.

typedef struct {
uint32_t num_blocks;
uint32_t num_smmus;
uint32_t num_pci_rcs;
uint32_t num_named_components;
uint32_t num_its_groups;
IOVIRT_BLOCK blocks[];
}IOVIRT_INFO_TABLE;

3.2.7 SMMU APIs

These functions abstract information that is specific to the operations of the SMMUs in the system.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

Table 3-7 SMMU APIs and their descriptions

API name Function prototype Description

check_device_iova uint32_t pal_smmu_check_device_iova(void
*port, uint64_t dma_addr);

Checks if the input DMA address
belongs to the input device. This can
be done by keeping track of the
DMA addresses generated by the
device using the start and stop
monitor calls defined below or by
reading the IOVA table of the device
and looking for the input address.

0 is returned if address belongs to the
device. Nonzero is returned if there
are IMPLEMENTATION DEFINED error
values.

device_start_monitor_iova void
pal_smmu_device_start_monitor_iova(void
*port);

A hook to start the process of saving
DMA addresses being used by the
input device. It is used by the test to
indicate the upcoming DMA
transfers to be recorded and the test
queries for the address through the
check_device_iova call.

device_stop_monitor_iova void pal_smmu_device_stop_monitor_iova(void
*port);

Stops the recording of the DMA
addresses being used by the input
port.

max_pasids uint32_t pal_smmu_max_pasids(uint64_t
smmu_base);

Returns the maximum PASID value
supported by the SMMU controller.
For SMMUv3, this value can be read
from the IDR1 register.

0 is returned when PASID support is
not detected. Nonzero is returned if
maximum PASID value supported
for the input SMMU.

pa2iova uint64 pal_smmu_pa2iova(uint64 SmmuBase,
unit64 Pa);

Converts physical address to I/O
virtual address.

SmmuBase: physical address of the
SMMU for conversion to virtual
address.

Pa: physical address to use in
conversion.

Returns 0 on success and 1 on
failure.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

Table 3-7 SMMU APIs and their descriptions (continued)

API name Function prototype Description

smmu_disable uint32 pal_smmu_disable(uint64 SmmuBase); Globally disables the SMMU based
on input base address.

SmmuBase: physical address of the
SMMU that needs to be globally
disabled.

Returns 0 for success and 1 for
failure.

create_info_table void
pal_smmu_create_info_table(SMMU_INFO_TABLE
*smmu_info_table);

Abstracts the steps to gather
information about SMMUs in the
system and fills the info_table.

create_pasid_entry uint32_t
pal_smmu_create_pasid_entry(uint64_t
smmu_base, uint32_t pasid);

Prepares the SMMU page tables to
support input PASID.

smmu_base: physical address of the
SMMU for which PASID support is
needed.

pasid: Process Address Space
IDentifier.

Returns 0 for success and 1 for
failure.

3.2.8 Peripheral APIs

These functions abstract information that is specific to the peripherals in the system.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

Table 3-8 Peripheral APIs and their descriptions

API name Function prototype Description

create_info_table void
pal_peripheral_create_info_table(PERIPHERAL_INFO_TABLE
*per_info_table);

Abstracts the steps to
gather information on all
the peripherals present in
the system and fills the
information in the
per_info_table.

get_legacy_irq_map uint32_t pal_pcie_get_legacy_irq_map(uint32_t bus,
uint32_t dev, uint32_t fn, PERIPHERAL_IRQ_MAP
*irq_map);

Returns the IRQ-mapping
list for the legacy interrupts
of a PCIe endpoint device.
A possible way of returning
this information is to query
the _PRT method of the
device ACPI namespace.
The following are the return
values:

0: success. irq_map
successfully retrieved in
irq_map buffer.

1: unable to access the PCI
bridge device of the input
PCI device

2: unable to fetch the ACPI
_PRT handle

3: unable to access the
ACPI _PRT object

5: legacy interrupt out of
range

is_device_behind_smmu uint32_t pal_pcie_is_device_behind_smmu(uint32_t seg,
uint32_t bus, uint32_t dev, uint32_t fn);

Checks if a device with the
input BDF is behind an
SMMU. One way of
checking this in Linux is to
check if the iommu_group
value of this device is
nonzero.

1: device is behind SMMU

0: device is not behind
SMMU or SMMU is in
bypass mode

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

Table 3-8 Peripheral APIs and their descriptions (continued)

API name Function prototype Description

get_root_port uint32_t pal_pcie_get_root_port_bdf(uint32_t *seg,
uint32_t *bus, uint32_t *dev, uint32_t *func);

Returns the Bus, Device,
and Function values of the
Root Port of the device.
The same function
arguments are used to pass
the input address of the
device and also the output
address of the Root Port.

0: success

1: input BDF device cannot
be found

2: Root Port for the input
device cannot be
determined.

get_device_type uint32_t pal_pcie_get_device_type(uint32_t seg,
uint32_t bus, uint32_t dev, uint32_t fn);

Returns the PCIe device
type of the input BDF.

0: Error: could not
determine device structures

1: normal PCIe device

2: PCIe host bridge

3: PCIe bridge

get_snoop_bit uint32_t pal_pcie_get_snoop_bit(uint32_t seg, uint32_t
bus, uint32_t dev, uint32_t fn);

Returns if the snoop
capability is enabled for the
input device.

0: snoop capability disabled

1: snoop capability enabled

2: PCIe device not found

get_dma_support uint32_t pal_pcie_get_dma_support(uint32_t bus,
uint32_t dev, uint32_t fn);

Returns if the PCIe device
supports DMA capability or
not.

0: DMA capability not
supported

1: DMA capability
supported

2: PCIe device not found

is_devicedma_64bit uint32_t pal_pcie_is_devicedma_64bit(uint32_t seg,
uint32_t bus, uint32_t dev, uint32_t fn);

Returns the DMA
addressability of the device.

0: does not support 64-bit
transfers

1: supports 64-bit transfers

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

Table 3-8 Peripheral APIs and their descriptions (continued)

API name Function prototype Description

get_dma_coherent uint32_t pal_pcie_get_dma_coherent(uint32_t bus,
uint32_t dev, uint32_t fn);

Returns if the PCIe device
supports coherent DMA.

0: DMA coherence not
supported

1: DMA coherence
supported

2: PCIe device not found

memory_ioremap uint64_t pal_memory_ioremap(void *addr, uint32_t size,
uint32_t attr);

Maps the memory region
into the virtual address
space. 64-bit address in
virtual address space.

memory_unmap void pal_memory_unmap(void *addr); Unmaps the memory region
which was mapped to the
virtual address space.

memory_get_unpopulated_addr uint64_t pal_memory_get_unpopulated_addr(uint64_t
*addr, uint32_t instance);

Returns the address of
unpopulated memory of the
requested instance from
Grand Central Dispatch
(GCD) memory map.

addr: Address of the
unpopulated memory.

instance: Instance of
memory.

Returns 0 for success.

is_pcie uint32_t pal_peripheral_is_pcie(uint32_t seg, uint32_t
bus, uint32_t dev, uint32_t fn);

Checks if PCI device is PCI
Express capable.

0: Not PCIe capable

1: PCIe capable

memory_create_info_table void pal_memory_create_info_table(MEMORY_INFO_TABLE
*memoryInfoTable);

Fills in the
MEMORY_INFO_TABLE
with information about
memory in the system. This
is achieved by parsing the
UEFI memory map.

peripheralInfoTable :
Address where the
peripheral information must
be filled.

Returns none.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

 Note

This data structure captures the information about USB, SATA, and UART controllers. Also, information
about all the PCIe devices present in the system is saved. This includes information such as PCIe bus,
device, function, the BAR addresses, the IRQ map, and the MSI vector list if MSI is enabled.

/**
@brief Summary of Peripherals in the system
**/
typedef struct {
uint32_t num_usb; ///< Number of USB Controllers
uint32_t num_sata; ///< Number of SATA Controllers
uint32_t num_uart; ///< Number of UART Controllers
uint32_t num_all; ///< Number of all PCI Controllers}
PERIPHERAL_INFO_HDR;
/**
@brief Instance of peripheral info
**/
typedef struct {
PER_INFO_TYPE_e type; ///< PER_INFO_TYPE
uint32_t bdf; ///< Bus Device Function
uint64_t base0; ///< Base Address of the controller
uint64_t base1; ///< Base Address of the controller
uint32_t irq; ///< IRQ to install an ISR
uint32_t flags;
uint32_t msi; ///< MSI Enabled
uint32_t msix; ///< MSIX Enabled
uint32_t max_pasids;
}PERIPHERAL_INFO_BLOCK;

3.2.9 DMA APIs

These functions abstract information that is specific to DMA operations in the system.

Table 3-9 DMA APIs and their descriptions

API name Function prototype Description

create_info_table void
pal_dma_create_info_table(DMA_INFO_TABLE
*dma_info_table);

Abstracts the steps to gather information on all
the DMA-enabled controllers present in the
system and fill the information in the
dma_info_table.

start_from_device uint32_t pal_dma_start_from_device(void
*dma_target_buf, uint32_t length,void
*host, void *dev);

Abstracts the functionality of performing a
DMA operation from the device to DDR
memory.

dma_target_buf is the target physical address
in the memory where the DMA data is to be
written.

0: success.

IMPLEMENTATION DEFINED: on error, the status is
a nonzero value which is IMPLEMENTATION

DEFINED.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

Table 3-9 DMA APIs and their descriptions (continued)

API name Function prototype Description

start_to_device uint32_t pal_dma_start_to_device(void
*dma_source_buf, uint32_t length, void
*host, void *target, uint32_t timeout);

Abstracts the functionality of performing a
DMA operation to the device from DDR
memory.

dma_source_buf: physical address in the
memory where the DMA data is read from and
has to be written to the device.

0: success

IMPLEMENTATION DEFINED: on error, the status is
a nonzero value which is IMPLEMENTATION

DEFINED.

mem_alloc uint64_t pal_dma_mem_alloc(void **buffer,
uint32_t length, void *dev, uint32_t
flags);

Allocates contiguous memory for DMA
operations.

Supported values for flags are:

1: DMA_COHERENT

2: DMA_NOT_COHERENT

dev is a void pointer which can be used by the
PAL layer to get the context of the request. This
is same value that is returned by PAL during
info table creation.

0: success.

IMPLEMENTATION DEFINED: on error, the status is
a nonzero value which is IMPLEMENTATION

DEFINED.

scsi_get_dma_addr void pal_dma_scsi_get_dma_addr(void *port,
void *dma_addr, uint32_t *dma_len);

This is a hook provided to extract the physical
DMA address used by the DMA master for the
last transaction. It is used by the test to verify if
the address used by the DMA master was the
same as what was allocated by the test.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

Table 3-9 DMA APIs and their descriptions (continued)

API name Function prototype Description

mem_get_attrs int pal_dma_mem_get_attrs(void *buf,
uint32_t *attr, uint32_t *sh)

Returns the memory and Shareability attributes
of the input address. The attributes are returned
as per the MAIR definition in the Arm ARM
VMSA section.

0: success.

Nonzero: error, ignore the attribute and
Shareability parameters.

dma_mem_free void pal_dma_mem_free(void *buffer, addr_t
mem_dma, unsigned int length, void *port,
unsigned int flags);

Free the memory allocated by
pal_dma_mem_alloc.

buffer: memory mapped to the DMA that is to
be freed

mem_dma: DMA address with respect to device

length: size of the memory

port: ATA port structure

flags: Value can be DMA_COHERENT or
DMA_NOT_COHERENT

 Note

This data structure captures the information about SATA or USB controllers which are DMA-enabled.

typedef struct {
uint32_t num_dma_ctrls;
DMA_INFO_BLOCK info[]; ///< Array of information blocks - per DMA controller
}DMA_INFO_TABLE;

This includes pointers to information such as port information and targets connected to the port. The
present structures are defined only for SATA and USB. If other peripherals are to be supported, these
structures need to be enhanced.

/**
@brief DMA controllers info structure
**/
typedef enum {
DMA_TYPE_USB = 0x2000,
DMA_TYPE_SATA,
DMA_TYPE_OTHER,
}DMA_INFO_TYPE_e;
typedef struct {
DMA_INFO_TYPE_e type;
void *target; ///< The actual info stored in these pointers is implementation
specific.
void *port;
void *host; ///< It will be used only by PAL. hence void.
uint32_t flags;
}DMA_INFO_BLOCK;

3.2.10 Exerciser

These functions abstract information specific to the operations of PCIe stimulus generation hardware.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

Table 3-10 Exerciser APIs and descriptions

API Name Function prototype Description

create_info_table void
pal_exerciser_create_info_table(EXERCISER_INFO_TABLE
*exerciser_info_table)

Abstracts the steps to gather
information about all PCIe stimulus
generation hardware in the system.

get_info uint32_t pal_exerciser_get_info(EXERCISER_INFO_TYPE
type, uint32_t instance)

Returns specific information of the
requested instance.

set_param uint32_t
pal_exerciser_set_param(EXERCISER_PARAM_TYPE type,
uint64_t value1, uint64_t value2, uint32_t instance)

Writes the configuration parameters
to the PCIe stimulus generation
hardware indicated by the instance
number. The supported configuration
parameters include:

1 – Snoop attributes

2 – Legacy IRQ parameters

3 – MSI(x) attributes

4 – DMA attributes

5 – Peer-to-Peer attributes

6 – PASID attributes

7 – P2P_ATTRIBUTES

8 – PASID_ATTRIBUTES

9 – CFG_TXN_ATTRIBUTES

10 – ATS_RES_ATTRIBUTES

11 – TRANSACTION_TYPE

12 – NUM_TRANSACTIONS

value2 is an optional argument and
must be ignored for some
configuration parameters.

get_param uint32_t
pal_exerciser_get_param(EXERCISER_PARAM_TYPE type,
uint64_t *value1, uint64_t *value2, uint32_t
instance)

Returns the requested configuration
parameter values through 64-bit input
arguments value1 and value2. The
function returns a value of 1 to
indicate read success and 0 to
indicate read failure.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

Table 3-10 Exerciser APIs and descriptions (continued)

API Name Function prototype Description

set_state uint32_t pal_exerciser_set_state(EXERCISER_STATE
state, uint64_t *value, uint32_t instance)

Sets the state of the PCIe stimulus
generation hardware. The supported
states include:

1 – RESET, hardware in reset state.

2 – ON, this state is set after
hardware is initialized and is ready to
generate stimulus.

3 – OFF, this state is set to indicate
that hardware can no longer generate
stimulus.

4 – ERROR, this state is set to signal
an error with hardware.

get_state uint32_t pal_exerciser_get_state(EXERCISER_STATE
state, uint64_t *value, uint32_t instance)

Returns the state of the PCIe
stimulus generation hardware of the
requested instance.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

Table 3-10 Exerciser APIs and descriptions (continued)

API Name Function prototype Description

ops uint32_t pal_exerciser_ops(EXERCISER_OPS ops,
uint64_t param, uint32_t instance)

Abstracts the steps to implement the
requested operation on the PCIe
stimulus generation hardware.
Following are the supported
operations:

1 – START_DMA,

2 – GENERATE_MSI

3 – GENERATE_L_INTR

4 – MEM_READ

5 – MEM_WRITE

6 – CLEAR_INTR

7 – PASID_TLP_START

8 – PASID_TLP_STOP

9 – TXN_NO_SNOOP_ENABLE

10 – TXN_NO_SNOOP_DISABLE

11 – START_TXN_MONITOR

12 – STOP_TXN_MONITOR

13 – ATS_TXN_REQ

get_data uint32_t pal_exerciser_get_data(EXERCISER_DATA_TYPE
type, exerciser_data_t *data, uint32_t instance)

Returns either the configuration
space or the BAR space information
depending on the input argument
type. The argument type can take one
of the following two values:

1 –
EXERCISER_DATA_CFG_SPACE

2 –
EXERCISER_DATA_BAR0_SPACE

3.2.11 Miscellaneous APIs

Miscellaneous APIs of print, mem, mmio, and others are described in the following table.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

Table 3-11 Miscellaneous APIs and their descriptions

API name Function prototype Description

print void pal_print(char *string,
uint64_t data);

Sends a formatted string to the output console.

string: An ASCII string.

data: Data for the formatted output.

print_raw void pal_print_raw(uint64_t addr,
char *string, uint64_t data);

Sends a string to the output console without using the
platform print function. This function gets COMM
port address and directly writes to the address
character by character.

addr: Address to be written.

string: An ASCII string.

data

: Data for the formatted output.

strncmp pal_strncmp uint32_t pal_strncmp
(char *FirstString, char
*SecondString, uint32_t Length);

Compares two strings. Returns zero if strings are
identical, or else a nonzero value.

FirstString: The pointer to the first null-
terminated ASCII string.

SecondString: The pointer to the second null-
terminated ASCII string.

LengthThe maximum number of ASCII characters
for comparison.

mmio_read uint32 pal_mmio_read(uint64 addr); Provides a single point of abstraction to read from all
memory-mapped I/O addresses.

addr: 64-bit input address

return: 32-bit data read from the input address

mmio_read8 pal_mmio_read8(uint64 addr); Provides a single point of abstraction to read 8-bit data
from all memory-mapped I/O addresses.

addr: 64-bit input address

return: 8-bit data read from the input address

mmio_read16 pal_mmio_read16(uint64 addr); Provides a single point of abstraction to read 16-bit
data from all memory-mapped I/O addresses.

addr: 64-bit input address

return: 16-bit data read from the input address

mmio_read64 pal_mmio_read64(uint64 addr); Provides a single point of abstraction to read 64-bit
data from all memory-mapped I/O addresses.

addr: 64-bit input address

return: 64-bit data read from the input address

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

Table 3-11 Miscellaneous APIs and their descriptions (continued)

API name Function prototype Description

mmio_write void pal_mmio_write(unit64
addr,uint32 data);

Provides a single point of abstraction to write to all
memory-mapped I/O addresses.

addr: 64-bit input address

data: 32-bit data to write to address

mmio_write8 pal_mmio_write8(unit64 addr,uint8
data);

Provides a single point of abstraction to write 8-bit
data to all memory-mapped I/O addresses.

addr: 64-bit input address

data: 8-bit data to write to address

mmio_write16 pal_mmio_write16(unit64 addr,uint16
data);

Provides a single point of abstraction to write 16-bit
data to all memory-mapped I/O addresses.

addr: 64-bit input address

data: 16-bit data to write to address

mmio_write64 pal_mmio_write(unit64 addr,uint64
data);

Provides a single point of abstraction to write 64-bit
data to all memory-mapped I/O addresses.

addr: 64-bit input address

data: 64-bit data to write to address

mem_free_shared pal_mem_free_shared(void); Frees the shared memory region allocated.

mem_get_shared_addr pal_mem_get_shared_addr(void); Returns the base address of the shared memory region
to the VAL layer.

mem_alloc void pal_mem_alloc(unsigned int
size);

Allocates memory of the requested size.

size: size of the memory region to be allocated

Returns virtual address on success and null on failure.

mem_allocate_shared pal_mem_allocate_shared (uint32_t
num_pe, uint32_t sizeofentry);

Allocates memory which is to be used to share data
across PEs.

num_pe: number of PEs in the system

sizeofentry: size of memory region allocated to
each PE

Returns none.

mem_free void pal_mem_free(void *buffer); Frees the memory allocated by UEFI framework APIs.

buffer: base address of the memory range to be
freed

Returns none.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

Table 3-11 Miscellaneous APIs and their descriptions (continued)

API name Function prototype Description

mem_cpy void *pal_memcpy(void *dest_buffer,
void *src_buffer, uint32_t len);

Copies a source buffer to a destination buffer and
returns the destination buffer.

dest_buffer: pointer to the destination buffer of the
memory copy

src_buffer: pointer to the source buffer of the
memory copy

len: number of bytes to copy from source buffer to
destination buffer

Returns the destination buffer.

mem_compare uint32 pal_mem_compare(void *src,
void *dest, uint32 len);

Compares the contents of the source and destination
buffers.

src: source buffer to be compared

dest: destination buffer to be compared with

len: length of the comparison to be performed

mem_alloc_cacheable void
pal_mem_alloc_cacheable(uint32_t
bdf, uint32_t size, void *pa);

Allocates cacheable memory of the requested size.

bdf: BDF of the requesting PCIe device

size: size of the memory region to be allocated

pa: physical address of the allocated memory

mem_free_cacheable void pal_mem_free_cacheable(uint32_t
bdf, uint32_t size, void *va, void
*pa);

Frees the cacheable memory allocated by Linux DMA
Framework APIs.

bdf: Bus, Device, and Function of the requesting
PCIe device

size: size of memory region to be freed

va: virtual address of the memory to be freed

pa: physical address of the memory to be freed

mem_virt_to_phys void pal_mem_virt_to_phys(void *va); Returns the physical address of the input virtual
address.

va: virtual address of the memory to be converted

Returns the physical address.

time_delay_ms uint64 pal_time_delay_ms (uint64
MicroSeconds);

Stalls the CPU for the specified number of
microseconds.

MicroSeconds: the minimum number of
microseconds to be delayed

Returns the value of the microseconds given as input.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

Table 3-11 Miscellaneous APIs and their descriptions (continued)

API name Function prototype Description

mem_set void pal_mem_set (void *buf, uint32
size, uint8 value);

A buffer with a known specified input value.

buf: pointer to the buffer to fill

size: number of bytes in the buffer to fill

value: value to fill the buffer with

page_size uint32_t pal_mem_page_size(); Returns the memory page size (in bytes) used by the
platform.

alloc_pages void* pal_mem_alloc_pages (uint32
NumPages);

Allocates the requested number of memory pages.

free_pages void pal_mem_free_pages (void
*PageBase, uint32_t NumPages);

Frees pages as requested.

phys_to_virt void* pal_mem_phys_to_virt (uint64_t
Pa);

Returns the VA of the input PA.

Pa: Physical Address of the memory to be converted.

Returns the VA.

3.2.12 NIST API

This API is used for randomness testing.

Table 3-12 NIST API and its description

API name Function prototype Description

generate_rng uint32 pal_nist_generate_rng(UINT32 *rng_buffer); Generates a 32-bit random number.

rng_buffer: pointer to store the random data

Returns success or failure.

3 Platform Abstraction Layer
3.2 API definitions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

Appendix A
NIST Statistical Test Suite

This appendix describes the integration of NIST Statistical Test Suite with SBSA ACS.

It contains the following section:
• A.1 NIST Statistical Test Suite on page Appx-A-51.

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-50

Non-Confidential

A.1 NIST Statistical Test Suite
Randomness testing plays a fundamental role in many areas of computer science, especially
cryptography. Well-designed cryptographic primitives like hash functions and stream ciphers should
produce pseudorandom data. The outputs of such generators may be used in cryptographic applications
like generation of key material. Generators suitable for use in cryptographic applications must meet
stronger requirements than for other applications. In particular, their outputs must be unpredictable in the
absence of knowledge of the inputs.

Statistical test suites

Randomness testing is performed using test suites consisting of many tests, each focusing on a different
feature. These tests can be used as the first steps in determining if a generator is suitable for a particular
cryptographic application.

SBSA ACS with NIST STS

There are five well-known statistical test suites namely NIST Statistical Test Suite (NIST STS), Diehard,
TestU01, ENT, and CryptX. Only the first three test suites are commonly used for the randomness
analysis because CryptX is a commercial software and ENT provides only basic randomness testing.
Since NIST STS has a special position for being published as an official document, it is often used in the
preparation of formal certifications or approvals.

Building NIST STS with SBSA ACS

To build NIST STS with SBSA ACS, NIST STS 2.1.2 package is required and downloaded automatically
as part of the build process.

See the updated version of the NIST STS tool for randomness testing documentation. The reason for the
update is, the original source code provided with NIST does not compile cleanly in UEFI because it does
not provide erf() and erfc() functions in the standard math library. Implementation of these functions
has been added as part of SBSA VAL and a patch file is created.

Running NIST STS with SBSA ACS

For information on running NIST STS, see the Arm® SBSA User Guide. For details about NIST STS, see
https://doi.org/10.6028/NIST.SP.800-22r1a.

Interpreting the results

The final analysis report is generated after the statistical testing is complete. It contains a summary of
empirical results that are displayed on the console. A test is unsuccessful when P-value < 0.01. Then the
sequence under test should be considered as non-random.

The minimum pass rate for each statistical test except for the random excursion (variant) test is
approximately 8 for a sample size of ten binary sequences. The minimum pass rate for the random
excursion (variant) test is undefined.

 Note

For SBSA compliance, passing NIST STS is OPTIONAL.

A NIST Statistical Test Suite
A.1 NIST Statistical Test Suite

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-51

Non-Confidential

https://csrc.nist.gov/CSRC/media/Projects/Random-Bit-Generation/documents/sts-2_1_2.zip
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
https://doi.org/10.6028/NIST.SP.800-22r1a

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• B.1 Revisions on page Appx-B-53.

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-52

Non-Confidential

B.1 Revisions

Table B-1 Differences between Issue E and Issue 0200-01

Change Location

Information about exerciser is added. See the following sections:
• 1.3 Compliance tests on page 1-12
• 2.2 Test build and execution flow on page 2-22
• 3.2.1 API naming convention on page 3-26
• 3.2.10 Exerciser on page 3-42

Table B-2 Differences between Issue 0200-01 and Issue 0200-02

Change Location

A note about exerciser is added. See 1.3 Compliance tests on page 1-12.

pal_baremetal folder is added to the directory structure. See 2.2 Test build and execution flow on page 2-22.

Added a note about PAL bare-metal reference code. See 3.1 Overview of PAL API on page 3-25.

Table B-3 Differences between Issue 0200-02 and Issue 0200-03

Change Location

No technical changes. -

Table B-4 Differences between Issue 0200-03 and Issue 0200-04

Change Location

A new section about exerciser is added. See 1.5 Exerciser on page 1-16.

NIST STS information is updated in these topics. See
• 1.3 Compliance tests on page 1-12
• 2.2 Test build and execution flow on page 2-22
• 3.2 API definitions on page 3-26

APIs are added in all the modules. See 3.2 API definitions on page 3-26.

A new appendix about NIST STS is added. See Appendix A NIST Statistical Test Suite on page Appx-A-50.

Table B-5 Differences between Issue 0200-04 and Issue 0300-01

Change Location

A new section about GIC ITS is added. See 1.6 GIC ITS on page 1-18

GIC ITS PAL APIs are added to GIC APIs section. See 3.2.3 GIC APIs on page 3-27.

SBSA ACS directory structure is updated. See 2.2.1 Source code directory on page 2-22

read_cfg and write_cfg APIs in the PCIe APIs table are updated. See 3.2.5 PCIe APIs on page 3-30

New configuration parameters are added to the Exerciser APIs set_param and ops. See 3.2.10 Exerciser on page 3-42

New APIs are added to Miscellaneous APIs section. See 3.2.11 Miscellaneous APIs on page 3-45

B Revisions
B.1 Revisions

101544_0300_01_en Copyright © 2016–2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-53

Non-Confidential

	Arm® SBSA Architecture Compliance Validation Methodology
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Additional reading
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : Abbreviations
	1.2 : Server Base System Architecture ACS
	1.3 : Compliance tests
	1.4 : Layered software stack
	1.4.1 : Compliance test software stack with UEFI application
	1.4.2 : Compliance test software stack with Linux application
	1.4.3 : Coding guidelines

	1.5 : Exerciser
	1.5.1 : Compliance test software stack for exerciser with UEFI shell application

	1.6 : GIC ITS
	1.7 : Test platform abstraction

	2 : Execution model and flow control
	2.1 : Execution model and flow control
	2.2 : Test build and execution flow
	2.2.1 : Source code directory
	2.2.2 : Building the tests

	3 : Platform Abstraction Layer
	3.1 : Overview of PAL API
	3.2 : API definitions
	3.2.1 : API naming convention
	3.2.2 : PE APIs
	3.2.3 : GIC APIs
	3.2.4 : Timer APIs
	3.2.5 : PCIe APIs
	3.2.6 : IO-Virt APIs
	3.2.7 : SMMU APIs
	3.2.8 : Peripheral APIs
	3.2.9 : DMA APIs
	3.2.10 : Exerciser
	3.2.11 : Miscellaneous APIs
	3.2.12 : NIST API

	A : NIST Statistical Test Suite
	A.1 : NIST Statistical Test Suite

	B : Revisions
	B.1 : Revisions

